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ABSTRACT: We present the active learning configuration
interaction (ALCI) method for multiconfigurational calculations
based on large active spaces. ALCI leverages the use of an active
learning procedure to find important electronic configurations
among the full configurational space generated within an active
space. We tested it for the calculation of singlet—singlet excited
states of acenes and pyrene using different machine learning
algorithms. The ALCI method yields excitation energies within
0.2—0.3 eV from those obtained by traditional complete active-
space configuration interaction (CASCI) calculations (affordable
for active spaces up to 16 electrons in 16 orbitals) by including
only a small fraction of the CASCI configuration space in the
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calculations. For larger active spaces (we tested up to 26 electrons in 26 orbitals), not affordable with traditional CI methods, ALCI
captures the trends of experimental excitation energies. Overall, ALCI provides satisfactory approximations to large active-space
wave functions with up to 10 orders of magnitude fewer determinants for the systems presented here. These ALCI wave functions
are promising and affordable starting points for the subsequent second-order perturbation theory or pair-density functional theory

calculations.

1. INTRODUCTION

Electronic excited states of organic materials play a key role in
photovoltaics,'  light-emitting diodes,”> and photochemis-
try.°”® The computational analysis of excited states of organic
materials such as hydrocarbon molecules (e.g, aromatic
molecules and polyenes)” and porous organic polymers (e.g.,
conjugated organic polymers, hyper-cross-linked polymers, and
covalent organic frameworks)'”"'" is important to rationalize
the experimental spectroscopic results and make predictions.
In this regard, the most widely used methods for ab initio
computations are density functional theory (DFT) and time-
dependent DFT (TDDFT)."*”"> However, a major limitation
of DFT is that it may provide inaccurate results for phenomena
where strong correlation ylays an important role,'® such as
bond-breaking processes,”'® spin states energetics,'”” "' and
excited-state energetics.zz’23 Strong electronic correlation,
sometimes referred to as static correlation, arises when
different electronic states are close in energy. Wave functions
of these energetically close electronic states can be correctly
described as linear combinations of several Slater determinants
(SDs) or configuration state functions (CSFs) with a non-
negligible contribution.”*** The comglete active-space self-
consistent field (CASSCF) method”® is widely used to
generate reference wave functions for strongly correlated
systems. In CASSCF, an active space consisting of a given
number of orbitals and electrons is chosen, and a full
configuration interaction (FCI) is performed within the active
© 2021 The Authors. Published by
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space, together with the orbital optimization. Usually, the spin
and spatial symmetries of the wave function are specified.
The number of SDs or CSFs scales exponentially with the
size of the active space.”” The maximum number of electrons
and orbitals that one can afford in modern computers is about
16 electronic and 16 orbitals for singlet state calculations,
which corresponds to 10% to 10° SDs. Few examples of larger
active spaces, like, for example, 22 electrons in 22 orbitals,
using massive parallelization have been reported.”® Some
approximations to reduce the number of configurations have
been developed, including the restricted active-space SCF
(RASSCEF),” the generalized active-space SCF (GASSCF),*
and the localized active-space SCF (LASSCF).”" In RASSCF
and GASSCEF, subspaces of electrons and orbitals are chosen,
and the maximum number of electronic excitations between
subspaces is restricted to the number that the user decides. In
LASSCF, the active space is partitioned in multiple active
subspaces, which are localized on spatially separated parts of
the molecule. The FCI wave function within each subspace is
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obtained independently from the other active subspaces, and
the total wave function is expressed as a product of these
unentangled wave functions. Although these approaches allow
the choice of extremely flexible active spaces, they also require
an expertise in the choice of subspaces and excitation levels
between different subspaces. It is also possible to only optimize
the configuration interaction coeflicients and not the orbital
coeficients, resulting in a complete active-space configuration
interaction (CASCI) calculation and the analogous GASCI
and LASCI. The CASCI method, however, still involves an
FCI calculation within the chosen active space.

