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Abstract

Background: Antibody against CD40 is effective in enhancing immune responses to vaccines when chemically conjugated
to the vaccine antigen. Unfortunately the requirement for chemical conjugation presents some difficulties in vaccine
production and quality control which are compounded when multivalent vaccines are required. We explore here an
alternative to chemical conjugation, involving the co-encapsulation of CD40 antibody and antigens in liposomal vehicles.

Methodology/Principal Findings: Anti-mouse CD40 mAb or isotype control mAb were co-entrapped individually in cationic
liposomal vehicles with pneumococcal polysaccharides or diphtheria and tetanus toxoids. Retention of CD40 binding
activity upon liposomal entrapment was assessed by ELISA and flow cytometry. After subcutaneous immunization of BALB/c
female mice, anti-polysaccharide and DT/TT responses were measured by ELISA. Simple co-encapsulation of CD40 antibody
allowed for the retention of CD40 binding on the liposome surface, and also produced vaccines with enhanced
imunogenicity. Antibody responses against both co-entrapped protein in the form of tetanus toxoid, and Streptococcus
pneumoniae capsular polysaccharide, were enhanced by co-encapsulation with CD40 antibody. Surprisingly, liposomal
encapsulation also appeared to decrease the toxicity of high doses of CD40 antibody as assessed by the degree of
splenomegaly induced.

Conclusions/Significance: Liposomal co-encapsulation with CD40 antibody may represent a practical means of producing
more immunogenic multivalent vaccines and inducing IgG responses against polysaccharides without the need for
conjugation.
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Introduction

In recent years there has been a steady move to better-defined

‘subunit’ vaccines which tend to be safer but less immunogenic than

their cellular counterparts. Subunit vaccines require adjuvants in

order to be efficacious, but the only adjuvants widely approved for

human use, aluminium salts, are not very effective. Safe and potent

immunological adjuvants will have applications in a number of

areas ranging from prophylactic immunization against infectious

diseases through to therapies for allergy, autoimmune diseases and

cancer. New adjuvants that are both safe and powerful comprise an

enabling technology which will make new vaccines possible, that

would otherwise fail due to lack of efficacy.

Ligation of CD40 by CD154 is pivotal to the delivery of T cell

help to B cells, leading to immunoglobulin class-switching in both

humans and mice [1,2]. In addition to its importance in T- B

interactions, ligation of CD40 is also very important in activation

of macrophages and of dendritic cells to express co-stimulatory

molecules and thus in the generation of helper T cell priming by

these antigen-presenting cells [3]. In recent studies we have shown

that ligation of CD40 by antibodies can effectively replace ligation

by CD154 expressed on activated T cells. We have shown that

large doses of anti-CD40 (500 mg/mouse) are able to induce

strong, class-switched antibody responses against T independent

(TI) antigens including pneumococcal polysaccharides [4,5] and to

a lesser extent, TD antigens (unpublished) when injected mixed

with antigen. However such high doses induce unacceptable side

effects and would be impractical for use in prophylactic

vaccination. We therefore sought a means: i) to reduce the dose

of antibody required; and ii) to enhance the adjuvant effect. We

found that by joining together a stimulatory CD40-antibody with

antigen (either covalently or non-covalently) we can achieve both

of these aims together, using 50–500-fold less antibody to generate

a very strong antigen-specific immune response [6,7,8].

Vaccines increasingly are required to be ‘multivalent’ – i.e.

containing antigens from several different strains of a pathogen (as

for influenza virus and the polysaccharide vaccines against S.

pneumoniae), or containing multiple proteins from a single pathogen
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that are additive or synergistic in the protective immune response

they generate (as is the case for a number of vaccines under

development – e.g. for H. pylori, the new Meningococcal Group B

vaccine etc.). There is also an economic and public health case for

combining vaccines against different pathogens in a ‘multivalent’

format (e.g. DTP-Hib) in order to increase uptake by the

population, and to reduce the total number of injections required

to induce protection against the widest possible range of infections

and thus reduce the cost of vaccination programmes. Unfortu-

nately the production of antibody-antigen conjugates is a

procedure which has to be specially adapted for each antigen,

and the production of multivalent conjugate vaccines has proven

expensive. We have therefore sought an alternative method that

would allow for the close-association of CD40 antibody and

antigen, without the need for physical conjugation.

