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Prediction of Atypical Ductal Hyperplasia 
Upgrades Through a Machine Learning 
Approach to Reduce Unnecessary 
Surgical Excisions

INTRODUCTION

Atypical ductal hyperplasia (ADH) is a high-risk 
breast lesion that confers approximately four- to 
five-fold risk of breast cancer.1 ADH is primarily 
detected via percutaneous core needle biopsy, 
during which multiple passes of the lesions are 
obtained to ensure proper sampling.2 However, 
only portions of the lesion are sampled; there-
fore, it is possible to miss cancerous tissue within 
the lesion.3 Biopsy modality (ultrasound, stereo-
tactic, or magnetic resonance imaging guided) 
and needle size may influence sampling and 
accuracy such that the presence of cancer may 
be underestimated by 10% to 45%, depend-
ing on the percutaneous biopsy method used.4 
Currently, the recommendation for diagnosis of 

ADH on core needle biopsy is surgical excision, 
because approximately 20% to 30% of these 
lesions are upgraded to cancer.5,6 As a result, 
70% to 80% of women undergo a costly and 
invasive procedure for a benign high-risk lesion.

Surgical excision is more invasive than percuta-
neous core needle biopsy and has a higher risk 
of bleeding, infection, and postsurgical scar.2,7 
The majority of ADH found on biopsies are not 
upgraded to malignancy, so identification of 
women at low risk of surgical upgrade would have 
a high clinical impact. For these women, active 
surveillance and possible chemoprevention may 
be a reasonable alternative.8,9 Figure 1 provides 
an overview of the current clinical management 
of ADH diagnosed by percutaneous core needle 

Purpose Surgical excision is currently recommended for all occurrences of atypical ductal hyper-
plasia (ADH) found on core needle biopsies for malignancy diagnoses and treatment of lesions. 
The excision of all ADH lesions may lead to overtreatment, which results in invasive surgeries 
for benign lesions in many women. A machine learning method to predict ADH upgrade may help 
clinicians and patients decide whether combined active surveillance and hormonal therapy is a 
reasonable alternative to surgical excision.

Methods The following six machine learning models were developed to predict ADH upgrade from 
core needle biopsy: gradient-boosting trees, random forest, radial support vector machine (SVM), 
weighted K-nearest neighbors (KNN), logistic elastic net, and logistic regression. The study cohort 
consisted of 128 lesions from 124 women at a tertiary academic care center in New Hampshire 
who had ADH on core needle biopsy and who underwent an associated surgical excision from 
2011 to 2017.

Results The best-performing models were gradient-boosting trees (area under the curve [AUC], 
68%; accuracy, 78%) and random forest (AUC, 67%; accuracy, 77%). The top five most import-
ant features that determined ADH upgrade were age at biopsy, lesion size, number of biopsies, 
needle gauge, and personal and family history of breast cancer. Using the random forest model, 
98% of all malignancies would have been diagnosed through surgical biopsies, whereas 16% of 
unnecessary surgeries on benign lesions could have been avoided (ie, 87% sensitivity at 45% 
specificity).

Conclusion These results add to the growing body of support for machine learning models as use-
ful aids for clinicians and patients in decisions about the clinical management of ADH.
Clin Cancer Inform. © 2018 by American Society of Clinical Oncology Licensed under the Creative Commons Attribution 4.0 License

abstract

original report

Lia� Harrington

Roberta� diFlorio-
Alexander

Katherine� Trinh

Todd� MacKenzie

Arief� Suriawinata

Saeed� Hassanpour

Author affiliations and 
support information (if 
applicable) appear at the 
end of this article.

Corresponding author: 
Saeed Hassanpour, PhD, 
1 Medical Center Dr, 
HB 7261, Lebanon, NH 
03756; e-mail: saeed.
hassanpour@dartmouth.
edu.

Licensed under the 
Creative Commons  
Attribution 4.0 License.

http://ascopubs.org/journal/cci


biopsy. A possible improvement compared with 
the current practice of surgical excision for all 
core needle biopsy–detected ADH may be that 
women at high risk of upgrade for surgical exci-
sion are targeted low-risk women are spared of 
potential overtreatment.

