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Abstract

Introduction

Skin sensitization forms a major toxicological endpoint for dermatology and cosmetic prod-

ucts. Recent ban on animal testing for cosmetics demands for alternative methods. We

developed an integrated computational solution (SkinSense) that offers a robust solution

and addresses the limitations of existing computational tools i.e. high false positive rate

and/or limited coverage.

Results

The key components of our solution include: QSARmodels selected from a combinatorial

set, similarity information and literature-derived sub-structure patterns of known skin protein

reactive groups. Its prediction performance on a challenge set of molecules showed accu-

racy = 75.32%, CCR = 74.36%, sensitivity = 70.00% and specificity = 78.72%, which is bet-

ter than several existing tools including VEGA (accuracy = 45.00% and CCR = 54.17% with

‘High’ reliability scoring), DEREK (accuracy = 72.73% and CCR = 71.44%) and TOPKAT

(accuracy = 60.00% and CCR = 61.67%). Although, TIMES-SS showed higher predictive

power (accuracy = 90.00% and CCR = 92.86%), the coverage was very low (only 10 out of

77 molecules were predicted reliably).

Conclusions

Owing to improved prediction performance and coverage, our solution can serve as a useful

expert system towards Integrated Approaches to Testing and Assessment for skin sensiti-

zation. It would be invaluable to cosmetic/ dermatology industry for pre-screening their mol-

ecules, and reducing time, cost and animal testing.
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Introduction
In cosmetic industry, one of the major determinant for topical products is ‘skin sensitiza-
tion’[1]. Usually the term ‘skin sensitization’ refers to heightened immune response in suscepti-
ble individuals on topical exposure to a molecule[2]. Conventionally, Buehler guinea pig test
(BGPT), guinea pig maximization test (GPMT) and more recently the murine local lymph
node assay (LLNA)[3] are used to assess the skin sensitization potential of a molecule. How-
ever, animal testing for cosmetic ingredients is banned in European Union[4], and the REACH
(Registration, Evaluation and Authorization of Chemicals) policy[5] enforces that companies
assess, manage and communicate the risks associated with molecules manufactured by them.
Considering these circumstances, there is an urgent need to devise alternative methods that
can reduce the effort and cost, and more importantly, eliminate the usage of animals in cos-
metic research. The recently published Adverse Outcome Pathway (AOP) for skin sensitization
by OECD[6] summarizes the causal links between molecular initiaing event of skin sensitiza-
tion (i.e. modification of skin protein by a molecule), intermediate key events and the adverse
outcome at biological level[7]. This mechanistic knowledge offers opportunity to develop effi-
cient methods or map existing ones (in vitro, in chemico or in silico) for assessing skin sensitiza-
tion without the need for animal testing[7]. For e.g. The in vitro assays such as
KeratinoSensTM[8,9] and human-Cell line Activation Test (h-Clat)[10] were mapped to partic-
ular key events of this AOP [11,12].

Computational (in silico) approach, due to its cost- and resource- efficiency, could be an
alternative to in vivo and possibly in vitro evaluation of skin sensitization potential with refer-
ence to AOP[13,14]. This approach includes the use of statistical, mechanism based and knowl-
edge based methodologies to predict the skin sensitization potential of molecules[15,16]. The
‘Statistical Approach’ uses: (1) already available skin sensitization data to select appropriate
molecular descriptors (e.g. number of nitrogen atoms, number of double and triple bonds,
etc.); and (2) regression or classification algorithms for classifying test molecules into sensitiz-
ers and non-sensitizers[17]. The ‘Mechanism Based’ approach utilizes heats of reaction[18],
Taft coefficients or experimental measures of reactivity with nucleophiles to correlate with skin
sensitization potential of molecules[17] while the ‘Knowledge Based’ approach usually uses
rules (alerts) devised by domain experts. Usually an ‘alert’ is prediction of a toxicophore that
could be potentially associated with skin sensitization, and is derived from chemical grouping
or empirical rules[17].

The three approaches stated above are incorporated in (Quantitative) Structure Activity
Relationship [(Q)SAR] models and expert systems designed to predict skin sensitization poten-
tial of molecules. Skin sensitization (Q)SAR model refers to a mathematical equation that
relates chemical structure (or properties) of molecules to skin sensitization potential in a quan-
titative manner[19,20]. On the other hand, expert systems are encoded in the form of rules,
used for evaluating skin sensitization potential. These rules are derived by using either expert
judgment (e.g. DEREK), statistical inference (e.g. Case Ultra, TOPKAT and VEGA) or combi-
nation of both i.e. hybrids (e.g. TIMES-SS)[21].

A recent report evaluating[21] the performance of Case Ultra, TOPKAT, DEREK, VEGA
v2.1.3, TIMES-SS v2.27, Toxtree and the OECD (Q)SAR toolbox v3.1 showed that these mod-
els suffer from: (1) unsatisfactory performance, i.e. high rate of false positives; and/or (2) lim-
ited coverage, i.e. only small sub-set of the test molecules were reliably predicted. Another
study evaluating DEREK, TOPKAT and TOPS-MODE also reported similar findings i.e. high
sensitivity but poor specificity[22]. We believe that limited dataset in terms of either size or
diversity, and the lack of mechanistic knowledge in the prediction models could be major con-
tributory factors for these limitations.
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To address these limitations and offer a robust solution, we have developed a new approach
for predicting skin sensitization potential of molecules. The novelty of our approach lies pri-
marily in the incorporation of three important components for prediction: (1) multiple QSAR
models, which were built using large publicly available data on sensitizers (of various potency
classes) and non-sensitizers; (2) structural similarity to known sensitizers and non-sensitizers;
and (3) presence of sub-structure(s) associated with skin sensitization reaction mechanisms.
This allowed us to integrate two complementary approaches i.e. statistical and mechanistic by
a unique strategy, which helped achieve improved prediction performance and coverage. We
tested our predictions on a challenge set[21] and obtained prediction accuracy of 75.32%, Cor-
rect Classification Rate (CCR) = 74.36%, sensitivity = 70.00% and specificity = 78.72%. Our
results are far better as compared to widely used tool VEGA v1.08, which showed an accuracy
of only 44.12%. To summarize, our integrated skin sensitization prediction solution ‘SkinSense’
has improved accuracy, better sensitivity and more specificity compared to the currently avail-
able solutions.