To reduce the number of SDs or CSFs, one can perform a
“selected CI (SCI)” calculation, in which many nonimportant
configurations are not included in the wave function. In this
case, the challenge is to identify the important configurations.
Recently, SCI methods have been revisited for the
computation of properties of strongly correlated systems.*>
SCI methods aim to construct a compact wave function
iteratively, including only a small number of determinants or
configurations, to approximate the properties of the FCI wave
function. One flavor of SCI is to use perturbation theory to
select important configurations, like in the configuration
interaction using an iterative perturbative selection
(CIPSI).”” In the adaptive sampling CI approach,”®*” the
single and double excitations are generated only from
configurations with the highest coefficients, and then they
are selected using the perturbation theory. This method has
been recently employed in combination with very large active
spaces, up to (52, 520).*" In the heat-bath CI (HCI) method,
an approximation to the full expression of first-order
perturbation is used to select configurations.”" In Monte
Carlo configuration interaction (MccCI),>* configurations
are stochastically chosen and only those with a coefficient
higher than a certain threshold are retained in the wave
function.

In recent years, machine learning (ML) has been
increasingly used in quantum chemistry,” " to accelerate
coupled-cluster calculations,”** excited-state computations™
and predict quantum-mechanical wave functions,”® to only
mention a few works. In particular, an active learning (AL)
approach™ has been used to minimize the amount of training
data, thus reducing the overall training cost. In AL, the
performance of a supervised ML model can be maximized with
fewer labeled data if the ML model can choose data for the
next training step from those learned in previous training steps.
AL schemes have been successfully integrated into quantum
chemistry, in combination with molecular dynamics®*~>* and
for materials discovery,” especially when unlabeled data (e.g.,
new atomic configurations or new crystal structures) can be
easily generated, while labeling of the data is difficult and time
consuming (e.g., obtaining quantum-mechanical (QM) proper-
ties via ab initio calculations).

Recently, an active ML approach has been used to identify
important configurations in SCI ground-state calculations of
small molecules. In the method called machine learning
configuration interaction (MLCI),” an artificial neural net-
work (ANN) regression model has been used to learn on the
fly to choose important configurations in an iterative SCI
scheme. This method significantly reduces the number of
iterations to converge for the selection of configurations and
requires less time compared to other approaches such as CIPSI
and MCCI. MLCI recovered up to 98% of the FCI correlation
energy for some multireference problems, like the computation
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of the dissociation of CO and H,0O. In the following paper,
MLCI was used to compute potential energy curves for N,,
CO, and H,0, and the results were of FCI quality.”’ Another
example is an ML-based SCI method called Chembot, which
utilizes a support vector machine (SVM) with a Gaussian
radial basis function (RBF) kernel’” Unlike the MLCI
approach, the Chembot method adopted an SVM model to
directly classify important and not important configurations to
iteratively construct the wave function. By developing features
using charge density matrix and configuration energy and
inclusion of heuristics for better training data selection,
Chembot can reach chemical accuracy and near exactness in
total energy calculations for H,, H,C, and H,O. Both MLCI
and Chembot have focused on the ground state of small
molecules. In different approaches, ANNs have been employed
to determine the relative weights of configurations for
computing the ground state of one- and two-dimensional
Heisenberg spin chains without repeated SCI calculations,*®
and reinforcement learning techniques have been tested to
calculate the ground-state energies for dissociation curves of
CO,&E\TZ, and an Hg chain and larger hydrogen rings up to
H,,

Inspired by the MLCI approach, we developed an active ML
protocol to find important configurations to perform CASCI
calculations with large active spaces. We apply the method to
compute the lowest singlet—singlet excitation of several
polycyclic aromatic hydrocarbons (PAH), as shown in Figure
1. We focus on linear PAH, going from naphthalene to

n=2 Naphthalene (10e, 100)
n=3 Anthracene (14e, 140)
n=4 Tetracene (18e, 180)
n=5 Pentacene (22e, 220)
n-1 n=6 Hexacene (26e, 260)

Figure 1. Molecular structure of polyacenes and pyrene. n is the
number of fused benzene rings. (x, y) is the active-space size where x
is the number of active electrons (herein, the number of 7 electrons)
and y is the number of active orbitals (i.e., the number of 7 bonding
and 7* antibonding orbitals).

Pyrene (16e, 160)

hexacene, and on pyrene, as an example of a nonlinear PAH.
These molecules are chosen because it is known that their first
singlet excited state acquires significant multireference
character as the size increases, resulting in interesting
electronic structure and properties as promising organic
optoelectronic materials.> ™%

The paper is structured as follows: in Section 2, we describe
the active learning CI (ALCI) protocol, the protocol of the
quantum-mechanical calculations, and the machine learning
methodologies. In Section 3, we describe the ALCI results; in
Section 4, we offer our conclusions and a perspective about the
use of the ALCI method.

