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Fish silage (FS) has been confirmed as a high-quality feed ingredient because of its
balanced nutrition, low cost, and environmental friendliness. In the present study, we
evaluated the performance of replacing fishmeal by FS in the diet of white shrimp,
Litopenaeus vannamei. Five isonitrogenous (410 g kg−1) and isolipidic (75 g kg−1)
diets were formulated with replacement of fishmeal by 0% (FM), 25% (FS25%), 50%
(FS50%), 75% (FS75%), and 100% (FS100%) FS. After an 8-week trial, shrimps fed
low FS diets (FM and FS25%) had significantly higher final weight (FW), weight gain
(WG), and specific growth ratio (SGR) (P < 0.05). No significant differences were found
in body composition and most antioxidant enzyme activities of all groups (P > 0.05).
Compared to high FS groups (FS75% and FS100%), low FS replacement levels (0 and
25%) had enhanced trypsin activity. And trypsin transcriptional level presented a similar
trend with trypsin activity. In terms of intestinal histopathology, no obvious histological
damage was observed in the intestine of all groups. tor and s6k of low replacement
level groups (FM and FS25%) were significantly upregulated (P < 0.05), which indicated
activation of mammalian target of rapamycin (mTOR) signaling pathway in low FS groups
at transcriptional level. The enhanced performances of growth and mTOR signaling
pathway in low FS groups (FM and FS25%) provided us some insights into the regulation
mechanism of nutrient signal on growth. Based on the above, dietary FS could influence
the growth of shrimp by regulating mTOR at the transcriptional level, and FS is a potential
substitute of fishmeal in shrimp feed.

Keywords: Litopenaeus vannamei, fish silage, growth performance, intestinal histopathology, mammalian target
of rapamycin signaling pathway

INTRODUCTION

With the limitation of capture fishery production, aquaculture has been growing dramatically all
over the world. Especially in 2014, aquaculture sector’s contribution to the food supply for humans
overtook that of capture fishery for the first time (FAO, 2017). As the scale of aquaculture continues
to expand, the demand for aquafeed has also increased. Fishmeal is recognized as the most
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important protein source in aquafeed industry because of its
nutritional quality and palatability (Abasubong et al., 2018).
However, due to climate change and overfishing, fishmeal
shortages and its price surge. In addition, the excessive use
of fishmeal may cause a series of environmental problems
because of water and gas pollution during fishmeal production
process (Sales, 2009). Therefore, finding alternative sources of
fishmeal has become a hot spot for aquatic animal nutrition
and feed research.

Farming of white shrimp, Litopenaeus vannamei is a fast-
growing aquacultural activity in the world (Pauly and Froese,
2012). In 2016, the production of white shrimp around the world
reached 4.16 million tons (FAO, 2018). Thus, the use of fishmeal
in white shrimp feed increased enormously in the past, and
finding alternative protein sources to replace fishmeal in shrimp
feed is very essential. Recently, more and more potential protein
sources, such as microalgae meal (Basri et al., 2014), fermented
soybean meal (Shao et al., 2019), soy protein concentrate (Xie
et al., 2016), protein hydrolysates (Shao et al., 2018), yeast extract
(Zhao L. et al., 2017), and biofloc meal (Shao et al., 2017)
were used to replace fishmeal in shrimp feed. Although some
plant protein sources have achieved good results in fishmeal
replacement research, the existence of anti-nutritional factors still
constrained their application in actual production (Dossou et al.,
2018). Hence, we pay much more attention to replacing fishmeal
by animal protein sources.