We considered that a possible means of both producing close

antigen-CD40mAb association, and producing multivalent vac-

cines with enhanced immunogenicity might be to incorporate the

antigen or antigens, along with the CD40 mAb adjuvant, into

liposomes. Liposomes were first proposed as vaccine carriers

some time ago [9], and have a well established history in the

pharmaceutical industry.

We describe here the production of liposomes containing

entrapped CD40mAb along with antigens, either polysaccharide

or protein. We show that the CD40mAb containing liposomes are

able to bind to CD40, and confer enhanced immunogenicity on

the entrapped antigen, while entrapment of the CD40mAb also

serves to reduce its toxicity.

Results

Liposomal entrapment of polysaccharides and CD40
mAb

High entrapment efficiencies for all antibody materials were

seen (average % entrapment 94.3, 99–89.6, (95% CI limits)) and

there was no significant variance in entrapment depending on

whether the antibody was co-entrapped with PS. The PS

entrapment efficiencies were 88% and 60% for PS alone, or

entrapped with antibody.

Function of entrapped CD40 mAbs
Because CD40 antibody conjugates are thought to bind directly

to antigen specific B cells [8], and because it was unknown

whether simple liposomal formulation of antibody would allow it

to bind CD40, initial experiments were performed to assess the

effectiveness of simple liposomal formulations in binding to CD40.

Assessment of CD40 binding by the liposomes was performed by

Flow cytometric analysis on CD40 transfected or normal L929

cells, and by ELISA assay using plates coated with recombinant

murine CD40-Fc, and with detection in both cases by anti-rat

antibody conjugates (the monoclonal antibody is rat anti-mouse

CD40). The two assays were consistent in that the CD40mAb

containing liposomes clearly were able to bind to both recombi-

nant CD40-Fc (Figure 1a), and to cell expressed CD40 (Fig 1b).

While the binding found in the ELISA assay may have been

attributable, at least in part, to leakage of the liposomal contents in

the presence of Tween, the Flow cytometric staining was done in

the absence of detergent. The liposomes are stable even at room

temperature in the absence of Tween. In a separate experiment

less than 1% of entrapped carboxyfluorescein was released over a

20 minute incubation even at room temperature (not shown).

These observations, taken together, are consistent with the ability

of liposomal formulations to entrap proteins both within the

aqueous core and in the lipid membrane of the liposome.

Responses to protein/CD40mAb liposomes
Tetanus toxoid (TT) and diphtheria toxoid (DT), or the mutant

form of diphtheria toxin, CRM197, are currently administered as

components of multivalent formulations, such as DTP (along with

a pertussis component) or DTP-Hib (with pertussis and Haemoph-

ilus influenzae conjugate). These vaccines are administered many

times in order to achieve and maintain sufficient immune

responses (the DT components are given five times in the UK

before age 18). Clearly improvement in the immunogenicity of the

DT components, which could lead to a reduction in the number of

doses required would be highly desirable. Liposomes were

formulated and mice immunized with the equivalent of 5 mg of

CRM197 (DT) and 1 mg of TT, along with doses of CD40mAb

starting at 10 mg encapsulated in liposomes. At day 14, following a

single immunization, antibody responses against TT were

enhanced in the CD40mAb group as compared with the isotype

control liposome group (Fig 2, Table 1, p = 0.0011, Student’s t test

for differences in geometric mean endpoint titers (GMT) of 800

CD40mAb group versus 114 for the control group immunised

with 10 mg control antibody co-encapsulated in liposomes (group

2). None of the groups other than those immunised with 10 mg

CD40mAb co-encapsulated with the antigen in liposomes

produced responses significantly better than the control group

(group 8 in Table 1) immunised with TT alone. (Group 1 vs

Group 8 p,0.01. All others vs Group 8: p.0.05 ANOVA with

Dunnett’s correction for multiple comparisons)

This significant enhancement in responses to TT remained at

day 28 (fig 2, group 1 GMT 4525, Group 2 GMT 141.

p,0.0002) and 45 post-immunization (not shown). Responses to

the less immunogenic DT component of the vaccine remained

poor, with no response above background detected in any of the

groups.