Previous studies have examined predictors of 
upgrade, such as biopsy needle gauge size,10 
number of needle cores,11 number of foci of 
ADH/extent of ADH,12 presence of mass on 
mammography,13 size of lesions,5 and presence 
of calcifications.14 However, it is currently diffi-
cult to integrate these predictors into a clear rec-
ommendation criterion for surgical excision. An 
automated algorithm that precisely and quickly 
integrates this information into an accurate risk 
assessment would provide a clear benefit to cli-
nicians and patients, who must make decisions 
about surgical excision. Thus, there is a critical 
need for a computational model that could learn 
the most informative features of lesions that are 
commonly upgraded to cancer, thereby possibly 
sparing low-risk women from invasive surgeries.

In pursuit of this, other groups have used 
various machine learning and computational 
approaches to predict such upgrade outcomes. 
Khoury et al11 created a nomogram using sta-
tistically significant features from a logistic 
regression model that had an area under the 
curve (AUC) of 77.5% to predict the likelihood 
of ADH upgrade. Some predictive features in 
the final nomogram included age, hormonal 
therapy use, number of involved cores, size of 
largest lesion, and presence of mass versus cal-
cifications. Bendifallah et al15 developed a logis-
tic regression model and a recursive portioning 
model with respective AUCs of 65% and 57% to 

predict ADH upgrades. According to this model, 
age older than 50 years, menopause onset, and 
lesion size greater than 10 mm were important 
to predict ADH upgrade. Using a multivariable 
logistic regression model, Peña et al16 found a 
low upgrade risk for women who had no individ-
ual cell necrosis, a single ADH focus with ≥ 50% 
removal, or 2 to 3 foci with ≥ 90% removal. They 
noted that occurrences that met the low-risk 
inclusion criteria had an upgrade rate of only 
4.9% compared with 21.4% for those occur-
rences that did not. Most recently, Bahl et al17 
achieved a sensitivity of 97.4% and a specificity 
of 30.6% using a random forest model to predict 
upgrade of all high-risk lesions, including ADH.

This study aimed to develop and evaluate 
six machine learning models to predict ADH 
upgrade from the core needle biopsy, which 
would potentially spare patients with benign 
lesions from invasive surgical excisions and main-
tain high sensitivity for prediction of malignant 
legions. The six chosen machine learning meth-
ods are gradient-boosting trees, random forest, 
radial support vector machine (SVM), weighted 
K-nearest neighbors (KNN), logistic elastic net, 
and logistic regression. Secondary aims of this 
study were to add to the growing body of litera-
ture in support of previously reported predictive 
machine learning features and to highlight new 
features that may predict upgrade of ADH diag-
nosed on core needle biopsy.

The key objective of this study was to show that 
a machine learning approach can spare women 
from unnecessary diagnostic excisions by com-
putationally predicting whether ADH lesions are 
actually cancerous (ie, upgraded from initial 
core needle biopsy).

We developed a series of machine learning mod-
els that show promising performance for predic-
tion of whether ADH lesions would be surgically 
diagnosed as cancer. A number of factors from 
medical records—including age, lesion size, num-
ber of biopsies, and history of breast cancer—were 
associated with lesion upgrade.

These models could reduce unnecessary sur-
geries by 16% (at 98% sensitivity), and they 
highlight what risk factors contribute most to 
upgrade of ADH lesions. They also demonstrate 
the promise of personalized medicine to tailor 
patient treatment according to the predicted risk 
of upgrade, and they show that different models 
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Fig 1. Flowchart of 
clinical management of 
atypical ductal hyperpla-
sia (ADH) diagnosed on 
percutaneous core nee-
dle biopsy. The current 
clinical recommendation 
is surgical excision, but 
some women will opt for 
surveillance and hormonal 
therapy.
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come with important tradeoffs in sensitivity and 
specificity.

METHODS

Data Set

The study cohort consisted of the population of 
patients at Dartmouth-Hitchcock Medical Center 
with ADH identified by core needle biopsy and 
subsequent surgical excision from 2011 to 2017 
to provide a definite upgrade status of the lesion. 
This cohort included 124 women who were 30 to 
83 years old; four women had multiple lesions, 
which provided a total of 128 lesions in the data 
set. Thirty of these lesions were subsequently 
upgraded to cancer through surgical excision. 
ADH was considered upgraded if the surgical 
excision yielded ductal carcinoma in situ (DCIS) 
or invasive ductal carcinoma. Patients were 
excluded if they also had DCIS or invasive ductal 
carcinoma on the core needle biopsy. Patients 
with proliferative or benign lesions in addition 
to ADH were included, and these other condi-
tions were included as features. This study and 
the use of human patient data in this project 
were approved by the Dartmouth institutional 
review board with a waiver of informed consent 
(STUDY00030375).