2. ACTIVE LEARNING CONFIGURATION
INTERACTION PROTOCOL
To find important configurations within the full configuration

space spanned by the active space, we devised an active
learning CI protocol. A scheme of the protocol is provided,

https://doi.org/10.1021/acs.jctc.1c00769
J. Chem. Theory Comput. 2021, 17, 7518—7530


https://pubs.acs.org/doi/10.1021/acs.jctc.1c00769?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00769?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00769?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00769?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00769?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Labeled data pool
(important & unimportant
configurations)

Generate excited
configurations from only
important configurations

Unlabeled data pool
(excited configurations)

< configuration, label >

™

Training data\ ML model "est data
1 5

4

GAMESS

Oracle (Labeler)

Selected Cl calculation:
compute configuration coefficients
and the excitation energy

< configuration, ? >

\Predictions
Queries

(ML predicted important
configurations)

*Checking excitation energy convergence for the last three consecutive
iterations within a user-defined energy difference value

Figure 2. Active learning scheme for finding important configurations in iterative selected CI calculations.

Geometry optimization

Obtain guess orbitals
(via a Hartree-Fock calculation or other methods)

n=2) calculation

i

i.e., all T and 1* orbitals)

Classify important and unimportant configurations
(important; Cl coefficients >= a user-defined threshold, e.g., 0.01), [«
and update the labeled data pool if available

¥

Generate excited configurations only from the important
configurations, then add them to the unlabeled data pool

¥

and test sets

from the labeled and unIabe%ed data pools, respectively

¥

Train an ML model and then use the trained ML model to classify
which unlabeled configurations are expected to be important

v

Perform a selected Cl calculation with the important configurations
identified in the previous iteration and configurations predicted
to be important by the ML model

v If excitation E converged

Perform a selected Cl calculation with the important configurations

identified through the iterations

C
R
©
N
g !
c
- Perform a RASCI
for a selected active space
c
o "
= Update trainin
ol
c
R
©
£
E
8 =

Figure 3. Workflow of the active learning configuration interaction (ALCI) protocol.

which focuses on the “active learning” idea first and then more
details on how to implement the scheme are provided.

As illustrated in Figure 2, our ALCI protocol uses an
iterative workflow based on a pool-based active learning
scheme that separates configurations into a labeled and
unlabeled data pool. An oracle (i.e., the labeler that is an
external general CI program, the GENCI program68 in the
general atomic and molecular electronic structure system
(GAMESS) package69’70) is used for performing multi-
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configurational calculations with arbitrary user-specified
configurations (i.e., SCI calculations) to label configurations
into unimportant (label “0”) and important (label “1”), and
then the configurations and their labels are saved in a labeled
data pool. During the iterative procedure, a label for a
configuration in the labeled data pool can be changed
depending on the outcome of the SCI calculation. Unlabeled
data are produced by generating excited configurations from
only important configurations, which is the same approach as

https://doi.org/10.1021/acs.jctc.1c00769
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used in the adaptive sampling CI method®*** (adopted in this
work for its simplicity and proven efficiency to explore the FCI
space) and then added to the unlabeled data pool after
removing any duplicates of the original important config-
urations. A subset of data from the labeled data pool is utilized
for training an ML model, and then the trained ML model is
used to predict if the generated excited configurations in the
unlabeled data pool are important or not. Queries (ie.,
unlabeled configurations to be labeled by the oracle) are
selected from the unlabeled data pool based on ML
predictions. The selected queries are labeled with the use of
GAMESS, ie, we verify whether the ML predictions are
accurate or not with the use of the oracle. We repeat this cycle
to update data pools and generate excited configurations
iteratively until the excitation energy is converged within a
user-defined energy difference (0.01 eV is used in this work).
This means that our approach relies on the variational
principle to test the quality of our solution.