Responses to polysaccharide/CD40mAb liposomes
There are over 90 different pneumoccocal capsular polysac-

charide types. We incorporated type 3 and type 14 (PS3 and PS14)

into multilamellar DRV (dehydration-rehydration vesicle) lipo-

somes. These polysaccharides were chosen as type 3 pneumococ-

cus is one of the most virulent strains, and type 14 is one of the

most prevalent. Mice were immunized with liposomes containing

10 mg of antibody and of each polysaccharide, and then antibody

responses against PS3 and PS14 assayed by ELISA. Antibody

(IgG) responses against PS3 30 days after a single immunization

with CD40mAb/PS3/PS14 liposomes, were enhanced in com-

parison with responses generated by control antibody/PS3/PS14

liposomes (Fig 3a, IgG GMTs against PS3 were 105 in the former

group, and 11 in the latter, p = 0.007). There was no significant

difference in IgM responses against PS3 (not shown), but in

vaccination against T independent antigens an IgG response is

highly desirable. In addition, obtaining strong responses after a

single immunization is a major aim of all vaccination programmes,

albeit a usually unattainable aim. There was little detectable

response against the PS14 polysaccharide until after a booster dose

was given, when two of the five mice given CD40mAb/PS3/PS14

responded slightly more strongly to PS14 than the controls (Fig 3b).

Immunization with entrapped antigen and free CD40mAb, or free

polysaccharide and entrapped CD40mAb did not induce a

response any stronger than that induced by polysaccharide

entrapped with control antibody (not shown).

It was possible that the liposomes were simply acting as slow

release vehicle for both antibody and antigen, however the

immune response seen when polysaccharide and antibody were

entrapped in separate liposomes which were mixed prior to

immunisation, was not enhanced to the same extent as it was by

CD40 Liposome Vaccines
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Figure 1. Assessment of liposome CD40 binding activity. Fig 1a) ELISA plates were coated with anti-human IgG, blocked with 3% BSA, and
then incubated with recombinant murine CD40-human IgG1. After washing, various liposomal preparations containing entrapped pneumococcal
type 3 polysaccharide (PS) and/or CD40 mAb at varying concentrations (6 or 20 mg per 0.5 ml of liposomal preparation) were added to the plate in
two-fold dilutions. Liposomal binding to CD40-was detected using HRP labelled goat anti-rat IgG. 1b) To assess liposomal binding to cell surface
CD40, CD154 transfected (filled histograms) or CD40 transfected (open histograms) L929 cells were stained with liposomal preparations at a 1/10
dilution in FACS buffer. Binding was detected using FITC labelled anti-rat IgG.
doi:10.1371/journal.pone.0002368.g001

CD40 Liposome Vaccines
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immunisation with liposomes in which the CD40 mAb and

antigen were co-entrapped (Fig 3b) indicating a requirement for

co-entrapment for the best enhancement of immune responses,

and likely meaning that a simple ‘‘depot effect’’ was not

responsible for the adjuvant effect of co-entrapment.