Methods

Building of QSARModels for Skin Sensitization
Briefly, building of QSAR models for skin sensitization involves: (1) collation of available skin
sensitization data; (2) selection, computation and reduction (if required) of suitable descriptors
(e.g. chemical, topological) and fingerprints; (3) creation of datasets for training and testing
classifiers; and (4) applying appropriate classifier methods to differentiate sensitizers from
non-sensitizers. Fig 1 and the description below elaborates the building of our QSAR models in
accordance with best practices documented by Tropsha et al.[23].

Collation of skin sensitization dataset. Availability of data regarding molecules already
characterized for skin sensitization potential is primary necessity for building, training and
testing of QSAR model. This data was collated from literature and the Hazardous Substance
DataBase (HSDB), which contains peer-reviewed compilation of toxicology data [24]. While
collating data, only those molecules were considered which were tested for skin sensitization
using LLNA and GPMT tests[25–29], and REACH allergens listed by Schubert (http://www.
istas.ccoo.es/descargas/alergenos_REACH%5B1%5D%28230708%29.pdf). To ensure reliabil-
ity, the data used for building models were curated using the following criteria: (1) whether
molecule is tested by LLNA in addition to other suitable assays considering that LLNA is the
preferred method; (2) whether classification of a molecule (i.e. sensitizer or non-sensitizer)
supported by latest research article; and (3) whether CAS registry number for a molecule is
unique. Based on this screening, we identified 571 unique molecules systematically character-
ized for their skin sensitization potential and denoted this as the ‘parent set’.

Molecules in the parent set were further classified (see Table 1) as Extreme (X), Strong (St),
Moderate (M), Weak (W) and Non-sensitizer (N) as reported by Johansson et al. [29], Kern
et al. [27],Cronin et al. [26], Gerberick et al. [25], Enoch et al.[28] and HSDB[24], whereas only
as Sensitizers (S) and Non-sensitizers (N) by Schubert (http://www.istas.ccoo.es/descargas/
alergenos_REACH%5B1%5D%28230708%29.pdf).

Also, building an effective QSAR model requires complete spatial depiction of molecules18;
thus, three dimensional (3D) structures for molecules in the parent set were determined. For
this, SMILES (Simplified Molecular Input Line Entry System) representation of the molecules
were converted to 2D SDF (2-Dimensional Structure Data File) using OpenBabel 2.3.2[30], fol-
lowed by conversion to 3DMOL2 format and optimization of their energies using vLife-MDS
[31] with Merck Molecular Force Field (MMFF)[32,33]. Structure of 28 out of 571 molecules
could not be optimized using vLife-MDS[31], and hence, they were excluded from further
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analysis. The remaining 543 molecules were considered for building QSAR models, and hence-
forth, referred to as ‘Energy-Optimized set (Eo)’.

Using Eo, we built four separate QSAR models to ensure that the characteristics of molecules
with different potency classes were captured appropriately. As shown in Table 1, model-1 was
built with Extreme (X) and Strong (St) sensitizers, while model-3 with Moderate (M) and

Fig 1. Steps followed for building QSARmodels.QSAR: Quantitative Structure-Activity Relationship; GPMT: Guinea Pig Maximization Test;
HSDB: Hazardous Substance DataBase; LLNA: Local Lymph Node Assay; REACH: Registration, Evaluation and Authorization of Chemicals;
MLP: Multi-Layer Perceptron; RF: Random Forest; SL: Simple Logistic; SMO: Sequential Minimal Optimization; Numbers in curly brackets
represent the count of respective entities (i.e. molecules, descriptors and fingerprints).

doi:10.1371/journal.pone.0155419.g001
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model-4 with Weak (W) sensitizers respectively. Model-2 represented a generalized model for
X, St and S (i.e. sensitizers with unknown potency). For model-1, all the extreme (= 17) and
strong (= 32) sensitizers, and 49 non-sensitizers from Eo with least average similarity were con-
sidered. All non-sensitizers were not considered in order to avoid biasing the model towards
non-sensitizers[23]. For other three models, all the available sensitizers and all the non-sensi-
tizers were considered. Weka 3.6.9[34] (henceforth referred to as Weka) was used for building
these models.

Descriptor selection, computation and reduction. Descriptors are the properties (for e.g.
chemical, topological or geometrical) that can characterize a molecule[35]. In a QSAR model,
differences in the values of descriptors are used for differentiating sensitizers from non-sensi-
tizers. As discussed below, we relied on statistical analysis to select descriptors whose values dif-
fer significantly between sensitizers and non-sensitizers.

PaDEL 2.15[36] is a free and open source software for calculating molecular descriptors and
fingerprints. It offers a total of 863 molecular descriptors and 9365 fingerprints, and all were
considered as starting set for building our QSAR models. Using T-test (two-sample unequal
variance 2-tailed), molecular descriptors whose values differ significantly (i.e. 95% confidence
interval) between sensitizers and non-sensitizers were selected for each QSAR model. This set
of descriptors was called as [A] and had 86, 168, 87 and 151 descriptors for models-1, 2, 3 and
4 respectively.

Further, to incorporate literature-derived mechanistic details for skin sensitization in our
QSARmodels, we selected suitable sub-structure fingerprints[37] from PaDEL 2.15[36]. Eleven
of them represented skin protein reactive groups, and differed significantly between sensitizers
and non-sensitizers in 164 molecules of Eo[28]. This set of sub-structure fingerprints is hereaf-
ter referred to as [B] and T-test, as elaborated above, was used to identify them. An additional
36 sub-structure fingerprints were selected from literature based on reports indicating their
association with skin sensitization reaction mechanisms[38–40]. This set of sub-structure fin-
gerprints is hereafter referred to as [C]. See Tables A-E in S1 File for the descriptors and finger-
prints contained in [A], [B] and [C] for each QSAR model.

To further refine the sets of descriptors and fingerprints such that they are mutually inde-
pendent (i.e. changing the value of one descriptor does not have an impact on another

Table 1. Datasets used for building QSARmodels.

