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Abstract: Psychological resilience is regarded as a critical protective factor for preventing the devel-
opment of mental illness from experienced adverse events. Personal strength is one key element of
resilience that reflects an individual’s reactions to negative life events and is crucial for successful
adaptation. Previous studies have linked unimodal imaging measures with resilience. However,
applying multimodal imaging measures could provide comprehensive organization information at
the system level to examine whether an individual’s resilience strength is reflected in the brain’s
structural and functional network. In this study, MRI was used to acquire multimodal imaging prop-
erties and subscales of personal strength in terms of resilience from 109 participants (48 females and
61 males). We employed a method of fusion independent component analysis to link the association
between multimodal imaging components and personal strength of psychological resilience. The
results reveal that a fusion component involving multimodal frontal networks in connecting with the
parietal, occipital, and temporal regions is associated with the resilience score for personal strength.
A multiple regression model further explains the predictive role of frontal-associated regions that
cover a visual-related network regulating cognition and emotion to discern the perceived adverse
experience. Overall, this study suggests that frontal-associated regions are related to individual
resilience strength.

Keywords: multimodal imaging; MRI; psychological resilience; personal strength; prefrontal cortex

1. Introduction

Psychological resilience is an important characteristic that can predict one’s success in
every aspect of life and is considered to correlate with one’s mental wellbeing [1]. Some
researchers have proposed that this characteristic involves numerous factors such as genetic,
epigenetic, brain structure, brain function, neurochemical, physiological, developmental,
demographic, cultural, economic, social, and psychological variables [2–7]. While all these
variables play some roles in predicting the strength of psychological resilience, this study
specifically focused on the aspects of brain structure and function in relation to the personal
strength of resilience. This is because the main purpose of this study was to evaluate the
brain model of psychological resilience. Although psychological resilience has drawn a lot
of attention from researchers, limited work has used the neuroimaging approach to explore
the neural correlates of resilience in a healthy population [3]. For example, a recent study
by Kong et al. (2018) used blood-oxygen-level-dependent (BOLD) response to investigate
the association between brain activation during resting and its relation to resilience [8].
Despite this study providing the first link between the functional organization of the brain
and its role in resilience, whether these reported brain regions are generally involved across
different brain imaging modalities remains unknown.
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Previous conceptual studies have suggested that structural and functional networks
of the brain involving cognitive control may be associated with psychological resilience.
Parsons, Kruijt, and Fox (2016) proposed a neurocognitive model of psychological resilience
that elucidates possible processing mechanisms. In this model [9], several important cognitive
functions may contribute to the resilience process and allow people to cope with and react to
stressful situations. Specifically, executive control involves top-down regulatory processes
consisting of inhibitory control, working memory, and cognitive flexibility that are parts of
the key functions in the prefrontal cortex (PFC) (see [10] for a review).

Kong et al. have reported on the role of PFC in psychological resilience in recent stud-
ies [3,8]. They employed a unimodal neuroimaging approach [i.e., resting-state functional
magnetic resonance imaging (rfMRI)] to investigate the role of the PFC brain network in
modulation between resilience and overall quality of life. Human brain neuroimaging
techniques are widely used in neuroscience to improve our understanding of the brain’s
structure and function and to identify biomarkers, especially for psychiatric diseases [7,11].
Likewise, this advanced imaging approach is suitable for revealing the mediation role of the
brain’s structure and function in relation to psychological resilience [12]. Kong et al.’s [3,8]
results demonstrated that the frontal cortex plays an important role in subjective wellbeing
in healthy young adults. In line with this hypothesis of PFC involvement, we recently
proposed a conceptual neurocognitive model, i.e., cognitive appraisal of resilience (CAR)
model, based on the literature that elucidates potential brain mechanisms underlying hu-
man resilience [7]. The CAR model suggests that a disrupted frontal network of the brain
impairs cognitive flexibility, leading to maladaptive behavioral outcomes. Specifically, the
top-down process involves cognitive control and emotional regulation, which facilitates
individuals to divert their attention from the pain experience induced by the perceived
adverse events [13]. If this top-down regulatory process is disrupted, then the efficiency to
divert attention is impaired, resulting in a malfunction of emotional regulation. According
to two review articles [7,9], the structure and function of the brain regions that involve
executive function, especially cognitive flexibility, may mostly be related to psychological
resilience.

Despite that the aforementioned studies (e.g., [3,8]) have reported the role of PFC
brain network in resilience and quality of life, none of these studies have examined the
association between multimodal imaging properties and psychological resilience. Hence,
the motive and novel aspect of the current study was to utilize a multimodal neuroimaging
approach that combines datasets obtained with two or more unimodal imaging modalities
(e.g., gray matter volume, white matter diffusion, and functional hemodynamic response
data) rather than a single neuroimaging technique to examine the neural basis of psycho-
logical resilience. The advantage of a multimodal neuroimaging approach is to overcome
each neuroimaging technique’s limitations [14]. The idea of applying multimodal measures
is inspired by recent advances in brain imaging development, which suggest that differ-
ent correlational measures in either structural or functional data could generate distinct
“connectivity” between brain regions that are largely different between modalities [15].
This imaging approach to fuse different imaging modalities has become widely used in
clinical research because it can provide a comprehensive understanding of the brain and its
disorders [16]. Different imaging data types should be leveraged to extract complementary
information. For example, rfMRI measures the hemodynamic response that is related to
neural activity at resting state, structural MRI (sMRI) depicts different tissue types in each
voxel of the brain (e.g., gray matter volume, GMV), and diffusion MRI (dMRI) provides
information regarding the integrity of white matter tracts and structural connectivity [16].