Machine Learning Models

Data cleaning was performed in Python v2.7 
(Python Software Foundation, Beaverton, OR). 
Machine learning and statistical analyses were 
performed in R v3.4.0 (R Foundation for Statis-
tical Computing, Vienna, Austria) using the caret 
package.18 AUC curve plotting and analysis 
were performed using the pROC package for  
R software.19

Data preparation. Categoric variables were sep-
arated into one feature per category, and miss-
ing categoric variables were left as not available. 
The cancer risk of women was encoded as (3) if 
the woman had cancer or any high-risk lesions 
previously (eg, ADH, DCIS, and lobular carci-
noma in situ), as (2) if any cancer existed in the 
immediate family, as (1) if breast cancer existed 
in extended family, and as (0) if no cancer had 
been reported in the family. Missing continuous 
variables, such as age and size of lesion, were 
imputed with the overall mean values. Because 
scaling of features can sometimes improve 
model performance (depending on the model), 

numeric variables, including age, size of lesion, 
size of second lesion, and needle gauge, were 
mean-centered and scaled by their standard 
deviations.

Nested cross-validation. Nested 10-fold cross- 
validation with hyperparameter grid selection 
was used to train six machine learning models 
and to estimate model performance. For each 
model, the corresponding caret method was 
used, as explained in each model’s description. 
Hyperparameter tuning was performed internally 
by caret for each model’s available set (Appen-
dix Table A1), and the grid size was 5 for each 
parameter. For each model and combination 
of hyperparameters, the data were split into 10 
partitions; nine of these partitions were used for 
training, and the tenth was partition held out to 
estimate model performance. Optimal hyperpa-
rameters were selected using the validation AUC.

Model evaluation. Using the selected combina-
tion of hyperparameters, 10-fold cross-validation 
was used to assess model performance under 
metrics of sensitivity, specificity, accuracy, and 
receiver operator characteristic AUC (a measure 
of overall model performance), including boot-
strap confidence estimates with pROC.19 Model 
accuracy was determined at the default class 
probability threshold of 0.5. In addition, accu-
racy, sensitivity, and specificity of the model 
were determined by searching for an optimal 
probability threshold with a method similar to 
that of Song et al20 using the maximal geometric 
mean of sensitivity and specificity to select the 
attendant probability threshold. Secondary mod-
els trained on the entire data set were used to 
report random forest variable importance scores 
and logistic regression coefficients. An overview 
of the used machine learning models is shown 
in Figure 2.

Random forest. A random forest model is an 
ensemble method that builds a set of decision 
trees that collectively make a robust and accu-
rate prediction about an observation.21 A random 
forest is an improvement on a single decision 
tree, because each individual decision tree is a 
weak learner, but, when combined, they exhibit 
a stronger performance. For this analysis, the 
“rf” model in the caret package was used.

Gradient-boosting trees. Gradient boosting is 
an ensemble machine learning model to form 
robust predictions on the basis of the integrated 
predictions of multiple simpler trees.22 Although 
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each tree is a weak predictor of the outcome of 
interest, when combined, they can create an 
ensemble tree that is a good predictor. Each 
tree in gradient boosting is added such that it 
improves upon errors made by trees previously 
added to the ensemble. For this analysis, the 
“xgbTree” model in the caret package was used.

Gradient-boosting trees versus random forest. 
Gradient-boosting trees and random forest 
mostly differ in how the individual trees in the 
ensemble predictor are grown and added. Gradient 
boosting grows simple trees that are specialized 
in prediction of attributes that may affect the 
outcome, whereas random forest grows complex 
trees with many features. The power of gradient 
boosting stems from stacking predictions of sim-
ple nonredundant trees so that each new tree 
learns from errors of the previous to predict the 
outcome, whereas the power of random forest 
stems from averaging out overly specific predic-
tions from complex fully grown trees.