Fish silage (FS) is produced from low-value fish or fish
processing waste with liquification by adding a mixture of acids
and enzymes (Haider et al., 2015). Due to its balanced nutrition,
low cost, and environmental friendliness, FS is considered as
a high-quality feed ingredient (Olsen and Toppe, 2017). And
FS has been successfully used as a substitute of fishmeal in
several fish species (Liang et al., 2006; Goosen et al., 2016).
Recently, more and more studies were conducted to evaluate the
effect of dietary FS in shrimp at different nutrient combination
conditions (Gallardo et al., 2012; Rodríguez-González et al.,
2018) and biofloc system (Gonçalves et al., 2019; Lobato et al.,
2019). Here, we examined the performances of replacement
of fishmeal in L. vannamei diet with FS. Additionally, many
experiments have been carried out to evaluate the effect of
fishmeal replacement. However, the underlying mechanism
that limits fishmeal replacement remains largely unknown.
Mammalian target of rapamycin (mTOR) signaling pathway
is a regulator of cell growth, which could be modulated
by stress, amino acids, and energy (Jewell et al., 2013).
It regulates protein synthesis through ribosomal protein S6
kinase (s6k) and the eukaryotic translation initiation factor
4e-binding protein (4e-bp) (Wullschleger et al., 2006). This
pathway has been described as an integration point which is
closely related to nutrient sensing, metabolism, and growth in
multiple species (Wullschleger et al., 2006; Loewith and Hall,
2011; Weisman, 2016). More and more evidence suggested
the close relationship between mTOR and growth in aquatic
animals (Tang et al., 2013; Tu et al., 2015; Liang et al.,
2016). The study of mTOR signaling pathway in the present
research provided us new insights into the nutrient sensing and
growth in shrimp.

MATERIALS AND METHODS

Feed Preparation
Fish silage powder was bought from Qingdao Blue Earthworm
Corporation, and its composition was shown in Table 1. Five
isonitrogenous (410 g kg−1) and isolipidic (75 g kg−1) diets
were formulated with replacement of fishmeal by 0% (FM),
25% (FS25%), 50% (FS50%), 75% (FS75%), and 100% (FS100%)
FS, respectively (Table 2). The essential amino acid profiles of
diets were listed in Table 3, and the composition reached the
requirements of shrimp. Feed production process was carried out
as the previous description of our laboratory (Shao et al., 2018).
Finished dry diets were stored at−20◦C until use.

Feeding Trial
Pathogen-free shrimps used in this study were obtained from
a commercial shrimp farm (Rizhao, Shandong, China). And
the experiment was conducted in a test site of Institute of
Oceanology in Qingdao City, China. Prior to the feeding trial,
all shrimps were acclimated for 1 week in concrete ponds
feeding with commercial feed (Dale Feed Corporation, Yantai,
China). Then, 750 similar size shrimps (0.26 ± 0.03 g) were
randomly distributed into 15 cylindrical tanks (500 L volume,
containing 400 L water and 50 shrimps, 125 shrimps/m3)
with water exchange and uninterrupted oxygenation system.
The five experimental diets (FM, FS25%, FS50%, FS75%, and
FS100%) were randomly assigned to 15 tanks with three
replicates.

A total of 8-week feeding trial was performed. Feed was
offered four times a day at 5:00, 11:00, 17:00, and 23:00.
Daily ration was 3–5% of total body weight per tank. Residue
was collected, and water exchange was conducted twice daily.
During the experiment period, water quality was kept as follows:
water temperature (28–31◦C), pH (7.6–8.1), salinity (29–31 ppt),
dissolved oxygen (5.6–6.2 mg/L), ammonia–nitrogen (0.12–
0.20 mg/L), and nitrite–nitrogen (0.02–0.08 mg/L).

TABLE 1 | Composition of the fish silage powder (g/100 g dry weight).

Items Fish silage Fishmeal

Crude protein 54.58 64.1

Crude lipid 3.54 9.5

Ash 12.05 14.2

Moisture 16.01 8.4

Protein hydrolysis 18.14 –

Essential amino acid

Arginine 2.31 4.01

Histidine 1.81 2.37

Isoleucine 2.45 2.82

Leucine 3.84 4.66

Lysine 3.19 5.1

Methionine 1.66 2.75

Phenylalanine 2.01 2.64

Threonine 1.66 2.75

Valine 2.60 3.44
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TABLE 2 | Composition and proximate analysis of the experimental diets.