The detailed workflow of the active learning CI protocol
controlled via an in-house Python code integrated with the
GENCI program in the GAMESS package is shown in Figure
3. The protocol is divided into three steps: initialization,
iteration, and termination. In the initialization step, one
obtains the initial data to start the iterative process. For a given
molecule, the geometry optimization is performed using the
Gaussian09 software,”’ employing the MO06-L’> density
functional and the def2-TZVP basis set.”>”* An ultrafine grid
is used for numerical integration. We then start the ALCI
protocol using the GAMESS (US) software®””® with the cc-
pVDZ basis set”> and a predefined active space (in this work,
the  and 7* orbitals of the acenes and pyrene). The procedure
is set up to use Hartree—Fock (HF) guess orbitals, but
different guesses can in principle be used. A restricted active-
space CI calculation including only single and double
excitations from HF (referred to as RASCI (n = 2)) is
performed to produce the initial training data.

The second step (i.e., the iteration step) consists of the
iterative scheme to identify only important configurations
within the FCI space corresponding to the given active space.
To start with, from the SCI calculation, configurations from
outputs produced at the previous iteration (or the RASCI (n =
2) in the initialization step for the first iteration cycle) are
extracted and then labelled either as important or unimportant
based on a coefficient threshold (herein, 0.01 or 0.005). If the
configuration coefficient is higher than or equal to the
threshold, then the configuration is labeled as important,
otherwise as unimportant. The labeled configurations are used
to update the labeled data pool (i.e., add new configurations
and/or update labels if labels of any existing configurations in
the pool are changed). Next, for expanding the sub-CI space to
search further important configurations through the following
SCI calculation, excited configurations are generated up to a
user-specified maximum level of excitations only from the
important configurations previously identified and then added
to the unlabeled data pool. After that, training and test data
sets are constructed by sampling from the labeled and
unlabeled data pools, respectively. Since the majority of the
configurations will be unimportant, the training data set will
most likely be highly imbalanced if naive random sampling is
adopted. To prevent this, a random undersampling scheme is
adopted to sample the same number of unimportant
configurations randomly compared to the important config-
urations. Noted that, however, the undersampling method is
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most likely going to discard a large amount of data in the
majority class (i.e., unimportant conﬁguration), resulting in a
deterioration of classifier performance.”® This is due to the loss
of data that can be important to learn the decision boundary
between the minority and majority instances. Alternatively, one
could utilize different approaches including oversampling,”’
ensemble learning,78 and thresholding79 to name a few.

A binary classification machine learning model is adopted to
predict whether a given configuration is important or not. For
featurization of a configuration, an array that contains the
active orbitals occupation numbers (either 2, 1, or 0) divided
by 2 is used (see the Supporting Information, Section S1). It
should be noted that the “configurations” in this work indicate
molecular orbital occupation numbers, not configuration state
functions (CSFs). In principle, one could utilize determinants
or CSFs as features, but we adopted a simple “configuration”
concept for simplicity and minimizing feature dimensions. The
length of the array is therefore equal to the number of orbitals
in the active space. Noteworthy, we do not have to consider
the electron spin in the featurization scheme, as the SCI
calculation input requires only the specification of the
occupation numbers (without spin) for each configuration,
and the GAMESS program then generates all possible spin
combinations arising from the specified configurations.
Furthermore, no symmetry of the wave function is currently
used in the calculations. However, in principle symmetry could
be included. Six different ML algorithms are employed to
develop a binary classifier: Kernel ridge regression-based
classifier (KRC),” k-nearest neighbors (KNN),”' Gaussian
processes (GP),” random forest (RF),*’ gradient boosting
decision tree (eXtreme Gradient Boosting, XGBoost),* and
artificial neural networks (ANNs).*> KNN, GP, and RF
classifiers are used as implemented in the scikit-learn
package,®® while KRC is adopted by modifying the kernel
ridge module in the scikit-learn package since the module
supports only building a regressor model (SI, Section S2). The
open-source gradient boosting Python library XGboost®" is
used for the gradient boosting decision tree algorithm. ANN
models with three hidden layers are adopted using the skorch
library®” with PyTorch®® as the backend. For each iteration,
hyperparameter tuning is newly performed to maximize the
ML model performance (herein, the F1 score is used as a
scoring method) using the HyperOpt,*” a Bayesian optimiza-
tion Python library, with 10-fold cross-validation (CV) except
for ANNs where 5-CV is used considering expensive training
cost. Further details regarding the ML model training and
hyperparameter tuning are available in the Supporting
Information (Section S2).

