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Background: Parkinson’s disease (PD) is the second most common

progressive neurodegenerative disorder and the leading cause of disability in

the daily activities. In the management of PD, accurate and specific biomarkers

in blood for the early diagnosis of PD are urgently needed. DNA methylation

is one of the main epigenetic mechanisms and associated with the gene

expression and disease initiation of PD. We aimed to construct a methylation

signature for the diagnosis of PD patients, and explore the potential value of

DNA methylation in therapeutic options.

Materials and methods: Whole blood DNA methylation and gene expression

data of PD patients as well as healthy controls were extracted from

Gene Expression Omnibus database. Next, differentially expressed genes

(DEGs) and differentially methylated genes (DMGs) between PD patients

and healthy controls were identified. Least absolute shrinkage and selection

operator cox regression analysis was carried out to construct a diagnostic

signature based on the overlapped genes. And, the receiver operating

characteristic (ROC) curves were drawn and the area under the curve

(AUC) was used to assess the diagnostic performance of the signature in

both the training and testing datasets. Finally, gene ontology and gene

set enrichment analysis were subsequently carried out to explore the

underlying mechanisms.

Results: We obtained a total of 9,596 DMGs, 1,058 DEGs, and 237 overlapped

genes in the whole blood between PD patients and healthy controls. Eight

methylation-driven genes (HIST1H4L, CDC42EP3, KIT, GNLY, SLC22A1, GCM1,
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INO80B, and ARHGAP26) were identified to construct the gene expression

signature. The AUCs in predicting PD patients were 0.84 and 0.76 in training

dataset and testing dataset, respectively. Additionally, eight methylation-

altered CpGs were also identified to construct the CpGs signature which

showed a similarly robust diagnostic capability, with AUCs of 0.8 and 0.73 in

training dataset and testing dataset, respectively.

Conclusion: We conducted an integrated analysis of the gene expression and

DNA methylation data, and constructed a methylation-driven genes signature

and a methylation-altered CpGs signature to distinguish the patients with

PD from healthy controls. Both of them had a robust prediction power

and provide a new insight into personalized diagnostic and therapeutic

strategies for PD.

KEYWORDS

neurodegenerative disease, Parkinson’s disease, DNA methylation, methylation-
driven gene, diagnostic signature

Introduction

As the second most diagnosed neurodegenerative disease,
Parkinson’s disease (PD) is characteristic by a complex, age-
related disease with more than six million patients worldwide
and is the main cause of neurological dysfunction (Bloem
et al., 2021). Currently, the diagnosis of PD is mainly based
on clinical criteria, which have been updated many times to
improve the diagnostic accuracy (Tolosa et al., 2021). The
advances of gene microarray technology allow researchers to
rapidly measure the expression data of thousands of genes in
various diseases, helping to gain a deeper understanding of
disease pathogenesis at the genetic level (Behzadi and Ranjbar,
2019). Given that specific and accurate molecular biomarkers
could greatly contribute to the early diagnosis and therapy will
have a greater chance of success in the early stages of disease.
Thus, there is an urgent need to identify potential biomarkers
for the diagnosis of PD.

Abbreviations: PD, Parkinson’s disease; SNCA, Synuclein Alpha; LRRK2,
Leucine Rich Repeat Kinase 2; MAPT, Microtubule Associated Protein
Tau; GBA, Glucosylceramidase Beta; NPAS2, Neuronal PAS Domain
Protein 2; CYP2E1, Cytochrome P450 Family 2 Subfamily E Member
1; PGC1-α, PPARG Coactivator 1 Alpha; DEGs, differentially expressed
genes; DMGs, differentially methylated genes; LASSO, least absolute
shrinkage and selection operator; AUC, area under the curve; GO,
Gene Ontology; BP, biological process; MF, molecular function; CC,
cellular component; GSEA, Gene Set Enrichment Analysis; CpGs, 5′-C-
phosphate-G-3′; HIST1H4L, H4 clustered histone 13; CDC42EP3, CDC42
effector protein 3; KIT, receptor tyrosine kinase; GNLY, Granulysin;
SLC22A1, solute carrier family 22 member 1; GCM1, glial cells missing
transcription factor 1; INO80B, INO80 complex subunit B; ARHGAP26,
Rho GTPase activating protein 26; KEGG, Kyoto Encyclopedia of Genes
and Genomes.