Assessment of the toxicity of CD40 liposome
preparations

We have shown previously that chemical conjugation of

CD40mAbs to antigen enhances the adjuvant effect of the

antibody, allowing doses of antibody used to be reduced to sub-

toxic levels (higher doses induce polyclonal antibody increases and

increases in spleen size, which peak at around day 5 post-injection

[4] and Newton et al, unpublished). As we have shown (above) that

the adjuvant effect of CD40 antibody, at the low dose, can be

enhanced by liposomal entrapment as well as by conjugation, we

were interested in assessing the effects of this entrapment on

toxicity. It was theoretically possible that entrapment might

increase the toxic effects of the antibody by enhancing receptor

cross-linking. In fact, entrapment within liposomes served to

decrease the toxicity of the CD40 antibody (Fig 4). While at a

50 mg dose of free CD40mAb there is a significant increase in

spleen weight at day 5 (p,0.05), there was no splenomegaly

induced by 50 mg of CD40mAb entrapped within liposomes.

Figure 2. Immune responses against Tetanus toxoid. Immune responses against Tetanus toxoid induced by TT/DT co-encapsulated in
liposomes (3 mg DT, 1 mg TT) along with either 10 mg or 1mg of CD40mAb (solid lines) or isotype control mAb (dashed lines). On the right hand side
the effect of 1mg of free antibody mixed with 1 mg TT are shown. All plots are ELISA assays on individual sera. All results day 14 post-injection except
for the bottom graph, which is day 28.
doi:10.1371/journal.pone.0002368.g002

Table 1. Antibody titres induced against Tetanus toxoid.

Group Antigens (mg) Antibody (mg) LIPOSOME GMT (anti-TT)

1 DT (5) TT (1) CD40 (10) YES 800

2 DT (5) TT (1) CONTROL (10) YES 114

3 DT (5) TT (1) CD40 (100) YES 28

4 DT (5) TT (1) CONTROL (100) YES 28

5 DT (5) TT (1) CD40 (1000) YES 39

6 DT (5) TT (1) CONTROL (1000) YES 39

7 DT (5) TT (1) CD40 (1000) NO 35

8 TT (1) NONE NO 63

doi:10.1371/journal.pone.0002368.t001
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Figure 3. Immune responses against pneumococcal capsular polysaccharides. a) IgG responses at day 30 to PS3 in mice immunized once
with liposomes incorporating PS3 (10 mg), PS14 (10 mg) and CD40mAb (10 mg) (solid lines), or PS14, PS3 and control mAb (all 10 mg) (broken lines).
CD40mAb/liposome immunised group produced significantly higher titres against PS3 than the control mAb liposome group (IgG GMTs 105 and 11
respectively) p = 0.007, Student’s t test. b) IgG responses at day 30 to PS3 in mice immunized once with liposomes incorporating PS3 (10 mg), PS14
(10 mg) and either CD40mAb (10 mg) (solid lines), or control mAb (all 10 mg) (broken lines) incorporated into separate liposomes. Geometric mean
titers against PS3 were 11.5 for the control mAb group, and 38 for the CD40mAb group. c) IgG responses 14 days post-boost against PS14 in mice
immunized as above. Only two of the 5 mice from the CD40mAb group, and none of the mice from the control mAb group, produced a detectable
IgG response against PS14. Overall there was no significant enhancement of responses.
doi:10.1371/journal.pone.0002368.g003
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Discussion

Subunit vaccines based upon recombinant proteins or synthetic

peptides have very much reduced immunogenicity compared with

whole cell vaccines, and require more potent adjuvants than are

currently available to enable them to work effectively. Pure

polysaccharide antigens are ineffective in major target populations,

and polysaccharide conjugate vaccines are expensive to produce,

especially in a multivalent form which is often required. We have

shown that conjugation of CD40 antibody with protein antigens is an

effective means of enhancing immunogenicity [6,7,8], and we have

also shown that high doses of CD40 antibody can enhance the

response to T-independent, polysaccharide antigens [4]. Unfortu-

nately the conjugation of CD40 mAb to antigen is a relatively costly

process which becomes more difficult to quality control with

increasing numbers of antigens. In this study we aimed to assess a

novel method for producing ‘‘virtual conjugates’’ of CD40 mAb with

antigen, which would produce enhanced immunogenicity in the

absence of physical conjugation, and which would also allow for the

production of multivalent vaccines. The method for producing these

‘‘virtual conjugates’’ was to entrap antibody and antigen together in

liposomes. A third potential advantage of this approach would be a

synergistic or additive effect of the adjuvant effect of liposomes, with

the adjuvant effect of CD40mAb.