Parent set Eo
a Model-1 Model-2 Model-3 Model-4

Xb 18 17 17 17

Stc 32 32 32 32

Sd 206 180 180

Me 90 90 90

Wf 74 74 74

Ng 151 150 49 150 150 150

Total 571 543 98 379 240 224

aEnergy-optimized set
bExtreme
cStrong
dSensitizer with unknown potency
eModerate
fWeak
gNon-sensitizer.

doi:10.1371/journal.pone.0155419.t001
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descriptor)[35], reduction protocol was performed usingWeka[34]. CfsSubsetEvalmodule along
with BestFirst method was used for this analysis [41]. We defined 5 combinations (sets) of
descriptors and fingerprints for descriptor reduction as depicted in Fig 2. Set-1 contains the
descriptors from combination of [A] and [B], followed by subsequent reduction. This allowed
selection of important yet independent descriptors and fingerprints from [A] and [B] respectively.
Sets-2 and 3 ensured that all the fingerprints in [B] and [C] respectively were considered as they
were derived from literature, and combined with the independent descriptors from [A] i.e. [A’].
Set-4 conserved all the independent descriptors i.e. [A’] and independent fingerprints from [B]
i.e. [B’] respectively, and set-5 allowed all the selected descriptors and fingerprints for the building
of QSARmodel (i.e. [A] + [B] + [C]). It is important to note that descriptor reduction was not
performed for [C] to ensure that all the literature-derived fingerprints associated with skin sensiti-
zation mechanisms were retained. Furthermore, for [A], descriptors pertaining to the correspond-
ing models (i.e. 86, 168, 87 and 151 descriptors for models-1, 2, 3 and 4 respectively) were used.

Creation of training and test sets. Training and test sets are required for training the clas-
sifier methods to differentiate sensitizers from non-sensitizers, and for testing the performance of
models. The molecules considered for building each model were divided into training and inter-
nal test sets by employing three methods: (1) direct method (D); (2) separation method (S); and
(3) cross-validation method (C). Weka[34] was used for performing these computations.

Briefly, direct method involves randomizing the dataset, followed by splitting it into training
and test set with 80% and 20% molecules in them respectively. However, direct method does
not guarantee proportional distribution of sensitizers and non-sensitizers in training and test
sets; hence, we devised ‘separation method’ to ensure proportional distribution. In separation
method, sensitizers and non-sensitizers were pre-segregated manually in two separate files and
were provided as input to Weka[34]. The randomization and splitting of these datasets into
80% and 20% molecules was done using Weka[34], and the resulting files were used to create
training and test sets with 80% and 20% molecules in them respectively. Cross-validation
method involves splitting of dataset into n (= 10 in our case) parts, out of which n-1 parts are
used as training set and the nth part is used as test set. This is iterated until all the parts are used
as test set once (see Fig 1).

An additional test set, called ‘representative test set (RTS)’, was created from Eo by selecting
equal number of sensitizers and non-sensitizers in following proportion: X = 10, St = 10,
S = 10, M = 10, W = 10 and N = 50. The molecules in each class were chosen on the basis of
mutually diverse chemical structures as deduced from Tanimoto coefficient[42].

Fig 2. Descriptor sets used for QSARmodels.

doi:10.1371/journal.pone.0155419.g002
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To benchmark our QSAR models with routinely used tools, a new test set was created by
collating molecules from literature, that were not part of dataset used earlier. We collated 76
unique molecules from literature[25–27,43–46], out of which 2 molecules failed at optimiza-
tion step described earlier and hence were excluded from further study. The remaining 74 mol-
ecules were used as ‘challenge set-1’. This test set contained molecules in following proportion:
X = 0, St = 10, S = 35, M = 2, W = 11 and N = 16.

Another dataset of 100molecules, used by Teubner et al.[47] for comparing existing skin sensiti-
zation models, was also considered. This set comprised of 45 sensitizers of varying potency and 55
non-sensitizers. Out of these, 19 molecules were present in our parent set, and thus, were removed.
Furthermore, 1 sensitizer (CAS number: 52408-42-1) failed during conversion to 2D SDF from
SMILES using OpenBabel 2.3.2[30], and 2 sensitizers (CAS numbers: 1307-96-6 and 7758-89-6)
and a non-sensitizer (CAS number: 30989-05-0) failed to optimize using vLife-MDS[31]. The
remaining 77 molecules i.e. 30 sensitizers and 47 non-sensitizers constituted ‘challenge set-2’.

Classifier methods for QSARmodels. Classifier methods are required for QSAR models
to help classify test molecules into sensitizers and non-sensitizers. Following classifier methods
fromWeka[34] were chosen[48–52]: MLP (Multi-Layer Perceptron)[48], SMO (Sequential
Minimal Optimization)[49], J48[50], RF (Random Forest)[51] and SL (Simple Logistic)[52].
MLP is a representative of artificial neural network, SMO for support vector machine, J48 for
decision tree, RF for ensemble of decision trees and SL for logistic regression. All classifier
methods were used with default parameters except for RF where 100 trees (i.e. I = 100) was
used based on earlier recommendation[53].

Consensus Prediction Using QSARModels, Similarity Information and
Sub-Structure Pattern
A unique aspect of our study is the integration of QSAR models (see section titled “Integrated
prediction workflows” for detail on selection of models), similarity information (see section
titled “Identification of structurally similar molecules in the dataset” for detail) and sub-struc-
ture pattern (see section titled “Identification of sub-structures associated with skin sensitiza-
tion reaction mechanisms” for detail) into ‘Prediction Workflows’ (PW) for classifying a
molecule as sensitizer or non-sensitizer. To achieve this integration, we employed two
approaches: machine learning methods available in Weka[34] and knowledge-based (KB) opti-
mization[54,55] (see Fig 3).

Amongst machine learning methods, MLP and SMO (i.e. implementation of support vector
machine) were used due to their suitability for the optimization of QSAR models[56]. Eo was
used for training using cross-validation method (with n = 10 in our case) (see Table F in S1 File
for details). The performance of these classifiers were evaluated using Eo and RTS, and chal-
lenge sets-1 and 2 in Weka[34].