Genetic variants and epigenetic changes play crucial
roles in the initiation and progression of PD by through
affecting endosomal, lysosomal, and mitochondrial function
in pathophysiology (Dutta et al., 2021). The altered epigenetic
modification or abnormal expression of PD-related genes,
such as SNCA, LRRK2, MAPT, and GBA, have been
reported to be closely related to PD (Bloem et al., 2021).
Abnormal deposition of SNCA/α-synuclein is verified
to be associated with the pathogenesis of PD (Ho et al.,
2020). And all SNCA mutations were associated with the
earlier age of onset and faster disease progression (Jowaed
et al., 2010). Furthermore, hypomethylation of the SNCA
promotor region has been reported in substantia nigra
of PD patients (Matsumoto et al., 2010). The mutations
in LRRK2 associated with increased kinase activity are
the most common cause of autosomal dominant PD
(Tolosa et al., 2020). Genome-wide association studies
have implicated MAPT is a major susceptibility locus
for idiopathic PD (Mata et al., 2014). Furthermore,
the hypermethylation of the MAPT is neuroprotective
by reducing MAPT expression (Coupland et al., 2014).
Variants in GBA, encoding the enzyme glucocerebrosidase,
are closely related to Lewy body diseases including
PD and Lewy body dementia (Blauwendraat et al.,
2020). Epigenomic changes associated with other genes
including hypomethylation of NPAS2 and CYP2E1, and
hypermethylation of PGC1-α, have also been implicated in PD
(Lin et al., 2012).

Epigenetic mechanism, particularly DNA methylation,
plays an important role in the molecular etiology of
neurodegenerative diseases, including PD. DNA methylation
in PD-related genes have been widely studied to explore the
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mechanisms in disease progression and identify potential
biomarkers for early diagnosis (Kaut et al., 2012). Initial studies
have explored the correlations between the regulated genes
and DNA methylation in PD brain tissue (Nalls et al., 2014;
Young et al., 2019). However, recent studies have described the
concordant DNA methylation patterns between brain tissue
and blood sample (Masliah et al., 2013; Henderson-Smith
et al., 2019). While the blood sample is less invasive and easier
to obtain, the blood-based biomarkers confer a number of
advantages compared with the tissue-based ones (Chahine
et al., 2014). And, the previous researches have revealed that
some reliable biomarkers for PD also exist in blood (Su et al.,
2015). Here, we conducted an integrative analysis of gene
expression data and DNA methylation data based on the
5′-C-phosphate-G-3′ (CpGs) in blood between PD patients
and healthy controls to identify the molecules as well as
their epigenetic changes underlying PD and constructed two
diagnostic signatures to distinguish the patients with PD from
healthy controls.

Materials and methods

Data collection and procession

The DNA methylation dataset GSE145361 (1,001 PD
patients and 973 health controls), and the gene expression
dataset GSE99039 (205 PD patients and 233 normal blood
samples) were downloaded from Gene Expression Omnibus
(GEO) database1 on May 10, 2022. In addition, the blood
DNA methylation dataset GSE111629 (335 PD patients and 237
normal blood samples), and the blood gene expression dataset of
GSE6613 with 50 PD patients and 23 healthy controls were also
downloaded from GEO to validate the accuracy and specificity
of our signature. All the above data was downloaded using R
package “GEOquery” and then preprocessed using the method
described in the previous study (Henderson-Smith et al., 2019;
Wang et al., 2019).

Differential methylation and expression
analysis

The differential methylation and expression analyses were
performed using the method previously described (Wang et al.,
2019). The gene methylation level in this study was measured
according to CpGs. The differentially methylated genes (DMGs)
between PD patients and normal controls in the GSE145361
dataset were identified with the thresholds of adjusted p-value

1 http://www.ncbi.nlm.nih.gov/geo

<0.001 and fold-change >1 using R package “ChAMP.” We
identified the differentially expressed genes (DEGs) between PD
patients and normal controls in the GSE99039 dataset using R
package “limma” with the cutoff value of adjusted p < 0.05 and
fold-change >1.

Construction of the Parkinson’s
disease diagnostic signature based on
overlapped genes

After the overlapping analysis based on the DMGs and
DEGs of the PD patients compared to the normal controls,
we constructed the diagnostic signature through applying
least absolute shrinkage and selection operator (LASSO) Cox
regression analysis and stepwise logistics regression to these
overlapped genes of DMGs and DEGs to eliminate the genes
highly correlated with each other to avoid overfitting. Finally,
the signature was constructed with eight DNA methylation-
driven genes and their coefficients.