Calhoun et al. (2009) developed a data-fusion process that utilizes multiple types of
images simultaneously in order to take advantage of the cross-information from different
unimodal image data [17]. In the present study, we employed the method of fusion
independent component analysis (fusion ICA) [18] developed by Calhoun et al. (2006) [19].
The fused brain data includes volume-based morphometry (vbm) to represent the brain’s
volumes, especially the gray matter’s volume [20]. Diffusion-tensor imaging (DTI) is
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used to represent the white matter integrity [21], and functional imaging based on the
amplitude of low-frequency fluctuation (ALFF) is used to represent the regional intensity
of spontaneous fluctuations in the BOLD signal [22]. This fusion ICA method and these
types of multimodal imaging data have previously been reported successfully by our lab
to examine the multimodal imaging fusion components and age-related differences in
executive functions across the adult life span.

To address the issue of multimodal neuroimaging in relation to psychological re-
silience, this study used a Chinese version of the Resilience Scale for Adults (RSA) [23].
The original RSA is a self-report questionnaire that consists of 33 items for evaluating six
dimensions: (1) perception of the self, (2) planned future, (3) social competence, (4) family
cohesion, (5) social resources, and (6) structured style [23]. The Chinese version of the
RSA consists of 29 items (removing 4 items from the original RSA) for evaluating five
dimensions: (1) personal strength, (2) family cohesion, (3) social resources, (4) social skills,
and (5) planned future. In particular, this study focused on the RSA’s subscale of personal
strength [23,24] because previous research has indicated that resilience is associated with a
personality trait pattern comprising maturity, responsibility, optimism, perseverance, coop-
erativeness, and persistence [25–27]. Personal strength reflects the individual characteristics
that are crucial for predicting an individual’s reactions to negative life events. This study
examines the neural correlates of psychological resilience by exploring the association
between resilience’s subscale of personal strength and the outcome of the fusion ICA in
multimodal neuroimaging data, which include information about the brain’s structural and
functional properties. Based on previous conceptual brain models [7,9] and neuroimaging
studies [3,8] on resilience, we speculated that psychological resilience, especially personal
strength score [23,24], would associate with frontal-related networks derived from the
fusion ICA. Specifically, the way people respond to adverse experience varied between
individuals [28]. Review studies in the application of brain imaging to study resilience have
reported the involvement of the prefrontal cortex in relation to resilience [7,29]. However,
the evidence from these review studies to support the prefrontal cortex mostly relies on
single imaging modalities (structural or functional). These findings lack integrated infor-
mation from these imaging modalities to provide stronger arguments regarding the role of
the prefrontal cortex in resilience. Moreover, whether or not an individual develops post-
traumatic symptoms after experiencing a traumatic event is dependent on an individual’s
resilience (i.e., intra-individual variation) [28]. Hence, this study bridges the gap between
the involvement of the prefrontal cortex (fusion multi-imaging modalities approach) in
a person’s resiliency (i.e., personal strength of resilience). Specifically, we hypothesized
multiple frontal-associated regions related to emotion-regulation and cognitive control
of subjective feelings of pain were involved. For example, participants who experienced
war or sexual abuse without diagnosed traumatic symptoms have stronger activation
in frontal regions such as the middle temporal gyrus and right anterior frontal regions
than those who developed traumatic symptoms [30–33]. Furthermore, in the sexually
abused group, those without developing post-traumatic symptoms exhibited stronger
activation in the right hippocampus, inferior fusiform gyrus, supramarginal gyrus, and
visual association cortex than those (especially women) who developed post-traumatic
stress disorder (PTSD) [30–33]. These brain regions include frontal lobes for top-down
regulation of negative affect as well as posterior lobes involving stimulus-driven visual
attention to orient perception of perceived experiences [7]. This possibly suggests that
there may be specific correlates of a person’s resilience or vulnerability for an individual’s
reaction to negative events. To support this notion, we expect fusion multimodalities
imaging components in frontal-associated regions that are reported from previous studies
to be related to an individual’s resilience level as measured by a subscale of resilience (i.e.,
personal strength). This study would provide more integrated information to examine
if frontal-associated regions are generally involved or specific to some imaging modali-
ties. Furthermore, whether these associations are related to an individual’s resilience (i.e.,
personal strength of resilience scale).
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2. Methods and Materials
2.1. Participants

We recruited 109 participants from Southern Taiwan through advertisements on the
Internet and bulletin boards. There were 48 females and 61 males, and their mean age
was 21.56 ± 1.88 years (standard error; SD) (range 19–30 years). All participants signed
a written informed consent form that was approved by the Research Ethics Committee
of National Cheng Kung University, Tainan, Taiwan, R.O.C. All participants were paid
1660 New Taiwan dollars (NTD) after completing the entire experiment.