For knowledge-based optimization[54,55], a weighted sum of predictions from components
i.e. QSAR models, similarity information and sub-structure pattern was used to compute the
final score of a test molecule (see Fig 3 and Eq 1). In this, scores from prediction components
(e.g. QSAR models m2, m3 and m4) were multiplied by their corresponding weights (e.g. wm2,
wm3, wm4). The weights refer to relative performance of the QSAR models and importance of
similarity information and sub-structure pattern in determining skin sensitization potential
(see Table 2). In Eq 1, m2, m3 and m4 are predictions from QSAR models-2, 3 and 4 (see sec-
tions titled “Evaluation of QSAR model variants” and “Integrated prediction workflows” for
details on selection of QSAR models), and ssimilarity and ssubstr are those from similarity infor-
mation and sub-structure pattern respectively. wm2, wm3, wm4, wsimilarity and wsubstr are their
corresponding weights. The prediction from QSAR models (i.e. m2, m3 and m4) was scored as
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1 (for test molecule predicted as sensitizer) or -1 (for test molecule predicted as non-sensitizer).
Prediction scores of similarity information and sub-structure pattern are described in sections
titled “Identification of structurally similar molecules in the dataset” and “Identification of sub-
structures associated with skin sensitization reaction mechanisms” respectively. If the resultant
sum was positive, molecule was predicted as a sensitizer; if negative, the molecule was predicted
as non-sensitizer; and if zero, the prediction was indeterminate. Table G in S1 File summarizes
the weights used and the corresponding prediction performance.

Identification of Structurally Similar Molecules in the Dataset
As a component of our prediction workflows, test molecules were screened for their structural
similarity (i.e. ‘similarity information’) to known sensitizers and non-sensitizers contained in
parent set. Similarity was estimated by computing Tanimoto coefficient[42] using Pybel with
path-based fingerprint (FP2)[57] approach. Based on earlier recommendations, Tanimoto
coefficient cutoff was set to 0.6 (i.e. 60% similarity)[58,59]. Test molecules failing this cutoff

Fig 3. Integration of QSARmodels, similarity information and sub-structure pattern into prediction workflows (PWs).
Blue and red colors depict components that differ in the two Prediction Workflows, PW-1 and PW-2. Components in black and
grey are those that are common in both PW-1 and PW-2. QSAR: Quantitative Structure-Activity Relationship; MLP: Multi-
Layer Perceptron; SMO: Sequential Minimal Optimization; Eo: Energy-optimized dataset; RTS: Representative test set;
Challenge-1: Challenge set-1; Challenge-2: Challenge set-2; m2, m3, m4, ssimilarity and ssubstr are predictions from QSAR.
models-2, 3 and 4, similarity information and sub-structure pattern, and wm2, wm3, wm4, wsimilarity and wsubstr are their
corresponding weights.

doi:10.1371/journal.pone.0155419.g003
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were scored as 0, while the molecules passing this cutoff (i.e. with coefficient� 0.6) were scored
as 1 or -1 depending on whether they show highest similarity to sensitizer(s) or non-sensitizer
(s) respectively. Molecules showing equal similarity (i.e. equal Tanimoto coefficient value) to
both, sensitizers and non-sensitizers, were also scored as 0.

Moreover, for molecules appearing identical to any dataset molecule (i.e. 100% similarity)
based on Tanimoto coefficient, their InChIKey[60] values were compared by pattern matching
to ascertain that the molecules were indeed identical.

Identification of Sub-Structures Associated with Skin Sensitization
Reaction Mechanisms
As our objective was to devise an integrated workflow to predict skin sensitization potential
of molecules, we included ‘sub-structure pattern’ as a key component to identify chemical
groups known to react with skin proteins[28] i.e. associated with skin sensitization reaction
mechanisms. For this, SMILES of test molecules were compared against set of SMARTS
(SMiles ARbitrary Target Specification) patterns collated from literature[28] using Pybel[57].
If a test molecule contained any such group i.e. matched with any SMARTS pattern then it
was scored as 1, else -1. Absence of a sub-structure was scored as -1 and not 0 because it is an
indicative that the molecule may not interact with skin proteins, and hence, would not be a
sensitizer.

Computation of Performance Measures
Prediction performance of the models and prediction workflows were gauged by following
measures: accuracy, sensitivity, specificity and CCR[48,61,62]. Sensitivity was computed as
proportion of correctly predicted sensitizers (see Eq 2), and specificity as proportion of cor-
rectly predicted non-sensitizers (see Eq 3). Accuracy was computed as ratio of correctly pre-
dicted molecules (both sensitizers and non-sensitizers) as compared to all molecules included
in the analysis (see Eq 4). CCR was computed as average of the rates correctly predicted within
each class (see Eq 5). In Eqs 2, 3 and 4, True Positive (TP) was described as number of sensitiz-
ers correctly predicted as sensitizers, False Positive (FP) as number of non-sensitizers wrongly
predicted as sensitizers, True Negative (TN) as number of non-sensitizers correctly predicted
as non-sensitizers and False Negative (FN) as number of sensitizers wrongly predicted as non-

Table 2. Weights used for components of prediction workflows in knowledge-based optimization.

QSAR
Model-2

QSAR
Model-3

QSAR
Model-4

Similarity Information Sub-structure Pattern

Sa Nb S N S N S N NSc No Matchd Presente Absentf

KB-a 1 1 0.4 0.4 0.3 0.3 1 1 0 0 1 0.5

KB-b 1 0.8 0.8 0.4 0.3 0.4 1 1 0 0 1 0.5

KB-c 1 0.8 0.6 0.4 0.3 0.4 1 1 0 0 1 0.5

KB-d 1 0.8 0.4 0.3 0.3 0.3 1 1 0 0 1 0.5

aWeight used if test molecule is predicted to be a ‘sensitizer’
bWeight used if test molecule is predicted to be a ‘non-sensitizer’
cWeight used if test molecule shows equal similarity to both, sensitizer and non-sensitizer
dWeight used if test molecule is not similar to any molecule in our parent set
eWeight used if sub-structure is found in a test molecule
fWeight used if sub-structure is not found in a test molecule.

doi:10.1371/journal.pone.0155419.t002
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sensitizers.

If

Score > 0; Prediction ¼ Sensitizer

Score < 0; Prediction ¼ Non� sensitizer

Score ¼ 0; Prediction ¼ Indeterminate

where

Score ¼ m2 � wm2
þ m3 � wm3

þm4 � wm4

þssimilarity � wsimilarity þ ssubstr � wsubstr

Equation1

Sensitivity ¼ TP
TP þ FN

Equation2

Specificity ¼ TN
TN þ FP

Equation3

Accuracy ¼ TP þ TN
TP þ FN þ TN þ FP

Equation4

CCR ¼ Specificity þ Sensitivity
2

Equation5

Results and Discussion

Quantitative Structure-Activity Relationship (QSAR) Models
As stated earlier, we built four QSAR models. For each model, a total of 75 variants (= 1 model
x 5 descriptor sets x 3 methods of separating training and test sets x 5 classifier methods) were
built using various combinations of descriptor and fingerprint sets, segregation of training and
test sets, and classifier methods (see Methods for details). This resulted in a total of 300 variants
(= 4 models x 75 variants for each model); thus, allowing us to evaluate combinatorial list of
QSAR models and choose the best performing ones.