The receiver operating characteristic (ROC) curves were
drawn and area under the curve (AUC) was used to measure the
performance of the gene signature in the diagnosis of PD using
R package “pROC.”

Functional enrichment analysis of
differentially expressed DNA
methylated genes

In order to explore the potential molecular mechanism of
the differentially expressed DNA methylation-driven genes, we
performed Gene ontology (GO) analysis under three terms,
including biological process (BP), molecular function (MF),
and cellular component (CC), using R package “clusterProfiler”
(Chen et al., 2017; Wang et al., 2019; Kanehisa et al.,
2021). A adjust p value <0.05 was set as the cutoffs of
different parameters.

Construction of the Parkinson’s
disease diagnostic signature based on
the DNA methylation sites

The 77 DNA methylation sites of the eight signature
genes developed in GSE99039 were used as candidate sites
to construct the signature. Then, in the GSE145361 dataset,
LASSO analysis was carried out in the candidate sites with
the R package ‘glmnet’. Finally, the signature was constructed
with eight methylation sites and their coefficients. We used the
AUCs of ROC curves to measure the quality of the methylation
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site signature in the diagnosis of PD based on the R package
“pROC.”

Validation of the gene expression and
methylation site signatures in the
testing datasets

To further validate the accuracy and specificity of the gene
expression and methylation site signatures, we calculated the
risk score of each sample based on the signature and used the
AUCs of ROC curves to measure the diagnostic value in the
GSE6613 and GSE111629 datasets.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed to
analyze the enrichment of datasets between high- and low-
expression groups of hub genes, according to the gene sets files
from the KEGG databases. A adjust P value <0.05 was set as the
cutoffs of different parameters.

Statistical analysis

The R software version 3.6.1 and R Studio software were
used to perform the statistical analyses and figures output.
The false discovery rate (FDR) was used to adjust the p-value
obtained by the Mann–WhitneyU test. Adjusted p-value <0.001
were set as cutoff criteria for DMGs, and adjusted p-value <0.05
as threshold for DEGs. Adjust P value <0.05 was set as a cutoff
value to identify significant biological pathways in GO and
GESA analysis. Student’s t tests were used to determine statistical
significance among two groups.

Results

Identification of the differentially
methylated genes

To identify the DMGs based on the whole blood sample
between PD patients and normal controls, GSE145361 dataset
with a large sample size (1,001 PD patients and 973
health controls) was downloaded from the GEO database.
We obtained a total of 9,596 DMGs, in which 5,164
DMGs are hypo-methylated and 4,432 DMGs are hyper-
methylated (Figure 1A).

Distribution of hypo- and hyper-methylated sites in
genomic regions relative to transcription start sites (TSSs) and
CpG islands are shown in Figures 1B–E, respectively. The
hyper-methylated CpGs notably tended to be located in gene

bodies (60.3%) and CpGs open sea (59.5%). While, hypo-
methylated CpGs notably tended to be located in the promoters
(TSS1500, TSS200, 5UTR, and 1stExon) (59.0%) and CpG
islands (37.0%).

Identification of the differentially
expressed genes

Next, we carried out a differential expression analysis
to identify genes altered in PD patients. A linear model
was applied to determine the DEGs based on the whole
blood sample of 205 PD patients compared to 233 normal
controls from the GSE99039 dataset. We identified 1,058
significant DEGs, including 129 downregulated genes and
929 upregulated genes (Figure 2A). Furthermore, we cross-
linked DMGs and DEGs to determine 237 differentially
methylation-driven genes (Figure 2B and Supplementary
Table 1). To evaluate the correlation between expression levels
and methylation levels of the overlapped genes, we assigned
these 237 overlapped genes to four groups: hypermethylated
and upregulated gene group (n = 140, Supplementary
Table 2), hypermethylated and downregulated gene group
(n = 18, Supplementary Table 3), hypomethylated and
upregulated gene group (n = 202, Supplementary Table 4),
and hypomethylated and downregulated gene group (n = 22,
Supplementary Table 5). As shown in Figures 2C–F, the hypo-
up genes were notably more than other group genes, which
suggested that hypomethylation might be the key epigenetic
modification involved in PD.