Weighted KNN. KNN is a simple classification 
algorithm in which predictions of membership 
are made depending on the majority class of the 
k nearest neighbors. Weighted KNN improves 
performance of this classifier by incorporating 
the distance of the nearest neighbor, such that 
observations closer to the new observation are 
upweighted compared with more distant obser-
vations.22 For this analysis, the “knn” model in 
the caret package was used.

Radial SVM. SVM models use a hyperplane to 
separate different classes while confidence mar-
gins in class predictions are maximized.23 The 
radial basis function kernel (RBF) was used as 
the function to separate classes. For this analy-
sis, the “svmRadial” model in the caret package 
was used.

Logistic elastic net. Logistic elastic net imple-
ments generalized linear models using max-
imum likelihood with elastic net penalization 
to find the predictors and associated weights 
that best predict the outcome. Lasso and ridge 
penalizations respectively imply use of L1 and 
L2 norms; elastic net penalization is a combina-
tion of L1 and L2 norms. These regularization 
schemes serve to downweigh predictors that do 
not improve model performance.24 Logistic elas-
tic net selects which type of penalization is most 
optimal for the data. Here, “glmnet” in the caret 
package was used.

Logistic. Logistic regression is a generalized 
linear model25 that uses a sigmoid function to 
transform the class scores to probability esti-
mates. This comparatively simple model enjoys 
widespread use in clinical contexts, and its out-
come can be interpreted as odds ratios. For this 
analysis, the “regLogistic” model in the caret 
package was used. This particular implementa-
tion included the regularization hyperparameters 
listed in Appendix Table A1. For simplicity and 
interpretability of the model, no higher-order 
interactions were considered.

Statistical Analysis

95% CIs for AUC, sensitivity, specificity, and 
accuracy were determined using the pROC 
package19 with 2,000 bootstrap iterations. Sta-
tistical significance of associations between prin-
cipal component axes with upgrade status was 
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2.  Random forest
3.  Weighted KNN
4.  Radial SVM
5.  Logistic elastic net
6.  Logistic

Performance metrics:
1.  AUC
2.  Accuracy
3.  Sensitivity
4.  Specificity

Fig 2. An overview of 
the training and testing 
methodology for our six 
machine learning mod-
els. AUC, area under the 
curve; KNN, K-nearest 
neighbors; SVM, support 
vector machine.
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determined using the Wilcoxon-Mann-Whitney 
test.26

RESULTS

Overall, 128 lesions from 124 women were 
collected for this analysis, of which 30 were 
upgraded. This study was concerned with dis-
crimination between these two classes (upgraded 
v nonupgraded). When ordinated using principle 
component (PC) analysis, the lesions seemed to 
stratify by upgrade status on some of the axes 
with high statistical significance (PC29, P < .01; 
PC24, P < .01; PC32, P < .01; PC18, P < .05; 
all by Wilcoxon-Mann-Whitney test). The vari-
ables used in the ordination were a collection of 
32 clinical variables that described the lesions. 
Depicted graphically, Figure 3 shows the two 
PCs (PC29 and PC24) that most significantly dif-
ferentiated lesions by upgrade status. Visually, 
points that corresponded to upgraded lesions 
appeared nearer to the top left of the figure com-
pared with the nonupgraded lesions, which pro-
vided additional indication that the two classes 
indeed differed, and it motivated more complex 
modeling in the form of supervised machine 
learning.

Accordingly, six machine learning models were 
trained to predict whether lesion biopsies would be 
upgraded to cancers given the same clinical vari-
ables. These models included gradient-boosting  
trees, random forest, weighted KNN, SVM with 
radial basis kernel, logistic elastic net, and 
logistic regression. The results of the models in 
terms of their performance are shown in Figure 
4 and listed in Table 1. Gradient-boosting trees 
produced the highest AUC score, a measure of 

comparative model classification performance. 
The random forest model was a close second.

As listed in Table 1, the six models displayed 
different performance characteristics at selected 
sensitivity and specificity thresholds. Notably, 
the random forest model exhibited the highest 
specificity (0.16) at 0.98 sensitivity (a stan-
dard clinical cutoff) and 0.45 specificity at 0.87 
sensitivity. To facilitate comparison, the model 
performances as reflected by AUC are also pre-
sented in Appendix Figure A1. Hyperparameters 
selected during cross-validation are reported in 
Appendix Table A1.