Nomenclature for each variant (e.g. 1D4RF) was represented by an alphanumeric code as
elaborated below:<model i.e. [1–4]><method used for segregating training and test sets i.e.
[D|S|C]><descriptor set used i.e. [1–5]><classifier method i.e. [J48|MLP|RF|SL|SMO]>. In
1D4RF, ‘1’ refers to QSAR model-1, ‘D’ is direct method for segregating training and test sets,
descriptor set-‘4’ for building and random forests ‘RF’ as the classifier method.

Evaluation of QSARModel Variants
All the 300 variants were evaluated for prediction performance using their respective test sets
and RTS. The respective test sets of each variant contains sensitizers of specific categories (for
e.g. extreme (X) and strong (St) for variants of model-1) and non-sensitizers (see sections titled
“Collation of skin sensitization dataset” and “Creation of training and test sets” for details). On
the other hand, RTS contains equal number of sensitizers of all categories (i.e. extreme (X),
strong (St), moderate (M), weak (W) and sensitizers of unknown potency (S)) and equal num-
ber of non-sensitizers (see 2.1.3 for details). Thus, this analysis revealed the ability of variants
to predict sensitizers in their respective categories as well as sensitizers across all the categories.
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For instance, among the variants of model-1, 1D1RF, 1D4RF and 1D3J48 showed highest pre-
diction accuracy (= 100%) for their respective test sets. However, with respect to RTS, 1C1RF
and 1C4RF showed highest accuracy (= 84%) while 1D1RF, 1D4RF and 1D3J48 showed accu-
racies of 81%, 81% and 77% respectively (see Table H in S1 File).

Overall, prediction accuracies of the variants ranged between 57.77%-100% with respect to
their respective test sets (variants 4D4J48, and 1D1RF, 1D3J48 and 1D4RF respectively) and
44%-97% for RTS (variants 3C2SL, and 2C1RF and 2C2RF respectively) (see Table H in S1
File). For further evaluation, we short-listed the variants showing best accuracy with respect to:
(1) internal test set; (2) RTS; and (3) a combination of internal test set and RTS. Fig 4 shows
the variants that satisfy above criteria.

To assess the robustness of variants, we evaluated their performance on ‘new set of mole-
cules’ (i.e. molecules not used during model building). Challenge set-1 containing 74 molecules
collated from literature (see 2.1.3 for details) was used for this evaluation. As shown in Fig 4,
2S3SMO and 2C4RF showed the highest prediction accuracy (= 71.62%) followed by that of
2C2RF (= 67.57%). This implied that variants of model-2 performed best on an external test
set, which was expected owing to the diversity of molecules used for building them.

On comparing the prediction accuracy for individual categories of sensitizers from RTS and
challenge set-1, it was evident that a single model cannot predict all the types of sensitizers with
equal accuracy. In particular, variants of models-1 and 2 could predict X, St and M better than
W, while variants of models-3 and 4 were better at predicting M and W respectively. Thus, to
enhance the spectrum of prediction and improve the overall performance, we integrated indi-
vidual models into prediction workflows as elaborated below.

Integrated Prediction Workflows
As stated above, we built prediction workflows by combining best performing variants from
each QSAR model such that the overall prediction performance improves. Criteria used for
selecting these variants were as follows: (1) prediction performance on their respective test sets
and RTS; (2) ability to predict sensitizer categories used to train the variants; and (3) ability to
predict other sensitizer categories. For e.g. 3C2RF was preferred over 3C5RF owing to better
prediction of other sensitizer categories (i.e. X and St), though, they predicted their respective
sensitizer category (i.e. M) with equal accuracy. Moreover, no variant of model-1 was used in
prediction workflow as variants of model-2 compensated for it by predicting X and St with
equal or better accuracy (see Fig 4).

Based on above criteria, the variants 2C2RF and 2C4RF of model-2, 3C2RF of model-3 and
4C2RF of model-4 were selected. These were combined such that each combination had vari-
ants from all the three QSAR models viz. (1) 2C2RF, 3C2RF and 4C2RF; and (2) 2C4RF,

Fig 4. Percent prediction accuracy of short-listed variants of models.Color-coded scale from green to
red indicates decreasing prediction accuracy. RTS and Challenge-1 sets are expanded to show the
prediction accuracy for each category of sensitizers and non-sensitizers. Internal: Internal test set; RTS:
Representative test set; Challenge-1: Challenge set-1; Both: Internal & RTS; X: Extreme; St: Strong; S:
Sensitizer with unknown potency; M: Moderate; W: Weak; N: Non-sensitizer.

doi:10.1371/journal.pone.0155419.g004
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3C2RF and 4C2RF. Y-randomization for these QSAR model variants were performed to assess
robustness and eliminate chance correlation. For each variant, 10 randomization runs were
performed as indicated by Garg et al.[63]. In all cases, the QSAR model variants based on real
data showed much higher accuracy than the random models, indicating no chance correlation
in our model variants (see Table I in S1 File).

In addition to the predictions from QSAR models, we incorporated following two factors.
(1) ‘Similarity information’ of known sensitizers and non-sensitizers from our parent set based
on the principle of similar-property, considering that structurally similar molecules exhibit
similar properties[64]. (2) Identification of ‘sub-structure patterns’ associated with skin sensiti-
zation reaction mechanisms. This was done to identify the presence of chemical groups known
to react with skin proteins[28,61].