2.2. Resilience Score Measurement

The Chinese version of the RSA consisting of 29 items [23] was used to measure an
individual’s resilience. These items were scored using a seven-point semantic differential
scale. There are five subscales (1) personal strength, (2) family cohesion, (3) social resources,
(4) social skills, and (5) planned future. Only personal strength was included for subsequent
analyses to investigate the questions of interest.

2.3. Image Acquisitions

We acquired magnetic resonance imaging (MRI) data by using a General Electronic
(GE) MR750 3T scanner (GE Healthcare, Waukesha, WI, USA) in the Mind Research
Imaging Center at National Cheng Kung University. T1-weighted structural images with
high resolution were acquired with a fast-spoiled gradient-recalled echo sequence that
consists of 166 axial slices (TR/TE/flip angle 7.6 ms/3.3 ms/12◦; the field of view [FOV]
22.4 × 22.4 cm2; matrices 224 × 224; slice thickness 1 mm). The entire process lasted for
3 min 38 s.

The resting-state functional imaging data were collected using an interleaved T2
*-weighted gradient-echo planar imaging pulse sequence (TR/TE/flip angle = 2000 ms/
30 ms/77◦; matrices = 64 × 64; FOV = 22 × 22 cm2; slice thickness = 4 mm; voxel
size = 3.4375 × 3.4375 × 4 mm). A total of 245 volumes were acquired which covered
the entire brain of each participant. The first five dummy scans were discarded to reduce
equilibrium effects on T1 images. During the resting-state functional scans, the participants
were instructed to remain awake with their eyes open and fixate on a white cross shown
on a screen. The total scanning time lasted for 8 min and 10 s per participant (i.e., [number
of samples + number of dummy scans] × TR = [240 + 5] × 2 = 490 s).

The diffusion tensor imaging (DTI) data were obtained with a spin-echo-echo planar
sequence (TR/TE = 5500 ms/62–64 ms; 50 directions with b = 1000 s/mm2; 100 × 100 matrices;
slice thickness = 2.5 mm; voxel size = 2.5 × 2.5 × 2.5 mm; the number of slices = 50;
FOV = 25 cm; NEX = 3). Reverse DTI was also acquired for top-up correction during the
preprocessing steps. The acquisition parameters of the reverse DTI were identical to those
of the DTI, except that only six directions were acquired to prevent the participant from
getting exhausted.

2.4. Imaging Quality Control

The imaging quality control was based on head motion parameters and framewise
displacement (FD). The screening criteria included that the participants’ maximum head
motion did not exceed 2.5 mm, and the mean FD did not exceed 0.25. A visual inspection
of all images was performed after the normalization and co-registration steps to ensure
there was no bad warping.

2.5. Image Preprocessing
2.5.1. Structural MRI (sMRI)

To retrieve sMRI data, we performed the following analysis steps. First, structural
images were extracted from the brain by the BET function implemented in FSL [34]. The -N
option was chosen because the image includes much of the neck. Voxel-based morphometry
(VBM) [20] was used to characterize an individual’s brain structural differences. Second,
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tissue-type segmentation was carried out using FASTv4.0 [35]. The resulting grey-matter
partial-volume images were then aligned to the GM ICBM-152 template [36] using the
non-linear registration tool FNIRT [37].

The resulting images were averaged to create a study-specific template, in which the
native grey matter images were then non-linearly re-registered. Next, we multiplied the
registered partial volume images of all participants by using the Jacobian of the warp field
(modulation) to correct for local expansion [38]. The modulated segmented images were
finally resliced to 91 × 109 × 91 matrices with a voxel size of 2 × 2 × 2 mm and smoothed
using an isotropic Gaussian kernel with a sigma of the full-width at half-maximum (FWHM)
of 8 mm.

2.5.2. Resting-State Functional MRI (rfMRI)

We used the CONN toolbox 18a (www.nitrc.org/projects/conn) and SPM 12 (http:
//www.fil.ion.ucl.ac.uk/spm) in Matlab (The MathWorks, Inc., Natick, MA, USA) to pre-
process the functional images. The preprocessing protocol was modified from Geerligs and
Tsvetanov’s study [39]. The first step consisted of slice timing, realignment, normalization
(using a T1 image to register to standard space), and smoothing with an 8-mm Gaussian
kernel. In addition, images were then resliced into the size of 2 × 2 × 2 mm, resulting in a
data cube of 91× 109× 91 voxels. The second step was to calculate nuisance covariates (R),
including movement parameters (translations along the x, y, and z axes and rotations along
with three directions: roll, yaw, and pitch), white matter (WM) signals, and cerebral spinal
fluid (CSF) signals [40]. The third step was to regress out bad frames at the subject level
which were detected by “head motion censoring” and [R R2 Rt-1 R2

t-1], where t and t-1 refer
to the current and immediately preceding time point, respectively [41]. The final step was
to apply a band-pass filter with a range of 0.008–0.1 Hz to nuisance covariates and fMRI
data simultaneously. For the rfMRI, we further extracted the voxel-wise mean amplitude of
low-frequency fluctuations (ALFF; [22]) to generate a map for each participant. The ALFF
was computed with the fast Fourier transform (FFT) on time series of each voxel, and then
taking the square root of the power spectrum to obtain the amplitudes, which were further
averaged in the range of 0.01–0.08 Hz (see [22] for details).