The random forest variable importance scores 
are presented in Figure 5. Highly informative 
features for the model included age at biopsy, 
lesion size, number of biopsies, needle gauge, 
cancer risk, and the presence of multiple 
lesions. The regression coefficients for the logistic 
regression model, despite its lower AUC and 
overall performance, largely agreed with this 
importance ranking and are provided for refer-
ence in Appendix Figure A2.

DISCUSSION

Current clinical guidelines recommend surgi-
cal excision for most cases of ADH detected by 
core needle biopsy.27 However, using a definitive 
surgical excision to rule out malignancy is not 
without harm. Because 20% to 30% of the ADH 
lesions are upgraded to DCIS or breast cancer 
at surgical excision, 70% to 80% of women 
undergo invasive surgical excision for benign 
atypical lesions. In this paper, we developed and 
compared the performance of six machine learn-
ing methods to predict ADH upgrade. Gradient 
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between upgraded and 
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Principal component plot of 
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P = .01) and PC24  
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boosting and random forests displayed 0.68 
and 0.67 AUC scores, respectively. Although 
the gradient-boosting model performed slightly 
better, we focused on the random forest model 
here because of its comparative simplicity, inter-
pretability, robustness, and well-characterized 
variable importance scoring.28 Interestingly, 
weighted KNN performed significantly better 
than a random model (which would have an 
AUC of 0.5) and ranked third in terms of pre-
dictive performance, behind gradient-boosting 
trees and random forest. Unfortunately, the 
bootstrap CI of the AUC for the logistic model 
(AUC, 0.56 ± 0.12 CI) included 0.50 (Appen-
dix Fig A1), which indicates that its predictions 

were statistically indistinguishable from a ran-
dom model. It is conceivable that consider-
ation of higher-order interactions in the model 
would yield improved performance at the cost of 
increased model complexity.

As expected, age of patient at time of biopsy was 
the most important predictor of upgrade status. It 
is generally well known that cancer risk increases 
with patient age,29 and it is reassuring to see this 
trend confirmed in the model. The size of the 
lesion plays the second-largest predictive role, 
consistent with stochastically higher probability 
of cancer development and increased sampling 
error by core biopsy technique. Likewise, the 
number of biopsies, which played the third most 
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Table 1. Summary of Machine Learning Classifiers

Name AUC ± 95% COI Accuracy Threshold
Accuracy at 
Threshold 

Sensitivity ± 
95% COI 

Specificity ± 
95% COI 

Specificity 
at 98% 

Sensitivity ± 
95% COI 

Specificity 
at 90% 

Sensitivity ± 
95% COI 

Gradient-
boosting trees

0.68 ± 0.12 0.78 0.32 0.76 ± 0.08 0.57 ± 0.08 0.82 ± 0.17 0.03 ± 0.03 0.26 ± 0.14

Random forest 0.67 ± 0.11 0.77 0.14 0.55 ± 0.09 0.87 ± 0.09 0.45 ± 0.13 0.16 ± 0.07 0.36 ± 0.24

Weighted KNN 0.63 ± 0.12 0.74 0.23 0.66 ± 0.09 0.53 ± 0.09 0.69 ± 0.17 0.03 ± 0.01 0.16 ± 0.07

Radial SVM 0.57 ± 0.12 0.78 0.23 0.53 ± 0.09 0.6 ± 0.1 0.51 ± 0.17 0.01 ± 0.01 0.22 ± 0.21

Logistic elastic 
net

0.57 ± 0.11 0.76 0.21 0.61 ± 0.09 0.6 ± 0.1 0.61 ± 0.17 0.08 ± 0.05 0.16 ± 0.1

Logistic 0.56 ± 0.12 0.73 0.28 0.63 ± 0.09 0.57 ± 0.1 0.65 ± 0.17 0.05 ± 0.04 0.13 ± 0.08

NOTE. Accuracy denotes model accuracy at the default class probability threshold of 0.5; the subsequent Accuracy, Sensitivity, and Specificity columns use the proba-
bility threshold indicated in the Threshold column.
Abbreviations: AUC, area under the curve; KNN, K-nearest neighbors; SVM, support vector machine.
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important role in the model, may be explained 
by improved sampling and higher likelihood of 
inclusion of a malignant component of the lesion. 
Another high-ranking variable was personal and 
family history of cancer, which encapsulates the 
hereditary component of breast cancer, a factor 
that previously has been predictive for upgrade 
risk.29