Integration of predictions from components. We built two prediction workflows corre-
sponding to following model variants: (1) 2C2RF, 3C2RF and 4C2RF; and (2) 2C4RF, 3C2RF
and 4C2RF respectively. The predictions from each component of the workflow i.e. QSAR
models, similarity information and sub-structure pattern were consolidated using machine
learning methods (i.e. MLP and SMO) and knowledge-based optimization, with Eo as the train-
ing set. The details of score computation from each component and their integration is dis-
cussed in section titled “Consensus prediction using QSAR models, similarity information and
sub-structure pattern”. It should be noted that weight of any sub-structure pattern was kept as
1 (when it is found in a test molecule) and 0.5 (when it is absent in a test molecule) to account
for the fact that presence of a sub-structure is a good indicator of sensitizer while its absence
does not necessarily imply that a test molecule is a non-sensitizer (see Table 2). As mentioned
above, similarity information and sub-structure pattern were components of both of our pre-
diction workflows.

Evaluation of Prediction Workflows
Since, various methods were used to integrate the predictions in our workflows, their perfor-
mance on Eo, RTS dataset and challenge sets-1 and 2 were evaluated. The results are discussed
in following sections:

Comparative performance of prediction workflows. Table 3 details the prediction per-
formance of our prediction workflows (PW-1 and PW-2) with reference to the use of machine
learning methods (MLP and SMO) and knowledge-based optimization. In this table, KB-a,
KB-b, KB-c and KB-d refer to various combinations of weights assigned to scores from compo-
nents (QSAR models, similarity information and sub-structure pattern) of our workflows (see
Eq 1 and Table 2).

As is evident from Table 3, MLP and SMO performed better than knowledge-based optimi-
zation on Eo and RTS for both the prediction workflows; however, the latter outperformed
MLP and SMO on challenge sets-1 and 2. This may indicate over-fitting of the machine learn-
ing methods (i.e. MLP and SMO) to the training set, which is an inherent limitation of such
methods. On the other hand, the better performance of knowledge-based optimization could
be attributed to small set of parameters (i.e. 5) to be optimized and a priori understanding of
their contributions to the skin sensitization potential of molecules. Among the knowledge-
based (KB) optimized weights, KB-b weights showed the best performance.

With KB-b weights, PW-2 performed best with respect to Eo (accuracy = 99.26%) and RTS
(accuracy = 100%). The prediction accuracy of PW-1 was also comparable i.e. 99.08% and 99%
for respective test sets. For challenge set-1, PW-1 performed slightly better than PW-2 (accu-
racy = 78.38% and 77.03% respectively), while both the prediction workflows performed
equally well with respect to challenge set-2 (accuracy = 75.32%).
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Clearly, integration of QSAR models, similarity information and sub-structure pattern in
prediction workflows performed better than individual QSAR models because even the best
performing model showed lower accuracy on Eo and RTS than our prediction workflows (see
Fig 4 and Table H in S1 File).

Assessment of prediction performance on challenge sets. Out of 74 molecules in chal-
lenge set-1, 58 (78.38%) and 57 (77.03%) were accurately predicted by PW-1 and PW-2 respec-
tively. Among these, PW-1 accurately predicted 47 sensitizers while PW-2 predicted 46
sensitizers. Moreover, 11 non-sensitizers were accurately predicted by both the workflows. It is
important to note that integration of QSAR models, similarity information and sub-structure
pattern facilitated their correct classification by overcoming the incorrect predictions of indi-
vidual computations. For e.g. in case of PW-1, 18 out of 47 correctly predicted sensitizers did
not show similarity to any molecule in parent set. However, PW-1 predicted them correctly as
sensitizers owing to identification of reactive group(s) and/or predictions from QSAR models.
Similar trend was also observed for PW-2 (see Tables J and K in S1 File for details). Table L in
S1 File lists the reactive groups predicted to be present on molecules of challenge sets-1 and 2
by our workflows.

PW-1 and PW-2 incorrectly predicted 16 (21.62%) and 17 (23.97%) molecules, of which 11
and 12 are sensitizers and the remaining 5 non-sensitizers. Among the sensitizers wrongly pre-
dicted as non-sensitizers by PWs, 4 contain reactive group(s), but 3 of them also showed simi-
larity to non-sensitizers. Thus, consensus prediction by the workflow went wrong. Similarly,
among the non-sensitizers wrongly predicted as sensitizers, reactive groups were absent in 4
molecules, but they showed similarity to sensitizers.

These results indicate that although the prediction workflows were able to overcome incor-
rect predictions by individual models in majority of the cases, there is a scope for further

Table 3. Performance of prediction workflows with machine learningmethods and knowledge-based optimization.

Method % Accuracy

Eo
a RTSb Challenge set-1 Challenge set-2

PW-1c MLPe 100.00 100.00 70.27 67.53

PW-1 c SMOf 100.00 100.00 72.97 67.53

PW-1 c KB-ag 98.16 99.00 78.38 74.03

PW-1 c KB-bg 99.08 99.00 78.38 75.32

PW-1 c KB-cg 98.34 99.00 78.38 74.03

PW-1 c KB-dg 98.34 99.00 79.73 74.03

PW-2d MLP 100.00 100.00 70.27 67.53

PW-2 d SMO 100.00 100.00 71.62 67.53

PW-2 d KB-ag 98.34 100.00 78.38 72.70

PW-2 d KB-bg 99.26 100.00 77.03 75.32

PW-2 d KB-cg 98.53 100.00 78.38 72.73

PW-2 d KB-dg 98.53 100.00 79.73 72.73

aEnergy-optimized set
bRepresentative test set
cPrediction workflow containing following variants of models: 2C2RF, 3C2RF and 4C2RF
dPrediction workflow containing following variants of models: 2C4RF, 3C2RF and 4C2RF
eMulti-Layer Perceptron
fSequential Minimal Optimization
gKnowledge-based optimization with different weights used for components of prediction workflows as elaborated in Table 2

doi:10.1371/journal.pone.0155419.t003
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optimization of the relative contribution of individual predictions. Evaluation of challenge set-
2 also led to similar conclusions (see Tables J and K in S1 File for details).

Contributions of QSAR models, similarity information and sub-structure patterns to
prediction. From the results, it was evident that the predictions from QSAR models, similar-
ity information and sub-structure pattern do not concur with each other in some cases. Thus,
it was important to understand how these components contribute to overall prediction. For
this, we performed ‘leave-one-out’ analysis for both the prediction workflows, wherein the
QSAR models corresponding to PW-1 and PW-2 were considered in one category (A), similar-
ity information in category B and sub-structure pattern in category C. Categories A, B and C
were used in all possible combinations (i.e. A, B, C; A, B; A, C; and B, C) with Eo, RTS and chal-
lenge sets-1 and 2 for this analysis.