2.5.3. Diffusion MRI (dMRI)

All processing and analyses of the diffusion-weighted imaging (DWI) data were
computed by FMRIB Software Library (FSL v5.0.9; www.fmrib.ox.ac.uk/fsl [20]). The
DWIs were first converted from the DICOM format to the NIFTI format via the MRIcron
dcm2nii tool (https://www.nitrc.org/projects/mricron/). TOPUP [20,42] and EDDY [43]
were used to clean the DWIs of artifacts caused by susceptibility-induced distortions, eddy
currents, and head motion. The b0 image was extracted from the concatenated data with
which non-brain tissue was removed via the FMRIB BET tool [44] to create a brain mask
for subsequent analyses.

DTIFIT [45] was applied to fit a tensor model (i.e., diffusion tensor imaging, DTI)
at each voxel of the data [16] to derive measurements of the fractional anisotropy (FA),
mean diffusivity (MD), and radial diffusivity (RD). Tract-based spatial statistics (TBSS) in
FSL [21,46] was used to perform tract-based investigations of the DTI measurements. The
FA images were slightly eroded, and the end slices were zeroed to remove outliers from the
diffusion tensor fitting. All FA images for each participant were then non-linearly aligned
to an FMRIB58_FA standard-space image (1 × 1 × 1 mm).

Next, the group-mean FA image was performed by a skeletonization procedure, and
the result was set at a threshold of FA > 0.2 to identify the areas that were most likely to
belong to white-matter tracts of non-trivial size [47]. For each participant, the FA data were
projected onto the mean FA skeleton. Individual skeletonized FA images were resliced to a
final 91 × 109 × 91 matrices with the voxel size of 2 × 2 × 2 mm. Finally, the images were
smoothed with an 8-mm3 FWHM Gaussian kernel. This process was then repeated for MD
and RD images using the tbss_non_FA function.

www.nitrc.org/projects/conn
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
www.fmrib.ox.ac.uk/fsl
https://www.nitrc.org/projects/mricron/
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2.6. Joint ICA Analysis

Preprocessed data (sMRI, rfMRI, and dMRI) were fused in Matlab using the Fusion
ICA Toolbox (FIT, [48,49] http://mialab.mrn.org/software/fit/index.html). The fusion
approach was identical to that used in a previous study by our group [50,51]. After feature
extraction, the 3D image of each participant was reshaped into a single row and stacked
individually to form a matrix with dimensions of 109 × [number of voxels] for each
imaging modality. Because there were different scales for the three imaging modalities,
the feature matrix was normalized to yield the same average sum-of-squares that were
computed across all participants and all voxels for each imaging modality.

After normalization, the data were further processed by dimension reduction, fol-
lowed by joint ICA, and component selection. The component number was estimated
using the modified minimum description length (MDL) criteria [52]. We chose MDL = 36
for the following analysis.

The data dimensionality was reduced by principal component analysis. The infomax
algorithm [53] decomposed the reduced feature matrix to subject-specific mixing (loading)
parameters and maximally independent component images. We used ICASSO to run the
ICA algorithm 5 times and produce different estimated components for each run. The
components were then collected by clustering them based on the absolute value of the
correlation between squared source estimates.

The sMRI, rfMRI, and dMRI spatial maps were visualized by transforming each
component into a Z map, which was divided by its standard deviation (SD) across all
voxels. The use of Z-scores involves linearly transformed data values and standardized
distributions, so that each component has a mean of zero with SD of one. A negative value
simply indicated that the original value in the map was below the mean before it was
standardized, therefore, we could only assume its relative place in the distribution [54].
The spatial maps were thresholded with |Z| > 2.5.

To display rfMRI and sMRI maps, each component’s clusters were first converted
from MNI coordinates to Talairach coordinates and then entered into a database to provide
anatomic and functional labels for the right (R) and left (L) hemispheres. To display the
dMRI clusters, we used the Johns Hopkins white-matter tractography atlas provided in
FSL as ROI mask to identify 18 DTI tracts [55]. These tract masks were used to mask the
RD map and calculate the clusters’ percentages in tracts. All these clusters have also been
transformed into a binary mask. After excluding the brainstem and cerebellum regions, we
used these masks to extract signals from the original features of the participant.

3. Statistics for Correlation

Bayesian partial correlation was performed in R (version 3.0.2; R Foundation for
Statistical Computing, http://www.R-project.org) using BayesMed toolboxes (https://
CRAN.R-project.org/package=BayesMed) to test for the association between participants’
RSA_p and the joint ICA components’ mixing coefficient while controlling for gender as a
covariate of no interest. Bayes factors [56,57] may be interpreted as proportional evidence
for the presence or absence of an effect. For instance, a BF10 of 5 is considered as the
data that are 5 times more likely to occur under the alternative hypothesis than under
the null-hypothesis. The Leave-One-Out cross-validations were applied to estimate the
performance between actual RSA_p and predicted RSA_p.