This study only investigated high-risk ADH breast 
lesions. Although the narrow focus of the study 
allowed for a potentially stronger inference about 
this high-risk breast lesion, the inference does 
not cover other types of lesions. Furthermore, 
this study is based on data from a single, rural 
academic institution, and additional external val-
idation is required to show the generalizability of 
our results. Thus, future work should focus on 
expansion of the scope of our model by inclu-
sion of other high-risk breast lesions, such as 
lobular neoplasia, papillomas, and radial scars. 
In addition, these results could be extended by 
considering data from the New Hampshire Mam-
mography Network,30 which includes all biopsies 
in New Hampshire, and other national breast 
cancer registries, which may not only improve 

this model but also better assess the generaliz-
ability of the approach. For future adoption of 
this approach, it is also important to model the 
risk of later progression to DCIS or malignancy 
if a benign lesion is kept in place using our 
method; previous studies suggest that roughly 
20% to 30% of these lesions progress to DCIS or 
breast cancer.31,32

To conclude, the methodologic strength of this 
approach is based on rigorous training, testing, 
and comparison of six machine learning meth-
ods to predict ADH lesion upgrades. To the best 
of our knowledge, prior work has been limited to 
a small number of approaches for such a pre-
diction task. Although the performance of the 
random forest model, given its AUC of 0.67, is 
lacking as a standalone clinical diagnostic tool, 
it nevertheless represents an important proof-
of-concept and potential diagnostic aid. In addi-
tion, the results suggest that robust differences 
exist between low- and high-risk women and 
that machine learning models can reliably pre-
dict malignancy upgrade potential despite small 
sample sizes. This study also confirms import-
ant clinical variables involved in ADH upgrade 
risk. When our model is set at 98% sensitivity, 
16% of surgical excisions of benign lesions 
would be unnecessary and could be avoided. 
Using the same model, if the target sensitivity 
is relaxed to 87%, 45% of lesions would be in 
the surveillance category. This relaxed sensitivity 
threshold, although associated with decreased 
sensitivity for cancer detection, may be useful as 
an exploratory aid to help patients and clinicians 
choose an alternative management approach. 
In this era of personalized medicine,33 such 
model flexibility may be desirable for patients 
who value a shared decision-making approach 
with the ability to choose between surgical exci-
sion for upgrade certainty versus surveillance to 
decrease unnecessary surgery.
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Logistic

Logistic elastic net

Radial SVM
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Gradient boosting
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ROC AUC

Fig A1. Comparison of 
model performance using 
the receiver operator 
characteristic (ROC) 
area-under-the-curve 
(AUC) metric. The gradi-
ent boosting trees, ran-
dom forest, and weighted 
K-nearest neighbors 
(KNN) models deliver 
significantly better than 
random classification 
performance, as denoted 
by their 95% CIs, which 
did not cross the dotted 
red line at 0.5 AUC. 
The CIs were calculated 
by using 2,000 AUC 
bootstraps. SVM, support 
vector machine.
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Fig A2. Logistic regres-
sion coefficients adjusted 
for all other variables for 
which P < .05. Error bars 
are standard errors of the 
mean. The red dotted 
line corresponds to non-
informative coefficients 
(weight of zero), which 
were excluded from the 
plot. MRI, magnetic 
resonance imaging; N/A, 
not available.

Table A1. Listing of Hyperparameters Tuned by Caret for Each of the Six Trained 
Classifiers

Model Hyperparameters Selected by Caret

Random forest mtry = 31

Radial SVM σ = 0.034; C = 4

Weighted KNN kmax = 7; distance = 2; kernel = optimal

Logistic elastic net α = 1; λ = 0.040

Gradient boosting Nrounds = 100; max_depth = 4; η = 0.4; γ = 0; 
colsample_bytree = 0.8; min_child_weight = 1; 

subsample = 0.625

Logistic Cost = 0.25; loss = L1; ɛ = 1

Abbreviations: colsample_bytree, subsample ratio of columns for each split, in each level; KNN, 
K-nearest neighbors; mtry, number of variables randomly sampled as candidates at each split; 
SVM, support vector machine.
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