Ingredient (g/100 g) FM FS25% FS50% FS75% FS100%

Fishmeala 32 24 16 8 0

Fish silageb 0 10 20 30 40

Soybean mealc 35 35 35 35 35

Wheat flourd 22.2 19.7 17.3 14.9 12.5

Fish oil 2.8 3.3 3.7 4.1 4.5

Squid meale 3 3 3 3 3

Soy lecithin 1 1 1 1 1

Brewer’s yeast 2 2 2 2 2

Vitamins premixf 1 1 1 1 1

Minerals premixg 1 1 1 1 1

Proximate analysis

Moisture 9.17 9.52 9.19 9.58 9.43

Crude protein 41.14 40.87 41.59 41.36 40.79

Crude lipid 7.65 7.84 7.39 7.52 7.83

Ash 10.73 11.23 11.19 11.29 11.36

Gross energy (kJ g−1)h 16.84 16.73 16.75 16.68 16.71

aFishmeal: 64.1% crude protein, 9.5% crude lipid; Dale Feed Corporation, Yantai,
China. bFish silage: 54.58% crude protein, 3.54% crude lipid; Qingdao Blue
Earthworm Bio-Tech Corporation, Qingdao, China. cSoybean meal: 42.8% crude
protein, 1.2% crude lipid; Dale Feed Corporation, Yantai, China. dWheat flour:
15.0% crude protein, 0.8% crude lipid; Dale Feed Corporation, Yantai, China.
eSquid meal: 82.8% crude protein, 4.3% crude lipid; Dale Feed Corporation, Yantai,
China. fVitamins premix (kg−1 of diet): vitamin A, 250,000 IU; riboflavin, 750 mg;
pyridoxine-HCl, 400 mg; cyanocobalamin, 1 mg; thiamin, 250 mg; menadione,
250 mg; folic acid, 125 mg; biotin, 10 mg; a-tocopherol, 2.5 g; myo-inositol,
8,000 mg; calcium pantothenate, 1,250 mg; nicotinic acid, 2,000 mg; choline
chloride, 8,000 mg; vitamin D3, 45,000 IU; vitamin C, 7,000 mg. gMinerals premix
(kg−1 of diet): ZnSO4 7H2O, 0.04 g; CaCO3, 37.9 g; KCl, 5.3 g; KI, 0.04 g;
NaCl, 2.6 g; CuSO4 5H2O, 0.02 g; CoSO4 7H2O, 0.02 g; FeSO4 7H2O, 0.9 g;
MnSO4 H2O, 0.03 g; MgSO4 7H2O, 3.5 g; Ca (HPO4)2 2H2O, 9.8 g. hGross
energy was calculated using the factors as follows: protein, 23 kJ/g; lipid, 35 kJ/g;
carbohydrates, 15 kJ/g (Molina-Poveda et al., 2013).

TABLE 3 | Essential amino acid profile (%) of experimental diets.

Amino acid FM FS25% FS50% FS75% FS100% Requirement
for shrimps

Arginine 2.50 2.40 2.31 2.21 2.10 1.90a

Histidine 1.23 1.21 1.21 1.19 1.17 0.80b

Isoleucine 1.71 1.72 1.74 1.75 1.75 1.00b

Leucine 2.83 2.82 2.83 2.82 2.79 1.70b

Lysine 2.66 2.56 2.47 2.38 2.28 2.10a

Methionine 1.32 1.22 1.13 1.03 0.92 0.90c

Phenylalanine 1.76 1.74 1.73 1.70 1.66 1.40b

Threonine 1.64 1.58 1.53 1.46 1.41 1.40d

Valine 2.01 1.98 1.97 1.94 1.90 1.40e

aMillamena et al. (1998). bMillamena et al. (1999). cRichard et al. (2010). dMillamena
et al. (1997). eTeshima et al. (2002).

Sample Collection
At the end of the feeding trial, all shrimps per tank were
counted and weighed to calculate growth performance. Ten
shrimps per tank were randomly collected and aseptically
sacrificed. Hepatopancreas and muscle samples were rapidly
frozen in liquid nitrogen and stored at −80◦C for enzyme
activity assays and real-time quantitative PCR analysis, and

intestine was obtained for histopathology. Another 10 shrimps
per tank were collected and stored at −20◦C for analysis of body
composition. All the experiments were conducted in accordance
with the recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health (NIH).
The study protocol and all experimental designs were conducted
with approval from the Experimental Animal Ethics Committee
of the Institute of Oceanology, Chinese Academy of Sciences.

Chemical Analysis
Chemical analysis of experimental feed and shrimp body
composition was performed according to standard methods
(AOAC, 2012). Moisture was calculated following drying the
samples at 105◦C, and ash was determined by combustion in a
muffle furnace at 550◦C for 24 h. Crude protein was determined
by nitrogen (N × 6.25) using the Kjeldahl method (Kjeltec
TM8400, FOSS, Sweden). Crude lipid was measured by Soxhlet
method (Buchi 36680, Switzerland).