The presence of CD40 antibody on the liposome surface was

assessed by two methods. The first was an ELISA assay designed

to assess the binding of liposomes to recombinant murine CD40.

The second was a flow cytometric assay to determine whether the

liposomes could bind CD40 expressed on transfected L929 cells.

Both assays showed that liposomes with encapsulated CD40 mAb

had CD40 binding activity on their surface. The degree of binding

detected was dependent upon the amount of CD40 mAb

entrapped. Non-specific immunoglobulin binding to CD40 or

cells was excluded by using isotype control liposomes and normal

L929 cells as negative controls.

The oldest form of subunit vaccine is the purified bacterial

toxoid. As the two major toxoids in use, diphtheria (DT) and

tetanus toxoids (TT), are co-administered, usually along with a

third, pertussis component, we incorporated DT and TT into

liposomes along with CD40 antibody or its isotype control. Mice

were immunized with these liposomal formulations, and antibody

responses against the toxoids assessed at various time points. While

there was no detectable antibody response against DT in any of the

immunized mice, the anti-TT response was enhanced strongly by

the co-entrapment of CD40 mAb into the liposomes. CD40 mAb

alone had no effect on anti-TT titers when admixed with TT prior

to immunization, at either 10, 100 or 1000 mg of antibody. In

contrast, just 10 mg CD40 antibody delivered co-entrapped with

TT was sufficient to boost the anti-TT response measured a month

after vaccination by around 30-fold. A milligram of CD40 antibody

entrapped had little effect on immune responses. A similar drop off

of adjuvant effects with high doses was seen when using pure CD40

antibody and measuring anti-rat IgG responses (the Fc part of the

antibody being effectively linked to the CD40 binding parts) [6]. Of

course we did not compare tetanus toxoid immunisation in

CD40mAb containing liposomes with the immunisation method

used in humans, in which DT and TT are combined with whole or

acellular pertussis vaccine for some of the immunisations and with

inactivated polio vaccine and Hib conjugate in some countries for

some doses. We cannot therefore assume delivery via this method

would be superior, just that the inclusion of CD40mAb in

liposomes alongside TT imparts an increased adjuvant effect on

the liposomal formulation, or in other words, liposomal co-

entrapment imparts an adjuvant effect on CD40mAb which is not

present when it is simply mixed with the antigen.

Bacterial capsular polysaccharides are the major vaccine

candidates for use against encapsulated bacteria, but as they are

T independent antigens, conjugation to a protein carrier is

normally required to generate a class-switched, IgG response, and

to generate a response in infants [10,11]. Polysaccharide-protein

conjugate vaccines against H.influenzae, Meningococcus group C,

and a 7-valent pneumococcal vaccine are currently on the market.

Unfortunately however, there are over 90 capsular polysaccharide

serotypes of S. pneumoniae, and to produce a conjugate vaccine

inducing immunity against all of these would be a monumental

task. In fact production difficulties have even prevented the

mimicking of the older, 23-valent polysaccharide vaccine by

conjugates able to work in infants, and to our knowledge the most

multivalent conjugate vaccine assessed to date contains only nine

polysaccharides [12]. We had shown previously that high doses of

CD40 mAb could induce T dependent-like IgG responses against

pneumococcal polysaccharides [4] and also that conjugates of CD40

mAbs with TD antigens were effective adjuvants [6,8,7]. We were

interested therefore in determining whether CD40 mAbs could

effectively boost the antibody response against capsular polysac-

charides in the absence of conjugation, but when both antibody

and polysaccharide were encapsulated in liposomes. Pneumoccal

PS 3 and 14 were encapsulated in liposomes along with CD40

mAb or an isotype control, and mice were immunized.