The trained ML model is then employed to classify
provisional important configurations from the test set that
should be labeled using the GENCI program in the GAMESS
package. An SCI calculation including all of the important
configurations plus some (or all) important configurations
predicted by the ML model (i.e., queries) is performed to
update important configurations and compute the excitation
energy. To reduce the computational cost, the number of the
ML-predicted important configurations added for the SCI
calculation is limited by a user-specified number. If the
specified number is smaller than the number of training data in
the previous step, the number of added ML-predicted
configurations is set to the specified value, otherwise it is set
to the number of training data. If the computed excitation
energy is not converged, the second step is repeated until the

https://doi.org/10.1021/acs.jctc.1c00769
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Figure S. ALCI protocol convergences in terms of excitation energy depending on the use of class probability for query priority sampling for
naphthalene, anthracene, and tetracene. Three independent protocol calculations (as indicated with different marker types) were performed for
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excitation energy is converged. The calculation is converged
when the excitation energy changes by less than 0.01 eV for
three consecutive iterations. In the termination step, one
additional SCI calculation is performed to obtain the final
excitation energy value with all of the important configurations
previously identified.

3. RESULTS AND DISCUSSION

3.1. Sensitivity to Iteration Parameters. The following
iteration parameters were tested to check the convergence of
the ALCI calculations (in the parentheses, the baseline values
for each parameter are reported): (i) maximum number of
iterations for each SCI calculation (3, details are available in
the Supporting Information (SI), Section S3.1), (ii) maximum
sampling number of queries (2000, see the SI, Section S3.2),
(iii) maximum level of excitations for each iteration (1), (iv)
query sampling method (using the class probability for
sampling priority), and (v) CI coefficient threshold for
important configurations (0.01). Three independent calcu-
lations following the above protocol were conducted
considering the stochastic nature of the ML model. For this
reason, in the following, we will report the average number of
iterations and average time of these three independent
calculations. Naphthalene, anthracene, and tetracene were
used as test systems, and a classifier based on the kernel ridge
regression was employed to speed up the sensitivity test.
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As mentioned in Section 2, unlabeled data are created as
excited configurations from the important configurations
identified via an SCI calculation. In this step, one has to
specify the maximum level of excitation (e.g,, singles, doubles,
triples, or higher excitations) from the reference configurations
like in multireference CI (MRCI) methods.”® Generating
higher excitations (for example, quadruple and quintuple
excitations) from a large number of reference configurations is
time and memory intensive, as in the MRCI methods.”
Therefore, we have tested two ways: Generate (1) only single
excitations and (2) single and double excitations. Note that our
configuration generation method does not limit the CI
expansion by truncating it to a specific excitation level like
truncated CI methods, so one automatically generates higher-
level excitations, as products of lower-level excitations, like in
the coupled-cluster theory. As shown in Figure 4, generating
both single and double excitations has no noticeable
advantages over generating only single excitations. For
naphthalene, including up to double excitations converges
faster than including only single excitations (i.e., average 7.3 vs
9.0 iterations). However, for larger systems such as anthracene
and tetracene, the higher excitations resulted in a similar or
slower convergence (on average, 13.3 and 16.3 iterations, using
single and double excitations, and 11.3 and 15.0 iterations,
using only single excitations for anthracene and tetracene,
respectively) though the converged excitation energies are
similar. This suggests that single excitations from important

https://doi.org/10.1021/acs.jctc.1c00769
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Table 1. ALCI Protocol Results for Tetracene with Different ML Algorithms®

ML average number of number of important excitation
algorithm iterations configurations energy (eV)
ANN 14.8 1625 3.88
GP 154 1642 3.96
XGBoost 15.6 1753 3.87
KRC 15.6 1749 3.90
RF 21.2 1781 3.88
KNN 28.7 1724 391

wall time (hh:mm:ss)”

ML trainingb ML predictions SCI cal. total
07:03:12 (83.21%)  00:00:11 (0.04%)  01:24:45 (16.66%)  08:28:34
03:21:24 (61.00%)  00:04:48 (1.46%)  02:03:28 (37.39%)  05:30:10
00:07:24 (4.08%) 00:00:06 (0.05%)  02:53:15 (95.61%)  03:01:12
00:25:03 (9.24%) 00:00:34 (0.21%)  04:05:05 (90.38%)  04:31:11
00:17:48 (6.33%) 00:00:06 (0.03%)  04:22:34 (93.39%)  04:41:09
00:07:20 (1.93%) 00:01:22 (0.36%)  06:09:34 (97.51%)  06:19:01