Enzyme Activity Assays
Hepatopancreas samples were homogenized and preprocessed
as the previous study conducted by our laboratory (Shao
et al., 2018). Digestive enzyme and antioxidant enzyme
activities were analyzed with enzymatic kits according to the
manufacturer’s protocol (Jiancheng, Nanjing, China). The source
and information of each kit used in this study were as follows:
lipase (Cat. No. A054-1-1), α-amylase (Cat. No. C016-1-1),
trypsin (Cat. No. A080-1-1), superoxide dismutase (SOD; Cat.
No. A001-3-2), glutathione peroxidase (GPX; Cat. No. A005-
1-2), glutathione S-transferase (GST; Cat. No. A004-1-1), and
catalase (CAT; Cat. No. A007-1-1).

Histopathology

Intestine tissues of shrimp from FM, FS25%, FS50%, FS75%,
and FS100% groups were fixed in 10% formalin for 24 h,
dehydrated in an ascending alcohol series (50–95%). Dehydrated
tissues were embedded in paraffin and sectioned into 4-µm thick
with a microtome. The 4-µm-thick tissue sections were stained
with hematoxylin and eosin (H&E), then examined using an
ECHO microscope (California, CA, United States). To estimate
histological damage degree, a scoring system was conducted as
previous studies (Labrie et al., 2003; Abad-Rosales et al., 2010).
Briefly, severe, moderate, mild, and none = 100%, <75%, <25%,
and 0% of the fields with histological damage, compared to the
control group (FM group).

Gene Expression Analysis
Total RNA was extracted from hepatopancreas and muscle
using RNA extraction kit according to the manufacturer’s
instructions (Takara, Japan). The quality and yield of extracted
total RNA were assessed by a 1.0% denaturing agarose gel
and NanoDrop spectrophotometer (ND-2000, Thermo Fisher
Scientific, United States). cDNA synthesis was performed using
a One-Step gDNA Removal and cDNA Synthesis Kit according
to the manufacturer’s recommendations (TransGen Biotech Co.,
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Ltd., China). mTOR signaling pathway genes (tor and s6k)
and trypsin were investigated in muscle and hepatopancreas,
respectively. Specific primers were designed based on partial
cDNA sequences in L. vannamei transcriptome analysis (Zhao
W. et al., 2017), and β-actin was selected as a reference gene
(Table 4). Real-time PCR was carried out in a sequence detection
system (ABI7500, Thermo Fisher Scientific, United States) with
three replicates of each sample as follows: 94◦C for 30 s, then
40 temperature cycles of 94◦C for 5 s and 60◦C for 30 s.
Gene expression level was analyzed using the 2−11Ct method
(Livak and Schmittgen, 2001).

Calculations and Statistical Analysis
The parameters were calculated as follows:

Weight gain (WG, %) = 100× (WT −W0)/W0

Specific growth ratio (SGR, %day−1)

= 100× (Ln WT − Ln W0)/T

Protein efficiency ratio (PER) = (WT −W0)/protein intake

Feed efficiency (FE) = (WT −W0)/feed consumed

WT and W0 are final and initial weights (g), and T is the feeding
period (56 days).

Statistical analysis was conducted using SPSS 19.0 (SPSS,
Chicago, IL, United States). One-way ANOVA was used to
test the main effect of dietary different feed on shrimps.
Data throughout the text were presented as the means ± SD.
Differences were compared using Duncan’s multiple range test
after homogeneity of variance was checked. When P-value < 0.05,
differences were considered statistically significant.

RESULTS

Growth Performance
During the experimental period, shrimps fed with diets FM and
FS25% performed significantly better in final weight (FW), WG,
and SGR (P < 0.05), whereas diet FS100% significantly reduced
growth performance of shrimps compared to the other dietary
treatments (P < 0.05; Table 5). FE and PER decreased with
increasing FS intake, which may be due to the poor nutritional
properties of FS compared to fishmeal.

TABLE 4 | Primers used for real-time quantitative PCR.