3.1. Multiple Regression Model for Predicting RSA Scores

We extracted signals from every participant’s fusion imaging components (both pos-
itive and negative values across all imaging modalities). Six measures were defined as
independent variables. We then used multiple regression to test the relationship between
these independent variables and resilient measurements (i.e., RSA scores). The Bayesian
version of these tests was also performed.

http://mialab.mrn.org/software/fit/index.html
http://www.R-project.org
https://CRAN.R-project.org/package=BayesMed
https://CRAN.R-project.org/package=BayesMed
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3.2. Leave-One-Out Cross-Validation

In this step, we extracted the degree of freedoms and R-squared from each linear
regression model, and set the alpha as 0.05. Each prediction from a component was
measured with Pearson’s correlation to estimate if the predicted RSA_p was correlated
with the actual RSA_p. Leave-one-out cross-validation was applied for the model training
in each individual. The training was performed using n-1 participants for predicting the
leaved-out participant’s performance [58]. To assess the significance between actual RSA_p
and predicted RSA_p generated from leave-one-out cross-validation, the non-parametric
p-value using a permutation test with “5000” iterations with an alpha of 0.05 as significance.
This resulted in a null distribution composed of “5000” r values, and the p values were
calculated by the percentile where the generated r values were equal to or larger than the
null values [59]. Only the fusion component that was significant in the permutation test
and yielded a positive correlation with resilience score could be retained, which indicated
a robust and successful prediction.

4. Results
4.1. Neuropsychological Test Scores: BDI-II and RSA

The mean BDI-II score for participants was 7.78 ± 6.52 (SD). The mean RSA score was
146.51 ± 22.27. The subscale scores of the RSA are (1) 28.22 ± 6.48 for personal strength
(RSA_p), (2) 35.41 ± 7.62 for family cohesion (RSA_f), (3) 43.98 ± 7.96 for social resources
(RSA_sr), (4) 20.04 ± 5.13 for social skills (RSA_s), and (5) 18.85 ± 5.49 for planned future
(RSA_fu).

4.2. Independent Components (ICs)

Of the 38 components, we discarded 14 ICs because their stability was less than 0.8,
as well as another 4 ICs because they contained obvious artifacts including sharp edges
around the brain boundary or within the cerebrospinal fluid (CSF) region. The remaining
20 ICs’ mixing coefficients were retrieved to be correlated with the subscale’s score of
RSA using Person’s r and the Bayesian correlations [60]. The mixing coefficients represent
the relative degree to which an individual participant contributes to the joint component.
The results are shown in Table 1. Only IC#23’s mixing coefficients yielded a significant
correlation with RSA_p (r = 0.269; BF10 = 7.554). Hence, we report the results for IC #23
in relation to the resilience measure in detail (see Figure 1). The spatial maps shown in
Figure 1 were transformed into Z values visualized at |Z| > 2.5. The volume of identified
voxels in each area is provided in cubic centimeters (cm3).

4.3. IC#23 Different Spatial Maps Associated with Psychological Resilience (RSA_p)

Figure 1 displays IC#23′s spatial maps of GMV (e.g., VBM), ALFF, and RD tensor-based
WM tracts. For GMV map, the negative contributing regions (i.e., significantly negative
correlations) were mainly in the temporal lobe (superior, middle, and inferior temporal
gyrus), and secondly in lingual gyrus, precentral, superior frontal gyrus, middle frontal
gyrus, inferior frontal gyrus, medial frontal gyrus, postcentral gyrus, middle occipital
gyrus, insula, parahippocampal gyrus and the cuneus. Whereas the positive contributing
regions included precentral gyrus, postcentral gyrus, frontal lobe (superior, middle, inferior,
and medial), insula, inferior parietal lobule, superior temporal gyrus, precuneus, anterior
cingulate, middle occipital gyrus, fusiform and angular gyrus. For the ALFF map, the
negative contributing regions are mainly in the medial frontal gyrus, precentral gyrus and
superior temporal lobe, and were in the minority in the anterior cingulate, orbital gyrus,
superior frontal gyrus, middle frontal gyrus and postcentral gyrus, inferior frontal gyrus,
and lingual gyrus. Whereas the positive contributing regions are mainly in the superior
frontal gyrus, middle frontal gyrus, precuneus, cuneus, cingulate gyrus, superior temporal
gyrus, and superior parietal lobule. For WM tracts map, the negative contributing clusters
are mainly in the SLF and IFF.
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Table 1. The correlation between independent components (ICs) and the RSA (Resilience Scale for
Adults) subscale of personal strength (RSA_p).

ICs r BF10 95%CI Upper 95%CI Lower

IC #2 −0.008 0.118 −0.185 0.169
IC #4 0.090 0.185 −0.097 0.276
IC #5 0.068 0.152 −0.118 0.258
IC #7 −0.088 0.186 −0.270 0.092
IC #8 0.045 0.132 −0.146 0.234
IC #9 −0.046 0.133 −0.232 0.139
IC #10 −0.054 0.141 −0.233 0.124
IC #11 0.095 0.200 −0.091 0.280
IC #12 −0.117 0.257 −0.302 0.069
IC #13 −0.044 0.132 −0.229 0.139
IC #14 −0.065 0.148 −0.252 0.120
IC #15 −0.015 0.119 −0.201 0.175
IC #16 0.154 0.443 −0.031 0.342
IC #17 −0.037 0.127 −0.224 0.150
IC #18 0.102 0.214 −0.084 0.290
IC #19 −0.069 0.153 −0.255 0.119
IC #20 0.018 0.120 −0.208 0.169
IC #21 −0.025 0.122 −0.214 0.164
IC #22 −0.030 0.124 −0.217 0.157
IC #23 0.269 7.554 0.090 0.451
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Figure 1. The results of IC #23 in relation to the RSA (Resilience Scale for Adults) subscale of personal
strength (RSA_p). The spatial maps shown in this figure were transformed into Z values visualized
at |Z| > 2.5. ICs = independent components.