Surprisingly, there was an enhanced IgG response induced against

PS3 by the CD40 liposomes, and while such a response was not

seen against the PS14 component, there was also evidence of some

enhancement of this response after boosting. Although there was

evidence of an adjuvant effect of CD40mAb, this was not as strong

when PS3 was incorporated into separate liposomes from the

antibody, indicating that a simple depot effect of liposomal

Figure 4. Effect of liposomal entrapment of CD40mAb on
toxicity. Increase in spleen size following immunization with liposomally
entrapped or free CD40 antibodies. The equivalents of 2, 10 and 50 mg of
antibody was injected intraperitoneally into BALB/c mice (3 per group).
Spleen weights are shown, the four right hand groups (cont) were
injected with isotype control antibody, the rest with CD40 antibody, either
free in PBS (free), or encapsulated in liposomes (lipo). Differences in spleen
weights were assessed versus 10 mg of free control antibody. Only two
groups had significantly enhanced spleen weights (p,0.05, *, ANOVA
with Dunnett’s correction for multiple comparisons).
doi:10.1371/journal.pone.0002368.g004
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entrapment was not responsible for the bulk of the adjuvant effect

seen when antigen and CD40mAb were co-entrapped.

It is uncertain why the responses to PS14 and to DT were lower

than the responses to PS3 and TT which were the co-encapsulated

‘‘partners’’. It is likely that the inherently lower immunogenicity of

DT as compared with TT may have played some part, but we also

cannot discount the effects of varying entrapment efficiencies,

especially with the polysaccharides. PS3 and PS14 are quite

different chemically, PS14 is a neutral polysaccharide [13] while

PS3 is polar [14]. While we know that, in individual entrapment

experiments the efficiency of entrapment of both polysaccharides

was high, we cannot exclude the possibility that when dual

entrapment was attempted, the entrapment of PS3 was much

more efficient than that of PS14. The assays used could not

discriminate between the two polysaccharides and indeed this

would not be a simple matter to resolve.

Large doses of CD40 antibody, given admixed with polysaccha-

ride or other antigens, are able to enhance both anti-polysaccharide

antibody responses [4], and cell mediated immune responses against

tumors [15]. These large doses however come with significant toxic

effects shortly after the time of delivery [4] and are also linked with a

potential suppression of memory responses against tumor antigens

which has been attributed to IFN-c release after administration of

CD40mAb [16]. We were concerned that in using liposomal

entrapment to enhance what is effectively a non-existing adjuvant

effect of this low, apparently non-toxic dose of CD40, we might have

concomitantly increased the toxic effect. Somewhat surprisingly the

effect of liposomal entrapment was the opposite, in that an otherwise

toxic, splenomegaly inducing dose of 50 mg CD40mAb was

rendered non toxic (at least in terms of spleen enlargement) by

liposomal entrapment (Fig 4).

The most likely explanation for the effectiveness of the CD40/

liposome combination relates simply to the fact that entrapment will

serve to enhance delivery of the CD40 signal to the same cells

presenting the vaccine antigen, in much the same way as we assume

the chemical conjugates to be working [6,17]. The adjuvant effect of

the CD40 antibody appears weaker than it is following chemical

conjugation to a range of other antigens, perhaps because of the

weaker association with antigen and because less of the antibody is

available for CD40 binding. However there is also an adjuvant effect

of liposomal entrapment itself which adds to the CD40 effect

In summary, co-encapsulation, or even separate encapsulation

of CD40mAb in liposomes is a potential means of enhancing the

immunogenicity of multivalent and polysaccharide vaccines

without the need for conjugation.

Materials and Methods

Antibody
The anti-mouse CD40 antibody 10C8 (rat IgG1) has been

described previously [18]. The hybridoma producing the isotype

control (20C2, anti-human IL12 [19]) was purchased from ATCC.