Gene
name

Primer sequence (5′–3′) Product
size (bp)

Tm (◦C) PCR
efficiency (%)

tor F-TGCCAACGGGTGGTAGA 181 58 97

R-GGGTGTTTGTGGACGGA

s6k F-GCAAGAGGAAGACGCCATA 210 59 97

R-CCGCCCTTGCCCAAAACCT

β-actin F-GCCCATCTACGAGGGATA 121 57 99

R-GGTGGTCGTGAAGGTGTAA

trypsin F-CGGAGAGCTGCCTTACCAG 141 59 98

R-TCGGGGTTGTTCATGTCCTC

Body Composition
Results of body composition were presented in Table 6. There
were no significant differences in moisture, crude protein, crude
lipid, and ash contents among five treatment groups (P > 0.05).

Enzyme Activity
No significant differences were observed in lipase and α-amylase
activities among all dietary treatments (P > 0.05), whereas
trypsin activity of FM and FS25% was significantly higher
than that of FS75% and FS100% (P < 0.05; Table 7), which
indicated that excessive FS intake negatively affected digestive
enzyme activities. The mRNA transcript of trypsin in FM was
significantly upregulated than that of diets with FS (P < 0.05;
Figure 1). In terms of antioxidant enzymes, SOD, GST, and
CAT enzyme activities showed no significant differences in all
groups (P > 0.05), while GPX enzyme activity of FS100% was
significantly lower than that of FM and FS25% (P < 0.05;
Figure 2).

Intestinal Histopathology
Histological damage scores were presented in Supplementary
Table S1. No obvious histological damage was observed in terms
of basement membrane (BM) thickening, increased leukocyte
infiltration, epithelial necrosis, and blood capillary hyperemia
in the intestine of all groups (Figure 3). But compared to high
replacement level groups (FS75% and FS100%), the BM and
circular muscle layers (CMLs) of low replacement level groups
(FM and FS25%) were more closely combined (Figure 3 and
Supplementary Table S1).

Mammalian Target of Rapamycin
Signaling Pathway
Relative expression levels of mTOR signaling pathway genes in
muscle were shown in Figure 4. tor expression level showed no
significant difference between FM and FS25%. Both tor and s6k
expression levels of FM and FS25% were significantly upregulated
than those of FS50%, FS75%, and FS100% (P < 0.05).

DISCUSSION

Fish silage is a high-quality ingredient of feed, which has been
successfully used in livestock and poultry, including quails
(Panda et al., 2017), lambs (Tejeda-Arroyo et al., 2015), and pigs
(Nørgaard et al., 2015). In the field of aquafeed, the use of FS on
replacement of fishmeal also made significant progress. Based on
the study of Liang et al. (2006), enhanced growth performance
was obtained in Japanese sea bass (Lateolabrax japonicus) when
15% of fishmeal in a fishmeal-based diet was replaced by FS.
And recently, the study on Mozambique tilapia (Oreochromis
mossambicus) also documented that low replacement level of
fishmeal with FS did not cause a negative effect on growth
performance (Goosen et al., 2016). Many researchers also focused
on the effects of dietary FS in shrimp. Rodríguez-González
et al. (2018) found that a combination of 18.75% FS/39.75%
Jatropha curcas kernel meals in shrimp diets made better growth
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TABLE 5 | Growth performance of shrimps fed with different experimental diets for eight weeks (means of triplicate ± SD).

FM FS25% FS50% FS75% FS100%

FW (g) 5.07 ± 0.17a 4.95 ± 0.12a 4.35 ± 0.13b 3.61 ± 0.13c 2.65 ± 0.14d

WG (%) 1778 ± 62a 1734 ± 46a 1512 ± 48b 1238 ± 49c 881 ± 54d

SGR (%/day) 5.60 ± 0.06a 5.56 ± 0.04a 5.33 ± 0.05b 4.99 ± 0.06c 4.44 ± 0.09d

PER 1.83 ± 0.08a 1.73 ± 0.02a 1.55 ± 0.04bc 1.68 ± 0.09ab 1.51 ± 0.04c

FE 0.77 ± 0.03b 0.73 ± 0.01b 0.65 ± 0.02b 0.71 ± 0.04b 0.64 ± 0.06a

FW, final weight; WG, weight gain; SGR, specific growth ratio; PER, protein efficiency ratio; FE, feed efficiency. Means in the same row not sharing a superscript letters
are significantly different (P < 0.05).