Functional enrichment analysis of
differentially expressed DNA
methylation-driven genes

To further explore the underlying mechanism of
differentially expressed DNA methylation-driven genes,
we performed GO analysis based on these 237 overlapped
genes. The GO analysis revealed these overlapped genes
were primarily enriched in BP terms, including neutrophil
activation involved in immune response, neutrophil activation,
positive regulation of cytokine production, neutrophil
mediated immunity, antigen processing and presentation
of endogenous antigen (Figure 3A). CC terms include
integral component of lumenal side of endoplasmic reticulum
membrane, secretory granule membrane, lumenal side of
membrane, MHC protein complex, phagocytic vesicle, and
cell leading edge (Figure 3B). MF terms include peptide
antigen binding, calcium-dependent protein serine/threonine
kinase activity, cytokine binding, hydrolase activity,
calcium-dependent protein binding, and GTPase regulator
activity (Figure 3C).
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FIGURE 1

DMGs in PD patients. (A) Bar plot for DMGs in PD patients and healthy controls. (B,C) Distribution of DNA methylation changes in all genomic
compartments. (D,E) Distribution of DNA methylation changes in varying CpG content and neighborhood context.

Construction and validation of the
diagnostic signature based on eight
methylation-driven genes

Least absolute shrinkage and selection operator regression
and stepwise logistic regression analysis were applied to
these 237 overlapped genes model to determine the most
accurate predictive methylation-driven genes. Finally, eight

methylation-driven genes HIST1H4L (H4 Clustered Histone
13), CDC42EP3 (CDC42 Effector Protein 3), KIT (receptor
tyrosine kinase), GNLY (Granulysin), SLC22A1 (Solute
Carrier Family 22 Member 1), GCM1 (Glial Cells Missing
Transcription Factor 1), INO80B (INO80 Complex Subunit
B), and ARHGAP26 (Rho GTPase Activating Protein 26) were
identified. Subsequently, the signature was constructed based on
the expression level and the relative coefficient of each signature
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FIGURE 2

DEGs in PD patients. (A) Bar plot for DEGs in PD patients and healthy controls. (B–F) Venn diagram of DMGs and DEGs.

gene (Figures 4A–E). The risk scoring formula was as following:
risk score = (0.796331667 × ARHGAP26) + (0.772781522
× INO80B) + (0.613379779 × GCM1) + (0.608204371 ×
SLC22A1) + (0.602134411 × GNLY) + (0.524810413 × KIT) +
(0.408771389× CDC42EP3) + (−0.82230679×HIST1H4L).

To evaluate the performance of the gene expression
signature in the diagnosis of PD, the ROC curve was plotted
and AUC achieved 0.84 when applied to the training dataset
GSE99039 (Figure 4F). The AUC was 0.76 when applied to the
other independent PD-associated blood gene expression dataset

GSE6613 (Figure 4G), which demonstrated that the signature
had accuracy predictive power for PD patients.

Gene set enrichment analysis of the
high- and low-risk groups based on
the diagnostic signature

To explore the potential biological pathways and processes
involved in the molecular heterogeneity, GSEA was carried
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FIGURE 3

The functional analysis of the methylation-driven genes. (A) Top 10 of biological process enrichment. (B) Top 10 of cellular component
enrichment. (C) Top 10 of molecular function enrichment.

out between the two risk groups in the training dataset
GSE99039. As shown in Figure 5, the top KEGG (Kyoto
Encyclopedia of Genes and Genomes) signaling pathways

enriched in the high-risk group were associated with PD,
neurotrophic signaling pathway, ubiquitin mediated proteolysis,
B cell receptor signaling pathway, Toll like receptor signaling
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FIGURE 4

Construction of the diagnostic signature based on methylation-driven genes. (A,B) LASSO regression was performed to calculate the
coefficients (A) and minimum criteria (B). (C) Coefficients of 35 methylation-driven genes selected by LASSO regression. (D) Coefficients of
eight methylation-driven genes in the signature selected by the stepwise logistic regression analysis. (E) Spearman correlation analysis of the
eight genes. (F) ROC curve of the signature in the training set GSE99039. (G) ROC curve of the signature in the testing set GSE6613.
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FIGURE 5

GSEA of the high- and low-risk group based on the diagnostic signature. (A–I) The top KEGG signaling pathways in high-risk group.

pathway, natural killer cell mediated cytotoxicity, lysosome,
endocytosis, chemokine signaling pathway. These results
provided new insights into pathogenesis and prevention
for PD patients.