As shown in Table 4, the performance on Eo and RTS decreased the most when similarity
information was left out. On the other hand, performance on the challenge sets decreased the
most when sub-structure pattern was removed. Similarity information appeared to be impor-
tant for the internal sets (i.e. Eo and RTS) because the tested molecules were already present in
the dataset, and thus, similar molecules could be found. This led to better performance when
similarity information was included in the prediction workflow. Sub-structure pattern
appeared to be an important contributor in correctly classifying the molecules of challenge
sets, indicating that the chemical groups with potential to bind to skin proteins are an impor-
tant determinant of skin sensitization potential of a molecule. It was also clear that removing
QSAR models (i.e. category A) led to slight increase in the prediction accuracy for Eo (= 0.54%

Table 4. Leave-one out analysis to assess the contributions of QSARmodels, similarity information and sub-structure pattern to the prediction
performance of prediction workflows.

Dataset Performance A, B, Ca A, Ba A, Ca B, Ca

PW-1b PW-2c PW-1b PW-2c PW-1b PW-2c PW-1b PW-2c

Eo
d Accuracy 99.08 99.26 99.82 99.82 91.53 91.16 99.80 99.80

Sensitivity 98.73 98.98 99.75 99.75 88.30 87.79 100.00 100.00

Specificity 100.00 100.00 100.00 100.00 100.00 100.00 99.02 99.02

Indeterminate resultsf 0 0 0 0 0 0 48 48

RTSe Accuracy 99.00 100.00 100.00 100.00 90.00 89.00 100.00 100.00

Sensitivity 98.00 100.00 100.00 100.00 80.00 78.00 100.00 100.00

Specificity 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Indeterminate resultsf 0 0 0 0 0 0 22 22

Challenge set-1 Accuracy 78.38 77.03 67.57 68.92 78.38 79.73 74.24 74.24

Sensitivity 81.03 79.31 67.24 68.97 75.86 77.59 76.92 76.92

Specificity 68.75 68.75 68.75 68.75 87.50 87.50 64.29 64.29

Indeterminate resultsf 0 0 0 0 0 0 8 8

Challenge set-2 Accuracy 75.32 75.32 55.84 57.14 75.32 74.03 63.77 63.77

Sensitivity 70.00 70.00 66.67 66.67 70.00 66.67 65.38 65.38

Specificity 78.72 78.72 48.94 51.06 78.72 78.72 62.79 62.79

Indeterminate resultsf 0 0 0 0 0 0 8 8

aA: QSAR models (i.e. 2C2RF, 3C2RF and 4C2RF for PW-1 and 2C4RF, 3C2RF and 4C2RF for PW-2); B: Similarity information; C: Sub-structure pattern
bPrediction Workflow-1
cPrediction Workflow-2
dEnergy-optimized set
eRepresentative test set
fPrediction workflows could not classify the test molecule as sensitizer or non-sensitizer (i.e. score = 0).

doi:10.1371/journal.pone.0155419.t004
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for PW-2) and RTS (= 1% for PW-1), but, it also led to indeterminate results for several mole-
cules in all the test sets. Thus, QSAR models are key players in the prediction workflow.

Furthermore, it was interesting to note that leaving out similarity information led to an
increase (= 2.7% for PW-2) in the accuracy for challenge set-1, though there was a decrease (=
1.3% for PW-2) in accuracy for challenge set-2. Thus, leave-one out analysis highlighted the
importance of each component of the prediction workflows and indicated the scope for further
improvement either in the thresholds used to differentiate sensitizers from non-sensitizers, the
weights, or both of them. For example, a molecule from our dataset was considered similar to a
test molecule if Tanimoto coefficient� 0.6. Increasing this threshold would make the criterion
more stringent, and may improve its contribution towards final prediction.

Comparative Performance of PW-1 & 2 with Existing Tools
We evaluated the molecules of challenge sets using freely available tool, VEGA v1.08 (http://
www.vega-qsar.eu/index.php). With respect to challenge set-1 containing 74 molecules, VEGA
v1.08 could process 69 molecules, while PW-1 and 2 could process all the molecules. On com-
paring their prediction accuracies, our workflows showed slightly better performance (i.e.
3.02% by PW-1 and 1.67% by PW-2) as compared to VEGA v1.08 (see Fig 5A). Considering
only the 69 molecules processed by VEGA v1.08, the prediction accuracies by both, VEGA
v1.08 and PW-2 were equal (= 75.36%) and PW-1 showed slightly higher accuracy (= 76.81%)
(see Fig 5B). However, comparing sensitivity and specificity indicated that VEGA v1.08 has
high sensitivity (= 88.68%), but poor specificity (= 31.25%) as compared to that of our predic-
tion workflows (sensitivity = 79.25% and 77.36% for PW-1 and PW-2 respectively and specific-
ity = 68.75% for both PW-1 and PW-2).

With respect to challenge set-2 containing 77 molecules, VEGA v1.08 could process 68 mol-
ecules, while PW-1 and 2 processed all the molecules. Considering these 68 molecules, the pre-
diction accuracies of our prediction workflows were equal and 32.35% higher than that of
VEGA v1.08 (see Fig 5C and 5D). The trends for sensitivity and specificity were similar to that
observed with challenge set-1. Sensitivity of VEGA v1.08 was high (= 89.29%), but specificity
was very low (= 12.50%) as compared to that of our prediction workflows (sensitivity = 67.86%
and specificity = 82.50% for both PW-1 and 2).

We also performed predictions using VEGA v1.08 with ‘High (AD Index> = 0.8)’ and
‘High and Medium (AD Index> = 0.6)’ for both, challenge sets-1 and 2. As shown in Tables
M and N in S1 File, VEGA v1.08 showed lower prediction performance than our prediction
workflows even with the use of ‘High’ (accuracy = 72% and CCR = 62.87%) or ‘High and
Medium’ (accuracy = 70.27% and CCR = 58.50%) reliability scores for challenge set-1. The
observation was similar for challenge set-2 as well (see Tables O and P in S1 File).