TABLE 6 | Proximate moisture, protein, lipid, and ash (% of wet weight) composition of shrimps fed with different experimental diets for eight weeks (means of
triplicate ± SD).

FM FS25% FS50% FS75% FS100%

Moisture (%) 76.35 ± 0.29 76.57 ± 0.37 75.85 ± 0.22 76.45 ± 0.28 76.53 ± 0.38

Crude protein (%) 22.31 ± 0.55 22.64 ± 0.26 21.91 ± 0.23 21.79 ± 0.15 22.07 ± 0.31

Crude lipid (%) 0.76 ± 0.06 0.77 ± 0.04 0.79 ± 0.04 0.79 ± 0.05 0.81 ± 0.06

Ash (%) 1.51 ± 0.06 1.47 ± 0.04 1.53 ± 0.02 1.55 ± 0.03 1.49 ± 0.04

TABLE 7 | Digestive enzyme activities in hepatopancreas of shrimps fed with different experimental diets for eight weeks (means of triplicate ± SD).

FM FS25% FS50% FS75% FS100%

α-Amylase (U mg protein−1) 1.38 ± 0.16 1.51 ± 0.19 1.55 ± 0.13 1.52 ± 0.09 1.61 ± 0.04

Lipase (U mg protein−1) 0.80 ± 0.05 0.87 ± 0.13 0.89 ± 0.03 0.91 ± 0.07 0.82 ± 0.09

Trypsin (U mg protein−1) 115.51 ± 13.61a 109.79 ± 6.62a 105.52 ± 6.98ab 84.85 ± 7.53c 93.85 ± 3.32bc

Means in the same row not sharing a superscript letters are significantly different (P < 0.05).

performance. And in a biofloc system, up to 6% of tilapia silage
inclusion did not compromise shrimp meat quality (Gonçalves
et al., 2019). We evaluated growth performance and growth-
regulating gene expression levels of replacement of fishmeal in
L. vannamei diet with FS in the present study.

FIGURE 1 | Relative expression level of trypsin in hepatopancreas of white
shrimp (Litopenaeus vannamei) fed with five different diets. Results are shown
as the mean ± SD, and different letters above a bar represent a significant
difference (P < 0.05).

In this research, 25% replacement of fishmeal with FS had
no effects on the growth performance of shrimps compared
to FM group, while high replacement levels (75 and 100%)
obviously had depressed performance in FW, WG, and SGR.

FIGURE 2 | Specific activities of hepatopancreas antioxidant enzymes of
shrimp fed with five different diets. Results are shown as the mean ± SD, and
different letters above a bar represent a significant difference (P < 0.05). SOD,
superoxide dismutase; GST, glutathione S-transferase; GPX, glutathione
peroxidase; CAT, catalase.
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FIGURE 3 | Histological analysis of intestine from of shrimp fed diets with 0 (a), 25% (b), 50% (c), 75% (d), and 100% (e) replacement of fishmeal by fish silage (FS).
BM, basement membrane; CMLs, circular muscle layers; IEL, intestinal epithelial layer. Stained with hematoxylin and eosin (H&E), 200×.

Although FS is a high-quality protein source, its nutritional
properties still have some deficiencies compared to fishmeal,
such as crude protein and essential amino acid composition
(Table 1). Excessive intake of FS in the diet can cause aquaculture
animals to lose growth efficiency. Therefore, based on the result
of growth performance, high replacement levels of fishmeal by
FS is not a suitable option. Different from previous studies
(Liang et al., 2006; Goosen et al., 2016), we designed a wide
range of substitution (from 25 to 100%) of fishmeal with
FS in our study. Previous studies conducted in fish did not
use FS to replace more than 25% fishmeal. The effect of
high replacement levels of fishmeal by FS on aquatic animals
remains unknown. Therefore, we try to replace fishmeal with
much more FS in shrimp feed. Although high replacement
levels of fishmeal by FS did not achieve satisfactory results on
growth performance, it is still a significative try to alleviate
fishmeal shortage.