Construction and validation of the
diagnostic signature based on DNA
methylation sites

In the GSE145361 dataset, 77 methylation-altered CpGs
associated with the eight methylation-driven genes in the
gene expression signature were used in the LASSO regression

model. Then, 33 CpGs obtained were further analyzed in the
stepwise logistic regression model. Finally, eight CpGs were
acquired to construct the signature (Figures 6A–D). The risk
scoring formula was as following: risk score = (−32.323837
× cg07023902) + (−5.3875735 × cg05469695) + (4.1370905
× cg12307314) + (3.0167468 × cg13286582) + (2.6430882 ×
cg01204911) + (2.4635395 × cg27579771) + (2.0870986 ×
cg10087973) + (1.761926332× cg04188241).

The AUC of ROC curve to distinguish the PD patients from
the health controls achieved 0.8 when applied to the training
dataset GSE145361 (Figure 6E). In addition, we also validated
the accuracy of the CpGs signature in the other independent
PD-associated blood DNA methylation dataset. The AUC of
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FIGURE 6

Construction and validation of the diagnostic signature based on DNA methylation sites. (A–C) LASSO regression was performed to calculate
the (A,B) minimum criteria and (C) coefficients. (D) Coefficients of eight DNA methylation sites in the signature selected by the stepwise logistic
regression analysis. (E,F) ROC curves of the signature in the training set GSE145361 and testing set GSE111629.
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ROC curve achieved 0.73 when applied to GSE111629 dataset
(Figure 6F), which indicated that the CpG signature was also
efficient for PD.

Discussion

A growing number of aberrant genome or epigenome
mechanisms are associated with carcinogenesis and
progression. However, the specific mechanism of methylation
in neurodegenerative disease still remains poorly described.
The diagnosis of PD patients mainly relies on the clinical
symptoms, which hinders detection of the early stages of the
disease that often had the greatest therapeutic effect. It is of
great value to explore potential methylated blood biomarkers
for the diagnosis of PD patients.

Omics approaches play increasingly important roles in the
management of disease (Amariuta et al., 2020). Biomarkers
commonly used as part of routine clinical practice can
complement clinical examination and contribute to the
management of various diseases. The advance of the new
sequencing approach and access to some huge genetic and
epigenetic databases including TCGA and GEO, are providing
potential biomarkers options and the focus is shifting to a
combination of several or more biomarkers, rather than a
single marker that researchers have concentrated on in the
past (Conway and Wong, 2020; Vincent et al., 2020; Bian
et al., 2022). In this study, we conducted an integrative
analysis of gene expression and DNA methylation data, and
identified the DMGs and DEGs between PD patients and healthy
controls. Furthermore, LASSO regression analysis was carried
out to further construct the methylation-driven gene signature.
Finally, an eight methylation- driven genes risk signature was
developed, and the AUCs in evaluating the predictive accuracy
of the signature were high (0.84 in training dataset, 0.76 in
testing dataset, respectively).

Among the eight methylation-driven signature genes,
ARHGAP26 is a GTPase-activating protein and inhibits the
activity of Rho GTPases to affect tumorigenesis and progression
of various tumors (Zhang et al., 2022). Recently, it was
reported to be significantly associated with neuropsychiatric
diseases and neurodegenerative diseases, including PD (Wang
et al., 2022). SLC22A1 facilitates the transport, distribution,
and elimination of levodopa, which is significantly associated
with the occurrence of adverse events of dopaminergic
treatment in PD (Redenšek et al., 2019). INO80B regulates
trophoblast differentiation and embryonic stem cell self-
renewal, implicating in tumorigenesis, pre-eclampsia, and
avoidant personality disorder (Wang et al., 2014; Oudejans
et al., 2015). GCM1 encodes a DNA-binding protein with a
gcm-motif, which is associated with the epigenetic regulation
of Hes5 transcription by DNA demethylation. Loss of
GCM1 leads to the impaired induction of neural stem