4.4. Interaction of Multi Modalities Among rfMRI, sMRI, and dMRI of IC#23 and Its Association
with RSA_p

Figure 2 further summarizes the main results of spatial maps across different neu-
roimaging modalities (i.e., rfMRI, sMRI, and dMRI). The purpose of this approach is to
measure the interaction of the results with (a) known WM tracts for dMRI and (b) known
brain regions for rfMRI and sMRI. Furthermore, we only present the significant results of
ALFF and GM regions that are near to the WM tracts.
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Figure 2. Conceptual illustration to present possible relation between brain regions (structural and
functional) and connection paths [white matter (WM) tracts]: (a) interaction between WM tracts and
GM region of IC#23; (b) interaction between WM tracts and ALFF regions of IC#23. A colored square
with a yellow edge indicates positive clusters in this region. A colored square with a blue edge
indicates negative clusters in this region. Colored square with green edge indicates both positive and
negative clusters in this region; (c) overlapping (marked in red) between IC #23’s GM (marked in
blue) and ALFF regions (marked in yellow); x, y, z = 2, 14, −12. Distinct WM tracts were marked with
different colors. PRG: precentral gyrus; POG: postcentral gyrus; MFG: middle frontal gyrus; MeFG:
medial frontal gyrus; IFG: inferior frontal gyrus; CC: cingulate cortex; ACC: anterior cingulate; pCC:
posterior cingulate cortex; PH: parahippocampal gyrus; STG: superior temporal gyrus; MTG: middle
temporal gyrus; ITG: inferior temporal gyrus; IPL: inferior parietal gyrus; LG: lingual gyrus; MOG:
middle occipital gyrus; Orb: orbital gyrus; AG: angular gyrus.

We found that the neural substrates of IC#23 cover a wide range of brain structures
and functions, including the frontal region (e.g., medial frontal, superior frontal), tempo-
ral region (e.g., superior temporal, middle temporal, inferior temporal), parietal region
(e.g., superior parietal, inferior parietal), occipital region (e.g., middle occipital, cuneus,
precuneus), and even the subcortical region (e.g., cingulate gyrus, parahippocampal gyrus)
(see Figure 2). Also, two tracts in IC#23 were SLF and IFF, which connected the frontal,
occipital, parietal, and temporal lobes.
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4.5. Multiple Regression Model of IC#23 for Predicting RSA_p Scores

We further examined whether the observed association between IC#23 and RSA_p can
be used to predict actual behavioral scores for resilient individuals. To do so, we performed
a multiple linear regression analysis to examine how these IC#23′s imaging measures were
associated with RSA_p scores (multiple R2 = 0.14, p-value = 0.003; see Table 2). The results
showed that IC#23′s imaging measures were associated with subscales of RSA_p scores.
Specifically, IC#23′s positive and negative clusters were defined as ROI, and we extracted
the signal from every subject’s original data. These six measurements were tested for their
linear relationship with the outcome RSA_p, but only four of them satisfied the criterion.
ALFF_positive, GM_negative, GM_positive, and RD_negative were used to predict RSA_p
as in the formula below:

RSA_p~ALFF_positive + GM_negative + GM_positive + RD_negative

Table 2. The results of general regression for four neural variables and the RSA (Resilience Scale for
Adults) subscale of personal strength (RSA_p).

Coefficients Std Error t-Value p

(Intercept) −0.00 0.09 −0.00 0.99
ALFF_positive −0.20 0.11 −1.76 0.08
GM_negative 0.16 0.10 1.55 0.12
GM_positive −0.03 0.10 −0.34 0.74
RD_negative 0.18 0.09 1.90 0.06

Note: ALFF: amplitude of low-frequency fluctuations; GM: gray matter; RD: radial diffusivity.

After controlling for gender as a covariate, the change in R-squared was 0.142. BF10
was 13.768, which indicates strong evidence for H1. Multicollinearity was tested on all four
independent variables’ variance inflation factors (VIFs) less than 10 [61]. Durbin-Watson
values were also calculated to test for independence. The result was 2.06, which is higher
than the dU value of 1.62. The Shapiro-Wilk test was used to test for normality but showed
no significant normal distribution. Finally, studentized residuals were plotted against the
unstandardized predicted values to examine the homoscedasticity (Figure 3).Int. J. Environ. Res. Public Health 2021, 18, x  11 of 19 
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4.6. Leave-One-Out Cross-Validation

The result of cross-validation shows significant association performance between
actual RSA_p and predicted RSA_p (Pearson’s r = 0.253; permutation p value = 0.002).