Overproduction of reactive oxygen species (ROS) and
residual ROS cause serious damage to cells and tissues.
To protect themselves against damage by ROS, cells have
developed a set of antioxidant defense systems, involving many
antioxidant enzymes, such as SOD, GST, GPX, and CAT

FIGURE 4 | Relative expression levels of tor and s6k in muscle of white
shrimp (Litopenaeus vannamei) fed with five different diets. Results are shown
as the mean ± SD, and different letters above a bar represent a significant
difference (P < 0.05).

(Duan et al., 2015). Therefore, antioxidative capacity is an
important index to reflect the healthy status of crustaceans.
In the present study, SOD, GST, and CAT enzyme activities
showed no significant differences in all groups, and only
GPX enzyme activity of FS100% decreased significantly. While
many previous studies showed that dietary high levels of
plant protein sources decreased more antioxidant enzyme
activities in shrimp (Xie et al., 2016; Wan et al., 2018).
FS is a better protein source without anti-nutritional factors
than plant protein sources. The excellent nutritional properties
of FS reduce its negative effect on the antioxidant enzyme
activities of shrimp.

Intestinal histopathology was conducted to evaluate the
intestinal health of shrimp fed with different levels of FS. No
obvious histological damage was observed in the intestine of all
groups, which indicated the excellent nutrition characteristics
of FS for shrimp. It is also found that the BM and CMLs
of low replacement level group (FM and FS25%) were more
closely combined. The loose connection between BM and CMLs
in high replacement level groups (FS75% and FS100%) may
lead to barriers to nutrient absorption and transportation,
which is related to the worse growth performance of high
replacement level groups.

Trypsin plays a vital role in the assimilation of nutrition
in hepatopancreas of shrimps (Muhliaalmazan, 2003). In our
present study, dietary low FS replacement levels (0 and 25%)
made positive effects on both trypsin activity and trypsin gene
expression, which may contribute to growth of shrimp in low
FS groups. Many previous studies also have found a close
relationship between digestive enzyme activity and growth in
shrimp. Based on the study of Pakravan et al. (2017), dietary 50%
replacement level of fishmeal by microalgae stimulated trypsin
activity and further enhanced growth of shrimp. More recently,
Huang et al. (2019) found that dietary T-2 toxin decreased
both digestive enzyme activity and growth performance. These
evidences demonstrated the important effect of trypsin on grow
performance in shrimp.

The vital role of trypsin in growth of shrimp has been verified
by our present research and some previous studies (Sha et al.,
2016; Pakravan et al., 2017), while the downstream regulation
pathway of trypsin remains unknown. Amino acid concentration
could be sensed to modulate mTOR signaling pathway activity
and further regulate cell growth (Jewell et al., 2013). Trypsin
activity directly affects the efficiency of protein digestion. In
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the present study, key genes (tor and s6k) of mTOR signaling
pathway in low FS groups (FM and FS25%) were significantly
upregulated at the transcriptional level. Interestingly, low FS
groups also had higher trypsin activity and better growth
performance. We speculated that trypsin activity influenced
amino acid concentration in shrimp tissue and further provided
mTOR signaling pathway with a signal to regulate cell growth.
In addition, mTOR signaling pathway has been confirmed as
an effector of cell growth and proliferation via the regulation
of protein synthesis in model species and mammals (Miron
et al., 2003; Fingar and Blenis, 2004; Loewith and Hall, 2011;
Kakanj et al., 2016). In aquatic animals, several studies showed
that dietary essential amino acid supplementation can activate
TOR signaling pathway and further influenced the growth of
fish (Tang et al., 2013; Ren et al., 2015; Wu et al., 2017).
And Shao et al. (2018) found that dietary biofloc meal could
make a difference on the key genes of mTOR signaling pathway
and growth performance of shrimp. Therefore, we believe that
different dietary replacement levels of fishmeal by FS could
influence the growth of white shrimp by regulating the mTOR
signaling pathway.

CONCLUSION

Fish silage is a kind of high-quality feed ingredient because of
its balanced nutrition, low cost, and environmental friendliness.
In the present study, we evaluated the potential of replacing
fishmeal by FS in feed of white shrimp. The results indicated
that replacement of fishmeal by FS at 25% performed better
than high replacement levels on growth performance. And we
further found that dietary FS could regulate growth of shrimp
by mTOR signaling pathway. In brief, FS is a potential substitute
of fishmeal in shrimp feed to reduce the pressure of demand for
fishmeal.
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