cells (Hitoshi et al., 2011). GNLY, an immune-regulator, has
a close correlation with methylation and expression change,
and has previously been implicated in spontaneous abortions
(Novakovic et al., 2011). Oncogene KIT mediates cellular
responses, such as cell survival, proliferation, and differentiation
(Roskoski, 2018). It was reported that hyper-methylation in
the promoter region of c-KIT proto-oncogene would result
in the down-regulation of gene expression in most cancer
tissues (Huang et al., 2015). CDC42EP3, one of five CDC42
effector proteins, acts as a key regulator of the activities of
CDC42 (Farrugia and Calvo, 2017). Previous studies have
indicated that the bio functional roles of CDC42EP3 in
regulating cell shape change, actomyosin contractility and
pathological fibroblast activation (Farrugia and Calvo, 2016).
Additionally, CDC42EP3 is also associated with the occurrence
and progression of human cancers, such as colorectal cancer
(Feng et al., 2021), ovarian cancer (Yan et al., 2021), and
glioma (Yang et al., 2022). HIST1H4L, known as H4 Clustered
Histone 13 (H4C13), is essential nuclear proteins responsible
for the nucleosome structure of the chromosomal fiber in
eukaryotes. Dysregulation of HIST1H4L may lead to the
alternative histone modifications and aberrant gene expression
and has been identified as a senescence-related gene in lung
adenocarcinoma (Wang et al., 2021; Lin et al., 2022). Overall,
HIST1H4L, CDC42EP3, KIT, GNLY, GCM1, and INO80B
have not been previously elucidated to be involved in PD,
which provides additional insights in the underlying molecular
mechanism of PD.

Despite the data came from distinct samples, and was
obtained using different analytical means, some genes were
overlapped between DEGs and DMGs. Notably, majority of the
overlapped genes were hypomethylated and upregulated, which
demonstrated that the hypomethylation was the key epigenetic
modification associated with PD and hypomethylation of some
PD-related genes result in the upregulation of these genes.
Moreover, dominant methylation-altered regions of the genes
were remarkably different. In addition, some genes had multiple
dominant DNA methylation-altered regions, while others had
a single dominant methylation-altered region. Therefore, to
further explore the clinical value of CpGs in PD, eight significant
dominant methylation-altered CpGs were used to construct a
gene methylation signature. The ROC analyses demonstrated
that the signature also had a superior prediction power for
PD (AUCs of 0.8 in training dataset, and 0.73 in testing
dataset, respectively).

To explore the underlying biological functions and
signaling pathways involved in the signature, GO and
GSEA analyses were performed. The results revealed that
the neutrophil function and the relevant signaling pathway
were significantly enriched in both GO and GSEA analyses.
As the protagonists in chronic inflammation (Soehnlein
et al., 2017), neutrophil activation stimulates the local and
systemic inflammation, promotes proinflammatory cytokines
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induction and causes neuroinflammation (Kanashiro et al.,
2020). Neuroinflammation has been shown to contribute to
the progression of neurodegeneration in PD (Tansey and
Romero-Ramos, 2019; Hirsch and Standaert, 2021). Previous
evidences proved that neutrophil activation played an important
role in various diseases, including cancer (Rosell et al.,
2021), cardiovascular disease (Bonaventura et al., 2019), and
Alzheimer’s disease (Dong et al., 2019). And many studies
demonstrated that, compared with healthy controls, PD patients
had a high neutrophil count, which was consistent to the results
of our study (Ataç Uçar et al., 2017; Muñoz-Delgado et al.,
2021). Our study showed that neutrophil activation could be
an indicator of the inflammatory status and peripheral immune
dysregulation in PD, but whether it is a cause or a consequence
of PD progression remains unclear.

Currently, several biomarkers for PD diagnosis were
available. Caldi et al. identified a miRNA signature in PD
cerebrospinal fluid (Caldi Gomes et al., 2021). Shao et al.
identified a metabolite panel in PD plasma samples (Shao et al.,
2021). In comparison, there are also some strengthens in our
study. First, we constructed the diagnostic signature based on
a dataset with a large sample size. Second, we integrated the
gene expression and DNA methylation data, which is more
stable than a single data form. Third, the signature was based
on the whole blood sample, which could be obtained with a
non-invasive, convenient and easy method. Furthermore, the
signature has a higher accuracy and specificity, and contains
fewer genes, which is more promising for clinical application.

However, there are some limitations should be noticed
in our study. First, this study was performed based on the
public database and was driven by the analysis of available
retrospective data. And, the optimal cutoff value was required to
be defined before clinical application. In addition, our study only
focused on the methylated genes. However, there are many other
epigenetic modifications in disease pathology. It is of great value
to integrate more modifications together. In future study, in vivo
and/or in vitro experiments based on the constructed mouse
model and a large number of patient blood samples are planned
to validate the identified signature and elucidate the underlying
mechanisms in PD.

Conclusion

In conclusion, we performed an integrated analysis of the
gene expression data and DNA methylation data, constructed
a methylation-driven genes signature and a methylation-
altered CpGs signature to distinguish PD patients from healthy
controls. All of them have a good prediction power for PD
and provide a new insight into personalized diagnostic and
therapeutic strategies for PD.
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