Hybridomas were grown in bioreactors and antibody purified

from the supernatant by protein G affinity by Sheffield Antibody

Resource Centre, UK.

Production of liposomes
The lipidic materials egg phospatidyl choline (PC) (99% purity)

and DOPE were obtained from Avanti polar lipids, whilst DOTAP

was obtained from Merck chemicals Ltd. Pneumococcal polysac-

charides (PS) were obtained from ATCC, and diphtheria (CRM197)

and tetanus toxoids were kind donations from Dr Umesh Shaligram,

State serum Institute of India. The liposomal formulations were

cationic in nature, and consisted of PC, dioleoylphosphatidyletha-

nolamin (DOPE), 1,2-dioleoyloxy-3-trimethylammoniumpropane

(DOTAP) (4:2:1 molar ratio) prepared by the addition of materials

to small unilemallar vesicles (SUVs) and processed by the DRV

method [20]. The resultant liposomes were MLV in nature with an

average size of 448 nm (510–385 nm, 95% CI limits) and appeared

to show no significant variance in size whether entrapping protein,

polysaccharide or both. The assessment of the entrapment efficiency

of the immunization materials involved many different methods.

The entrapment efficiency of the proteins was assessed by

measurement of the proportion of a radio-labelled (tracer) material

in the liposomal pellet and supernatant following ultracentrifugation

of the final formulation in a (wash) buffer. With respect to the

pneumococcal polysaccharides (type 3 and type 14) the phenol-

sulphuric acid assay for total sugar was used, however lipidic

interference in this system involved the use of multiple lipid

extraction stages to yield reliable results.

Dose levels for all formulations were normalized depending

upon entrapment efficiencies.

Immunizations
BALB/c female mice, aged 8–10 weeks (Harlan, UK) were

immunized sub-cutaneously with liposomal preparations as de-

scribed for each experiment. All experiments were performed

according to UK Home Office Regulations for animal care and use.

ELISA assays
CD40 binding of liposomes. ELISA plates were coated

overnight with goat anti-human IgG (BD Pharmingen) at 10 mg/

ml in PBS. They were then blocked with 3% BSA, and incubated

at room temperature with recombinant murine CD40-human

IgG1 (1 mg/mL, R&D systems) for 30 minutes, washed with PBS-

Tween, and then incubated at RT with doubling dilutions of

liposomal preparations in PBS. After 30 minutes, plates were

washed again, and incubated with HRP labelled goat anti-rat IgG

for 30 minutes. After further washes liposomal binding to CD40

was assessed following the addition of substrate. There was no

binding of the anti-human coating reagent to either rat IgG, or

anti-rat IgG (or vice-versa).

Anti-polysaccharide and DT/TT responses. ELISA

plates (Costar, UK) were coated with polysaccharides or proteins

at 10 mg/ml in carbonate buffer overnight at 4uC. Plates were

blocked for one hour with 1% fish gelatin (Sigma, UK), and after

washing with PBS-Tween, serial dilutions of immune sera were

made. After a further 1h incubation at RT, and washing, HRP

labelled goat anti-mouse immunoglobulin, or anti-mouse IgG were

added and the plates incubated for a further hour prior to final

wash and the addition of substrate. After 20 minutes incubation

plates were read in an Anthos Labtec EIA plate reader.

Flow cytometry. Murine L929 fibroblasts stably transfected

with either CD40 or CD154 [21] were stained with liposomes as

follows. Cells (106 per tube) were pelleted in FACS buffer (PBS,

3% BSA) and were re-suspended in liposomal preparations diluted

1/10 in FACS buffer. After 30 min incubation at 4uC, the cells

were washed twice with FACS buffer, and were then incubated

with FITC labelled anti-rat IgG (BD Pharmingen) at 10 mg/ml in

FACS buffer for 30 minutes at 4uC, washed twice in FACS buffer

and then analysed on a FACScaliburTM analyser (Becton

Dickinson) running CellquestTM software
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