Furthermore, we compared the prediction performance of our workflows with other exist-
ing tools, namely, Case Ultra, TOPKAT, DEREK, TIMES-SS v2.27 and OECD (Q)SAR tool-
box, by deriving their prediction performance from Teubner et al.[47] with respect to the
molecules of challenge set-2 (see Table Q in S1 File for detailed derivation of prediction perfor-
mance and results). For OECD (Q)SAR toolbox, we assumed presence of alert in a test mole-
cule as sensitizer and its absence as non-sensitizer because there is no direct way of mapping
the presence or absence of alerts to whether a molecule is sensitizer or non-sensitizer[47]. Our
prediction workflows appeared to have best prediction performance (accuracy = 75.32% and
CCR = 74.36% for both PW-1 and 2) among the compared tools followed by that of DEREK
(accuracy = 71.05% and CCR = 69.13%) and TIMES-SS (accuracy = 69.33% and
CCR = 67.78%). The prediction performance of OECD (Q)SAR toolbox were as follows:
OASIS alert (accuracy = 65.79% and CCR = 60.45%) and OECD alert (accuracy = 61.84% and
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CCR = 55.94%). Our prediction workflows also showed highest sensitivity (= 70.00%), and
specificity (= 78.72%) followed closely by DEREK (= 78.26%). A recently published QSAR
model for skin sensitization reported CCR of 71–88% in differentiating sensitizers from non-
sensitizers on separate external sets[65]. It would be interesting to evaluate this model against
the test set used by Teubner et al.[47] for evaluating the performance of existing tools.

Fig 5. Comparative performance of our prediction workflows with VEGA v1.08. Panel A: Molecules of challenge set-1 processed by our
prediction workflows (= 74) and VEGA v1.08 (= 69) used for computation; Panel B: 69 molecules of challenge set-1 processed by our prediction
workflows as well as VEGA v1.08 were used for computation; Panel C: Molecules of challenge set-2 processed by our prediction workflows (=
77) and VEGA v1.08 (= 68) used for computation; Panel D: 68 molecules of challenge set-2 processed by our prediction workflows as well as
VEGA v1.08 were used for computation. VEGA v1.08: orange bars; PW-1: blue bars; PW-2: green bars. CCR: Correct Classification Rate.

doi:10.1371/journal.pone.0155419.g005
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On comparing prediction performance of existing tools within their applicability domains,
DEREK (accuracy = 72.73% and CCR = 71.44%) and TOPKAT (accuracy = 60% and
CCR = 61.67%) still showed lower prediction performance than our prediction workflows
(accuracy = 75.32% and CCR = 74.36%) (see Table Q in S1 File for details). Although,
TIMES-SS showed better prediction performance (accuracy = 90% and CCR = 92.86%) than
our workflows, only 10 out of the total 77 molecules (13%) of challenge set-2 could be pro-
cessed by it, thus, indicating poor coverage. For Case Ultra, as shown by Teubner et al.[47],
even with prediction performance in the applicability domain (i.e. known fragments), it could
process only 20 sensitizers and 28 non-sensitizers out of the 100 molecule dataset[47], and cor-
rectly identified 60% of sensitizers and 71% of non-sensitizers. For OECD (Q)SAR toolbox, as
stated by Teubner et al.[47], applicability domain is not applicable.

In summary, our prediction workflows showed improved prediction performance as com-
pared to other existing tools. As is evident, following factors contributed to the better perfor-
mance of our prediction workflows by overcoming the limitations of existing tools: (1) use of
larger dataset with molecules from different skin sensitization potency classes to build separate
QSAR models, which helped increase coverage of our prediction workflows; (2) incorporation
of literature-derived mechanistic knowledge (in the form of. similarity information and sub-
structure patterns) helped increase the specificity; and (3) combining the QSAR models with
mechanistic knowledge in a weighted fashion improved the overall prediction accuracy.

SkinSense: Implementation of Prediction Workflow as Software
Owing to improved accuracy of our prediction workflows, we believe that they may fit in the
role of expert system as a part of Integrated Approaches to Testing and Assessment (IATA) for

Fig 6. SkinSense–Result Screen. Table on the left shows SMILES of input molecules; ‘Predictions’ section
shows prediction result for the selected molecule along with predicted reaction mechanism and domain
information; ‘Molecular Visualization’ depicts the structure of selected molecule, along with skin protein
reactive sub-structure(s) (if any) highlighted in cyan; ‘Similarity Search Result’ shows parent set molecules
found similar to selected input molecule along with details such as Tanimoto coefficient; ‘Export Type’ offers
various options to export SkinSense result.

doi:10.1371/journal.pone.0155419.g006
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skin sensitization[66]. Towards this, we have implemented our prediction workflow (PW-2 in
particular) in a software application called SkinSense, using Java Swing technology.

SkinSense is intended to serve as a primary screening tool for dermatology and cosmetic
research, which enables prediction of skin sensitization risk of molecules of interest. Our tool
also provides mechanistic details such as skin protein reaction mechanisms and highlights
reactive groups of molecules (see Fig 6). This would assist in decision making as well as refine-
ment of the molecules early on in the discovery process, and thus, save time and cost.

SkinSense allows import of test molecules, and classifies them into sensitizers and non-sen-
sitizers. It is important to note that SkinSense also predicts reaction mechanisms of test mole-
cules and indicates the reactive group(s) responsible for reaction with skin proteins. This
facilitates user to gain insight into the mechanistic details of test molecules, which in turn,
allows the mapping to skin sensitization AOP.

The software is currently available free of charge at: http://eskin.persistent.co.in/
deskDownloader/skinsense/download-installer, and will soon be released as an open source
tool for the scientific community to facilitate further enhancements. Such enhancements may
include, for example, flexibility to incorporate new experimental data (such as peptide binding
of molecules) in our existing prediction workflows.

Conclusions
Our integrated computational solution for predicting skin sensitization combined knowledge
from known molecules and reaction mechanisms involved in sensitization, with computational
methods and heuristics to develop and refine the workflows. This helped us achieve the
improved prediction performance (i.e. accuracy = 75.32%, CCR = 74.36%, sensitivity = 70.00%
and specificity = 78.72%) for skin sensitization potential of molecules as compared to existing
tools. We believe this advancement would benefit the computational screening of molecules,
and would be invaluable in the recent initiative of reducing animal usage in cosmetic and phar-
maceutical research. Furthermore, the integrative framework outlined in this study may be rep-
licated for predicting other important therapeutically important endpoints.
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