5. Discussion

The aim of this study was to identify the multimodality neural features that are
associated with psychological resilience. Specifically, a fusion joint ICA approach with
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different modalities (sMRI, rfMRI, and dMRI) was used to investigate whether multimodal
imaging measures are associated with self-reported RSA scores, especially the personality
subscale (i.e., RSA_p). Furthermore, we examined whether the observed association can
be used to predict actual behavioral scores for resilient individuals by using a multiple
regression model with a permutation test to validate the RSA_p scores prediction.

The results of the jICA analysis showed that one fusion multimodal imaging compo-
nent (i.e., IC#23) spanning over the frontal-associated regions was significantly associated
with the RSA_p scores. These frontal-associated regions included the medial prefrontal
cortex (mPFC) [62], anterior cingulate cortex (ACC) [63,64], amygdala [65], and hippocam-
pus [65,66], which have been evident in research on neuroimaging correlates of resilience
studies [65,67]. However, findings from brain imaging studies reported regions related to
resilience are not limited to these regions. For example, participants who experienced war
or sexual abuse without diagnosed traumatic symptoms have stronger activation in frontal
regions such as the middle temporal gyrus, and right anterior frontal regions than those
who developed traumatic symptoms [30–33]. Furthermore, in the sexually abused group,
those without developing post-traumatic symptoms exhibited stronger activation in the
right hippocampus, inferior fusiform gyrus, supramarginal gyrus, and visual association
cortex than those who developed PTSD [30–33]. These regions included frontal regions for
top-down regulation of negative affect as well as stimulus-driven visual attention to orient
perception of perceived experiences [7]. This possibly suggests that there may be specific
correlates of a person’s resilience or vulnerability for an individual’s reaction to negative
events. The regression model of this study revealed that the neural substrates covered
in IC#23 can indeed predict the RSA_p scores. These findings suggest that the dynamic
interactions of the brain among frontal-associated networks are related to an individual’s
resilience strength in response to negative life events.

The finding that IC#23 is associated with RSA_p appears to support our prior hy-
pothesis that cognitive control brain networks (e.g., frontal-related brain regions) serve as
multimodal neural networks for resilience strength in one’s personality [7,9]. The neural
substrates of IC#23 cover a wide range of brain structures (reflected on sMRI GMV) and
functions (reflected on rfMRI ALFF), including the frontal region (e.g., medial frontal,
superior frontal), temporal region (e.g., superior temporal, middle temporal, inferior
temporal), parietal region (e.g., superior parietal, inferior parietal), occipital region (e.g.,
middle occipital, cuneus, precuneus), and even the subcortical region (e.g., cingulate gyrus,
parahippocampal gyrus) (see Figure 2). Specifically, in IC#23, overlapped imaging modal-
ities mainly converged in the anterior part of the frontal lobe, which is associated with
resilience, especially the personal strength aspect of the RSA score. One prominent feature
of the novel fusion approach used in this study is to reveal associations that cannot be
discovered by separate multimodal analyses [16,68]. The current results clearly suggest
that alterations in the brain structure can be associated with changes in functional brain acti-
vation, connecting brain regions that interact in imaging modalities. Therefore, multimodal
fusion proves to be a powerful tool to reveal this association in connecting interaction
among imaging modalities overlapped in frontal-associated regions with personal strength
of resilience scale. This finding may suggest that the anterior regions of the frontal cor-
tex are associated with personal strength of resilience to the negative effect of adverse
experiences.

The current findings suggest that interaction between frontal-related networks (i.e.,
cognitive control networks) regulates individuals’ scoring high on RSA_p who are psycho-
logically healthier, better adjusted, and more resilient in the face of adverse events (i.e.,
an individual’s capacity to positively cope with a negative adverse event for successful
adaption). An important study on the relationship between RSA scales and other measures
(e.g., different types of intelligence and personality) suggested that the RSA subscale of per-
sonal strength is the most related to stabilizing emotional responses [24]. This view can be
supported by a recent study [69] using task-related functional MRI to investigate the BOLD
signals changes when induced emotional responses to negative pictures in women with
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and without the development of PTSD. Their results found that the ability to upregulate
emotional responses in prefrontal regions to negative stimuli may be a protective factor in
the face of trauma exposure and associated with resilience. Therefore, the ability to regulate
emotions to maintain emotional stability can be seen as a key factor for an individual’s
resilience to conquer adverse experiences.

In line with these findings, the results echo a recent review on the potential mechanism
of psychological resilience, showing that emotional regulation plays an important role in
relation to an individual’s resilience level [7]. Consistent with this hypothesis, the brain
regions covered in IC#23, such as the PFC, temporal, and subcortical regions, have also
been evidenced as being important for emotion regulation [70]. Therefore, the current
results are in line with the idea that an individual’s resilience strength is related to that
individual’s ability to maintain and stabilize the emotional response.

As mentioned, the major overlapped brain regions across imaging modalities for IC#23
were in the anterior part of the PFC, specifically in the medial frontal regions. These findings
of the brain structure and function in the medial frontal cortex, anterior cingulate, and
parahippocampal appear to be consistent with animal studies on resilience. These studies
reported that certain brain regions are involved in perceiving adverse events, such as the
medial PFC (mPFC), anterior cingulate cortex (ACC), amygdala, and hippocampus [7]. In
addition, the findings are also consistent with human research in which the ventromedial
PFC has been linked to the reward valuation system [71] and has been suggested to be
involved in experiencing safety during otherwise threatening situations [72,73]. Thus, this
area serves as a potential candidate for involvement in positive appraisal during adverse
situations.

The medial frontal lobe overlaps with the orbitofrontal cortex, which is involved in en-
coding pain or pleasure [74–80]. This is in line with behavioral studies reporting a positive
correlation between psychological resilience and reward experience [81–83]. The role of
the medial frontal lobe has been extensively discussed in a study relating to the cognitive
mechanisms underlying resilience [7]. These findings support the hypothesis that the PFC
is involved in constructing reappraisal strategies that can modulate activity in multiple
cognition–emotion processing systems. Furthermore, this region is also considered to be a
critical node of brain networks underlying emotion regulation [84–88], which corresponds
to the view that “psychologically resilient individuals are emotionally intelligent” [89,90].
Thus, this brain region in association with resilience may be involved in processing the
reward value of different stimuli and regulating daily emotions.

The current findings show that it is not only the medial frontal lobe that is associated
with resilience, but also the posterior regions and two WM tracts that connect between the
anterior and the posterior regions. Specifically, two major WM tracts (reflected on dMRI
RD) are covered in this component: the SLF and IFF in the right hemisphere, which connect
the superior frontal gyrus, cuneus, and middle occipital gyri (see Figure 2). For example,
Puglisi et al. (2019) investigated mimicked frontal lobe lesions by directly stimulating
patients with frontal right hemisphere glioma during an intraoperative Stoop test [91].
They observed that there were more performance errors produced by these stimulated
patients. This phenomenon suggested that there is a key component of cognitive control in
the right hemisphere, in which the right IFG and its connections with the striatum may be
fundamental for this function. Rowe et al. (2005) suggested that the effective connectivity
between the PFC and the posterior cortex changes as subjects switch between performing
different tasks [92]. These findings may help to explain our results of frontal-associated
regions covering cognitive control in a visual-related network as adverse events are visually
perceived and internalized by regulating cognitive-emotional processes. Therefore, the cur-
rent results suggest that frontal-occipital networks play an important role in psychological
resilience.

In our review article [7], we proposed a CAR model in which two foundations make re-
silience a dynamic developmental process: top-down cognitive control (e.g., goal-directed)
and bottom-up processing (e.g., stimulus-driven). Top-down processing refers to the active
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inference that is driven by prediction, while bottom-up processing refers to processing
that is built up from passive, perceived, external sensory information. Overall, frontal
brain circuitry serves to control cognition and emotion by connecting the perceived ad-
verse experience of subjective suffered feelings. Thus, it is not surprising to observe a
network that connects frontal and occipital regions via the SLF and IFF in association with
psychological resilience. Based on the model, we may reason that the frontal lobe regions
involve processes that actively regulate human resilience by interacting with the poste-
rior brain regions that perceive emotion and pain from adverse events. Such interaction
facilitates the processes of reappraisal of adverse events and the positive adaptation to
subsequent events.

Before closing, there are some limitations to the current study that require discus-
sion. First, confounding variables (e.g., genetic, epigenetic, brain structure, brain function,
neurochemical, physiological, developmental, demographic, cultural, economic, social,
and psychological variables [2–7]) that might weaken the validity of resilience measure-
ments. Future study is warranted to incorporate more other variables for studying gene-
environment interaction in combination with neuroinformatic in order to improve the
predictivity of resilience. For example, some researchers have indicated that in some
cases [93], using combined genetic and fMRI data might achieve better classification ac-
curacy than using alone [94,95]. This indicates that genetic and brain function represent
different but partially complementary aspects [18].

Second, in this study, we used the RSA’s subscale of personal strength to evaluate
resilience, yet there are other types of self-reported scales available to quantify individuals’
psychological resilience, such as Connor Davidson Resilience Scale (CD-RISC) [96] and,
Brief Resilience Scale (BRS) [97]. Therefore, future studies are needed to directly compare if
other scales can obtain similar results. Despite these available instruments that can quantify
resilience, they are nevertheless subjective relying heavily on self-report information, which
warrants future research.

Finally, although we analyzed FA, RD, and MD for DTI, we mainly observed that RD of
IC#23 was significantly associated with resilience. RD is typically seen as measuring myelin
integrity, and this imaging property may be affected by the presence of crossing fibers and
residual misalignment [98]. Moreover, a study [99] has shown that RD is more sensitive
than other DTI measures (e.g., FA, MD) to the demyelination process (e.g., [100]), which is
strongly involved in age-related brain deterioration [101–107]. Specifically, (de)myelination
as measured by RD has shown a relation to processing speed [108] in children [109] and
the elderly [110]. Therefore, the current result showing that only RD was sensitive to
resilience suggests that the processing efficacy (as reflected in myelination) plays a more
important role.

6. Conclusions

Our study used a state-of-the-art fusion approach to combine different brain imag-
ing modalities in relation to resilience scores. The results revealed a fusion component
associated with the subscale’s score of resilience. Multiple regression models of the fusion
component for predicting resilience scores suggested that the component explained most
of the individual variances in the specific RSA scale that pertain to personal strength. These
results suggested that interaction among multiple imaging modalities in frontal-associated
regions is likely to serve as a multimodal neural network for resilience strength at the
individual level.
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