“Results are average values of 10 independent calculations for each model that are performed to obtain better statistics. bwall timings measure
average elapsed time for both the iteration and termination steps of the ALCI protocol, not including the initialization step (i.e., DFT optimization,
HF, and RASCI (n = 2) calculations). To compare the computational cost, the number of CPU cores for the calculations was limited to S cores
(Intel i9-10980XE 3.00 GHz) if ML model training/predictions can be parallelized (i.e., for KNN, RF, and XGBoost). For ANN, a GPU (NVIDIA
Quadro RTX 8000) was used. GP and KRC models were trained and used with one CPU core (Intel i9-10980XE 3.00 GHz) due to the limitation
of the software. SCI calculations were performed on a single CPU core due to the limitation of the GENCI program in the GAMESS package. “Wall
timing for the ML training step includes the featurization of raw data (i.e., configurations), 10-fold cross-validation for hyperparameter tuning, and
retraining of an ML model with the tuned hyperparameters using all of the training data. “Total wall time is slightly larger (25—40 s) than a sum of
the ML training, ML predictions, and SCI calculations due to auxiliary processes such as transferring, saving, and loading data, etc.

configurations are sufficient to generate unlabeled config-
urations in the ALCI protocol.

We implemented a unique strategy to efficiently identify
important configurations, which uses class probability (i.e., the
probability of each class) of an ML classifier as an uncertainty
measure to decide which ML-predicted configurations should
be labeled first. In general, an ML classifier predicts not only a
class label (in our problem, important or unimportant) but also
a probability for each class, namely, a real number from 0 to 1,
with the sum of the probabilities being 1. For a binary
classification problem, a class is predicted to be positive or
negative if the class probability is larger or smaller, respectively,
than a decision threshold, which we set to 0.5 unless otherwise
specified. For example, if a class probability for a given input
(e.g., an unlabeled configuration) is predicted to be larger than
0.5, then this class will be positive (e.g, important in our
problem). Configurations with a high-class probability will
most likely be important. It should be noted that a class
probability does not correspond to a CI coeflicient. The class
probability shows the reliability of the ML model classification
predictions (i.e., important or unimportant that is defined by a
CI coefficient threshold) and so it cannot be used as an
important measure for a given configuration. Figure 5 shows
the comparisons of protocol calculations based on using and
not using class probabilities. For naphthalene, both cases show
similar convergence of the protocol calculations, resulting in
the same excitation energy (4.48 eV). However, as the system
size increases, sampling queries based on the class probabilities
outperform random query sampling, requiring a smaller
number of iterations (from 14.3 to 11.3 iterations for
anthracene and from 28 to 15 iterations for tetracene on
average) and producing slightly smaller excitation energies
(from 4.10 to 4.07 eV for anthracene and from 3.90 to 3.86 eV
for tetracene on average).

3.2. Comparison of Different ML Algorithms. Different
ML algorithms including KRC, KNN, GP, RF, XGBoost, and
ANN were tested for the ALCI protocol. Interestingly, the
convergence of the excitation energy in the ALCI protocol is
highly dependent on both the system size and type of the ML
algorithm. For the smallest system, naphthalene, all of the ML
algorithms predicted a similar excitation energy (4.48—4.50
eV). The KRC, KNN, GP, and RF classifiers took about 8—9
ALCI iterations to converge, while XGBoost and ANN
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required about 11 and 13 iterations, respectively (detailed
ALCI results are available in the SI, Section S6.1). This
difference arises since there are not enough data to train the
boosting algorithm and ANN that have many model
parameters and hyperparameters, as demonstrated by low
ML model performance at early iterations for ANN and large
fluctuations in the ML model performance for ANN and
XGBoost (variations of the ML model performance, F1, can be
found in the SI, Figure S10).

As the acene size increases, the performance of the different
ML algorithms changes, affecting the ranking of the algorithms
as far as the number of iterations is concerned (see the SI,
Figure S8 and Table S7). To clearly show this, the
performance of the different ML algorithms for tetracene was
evaluated, in terms of both the number of iterations and
computation time, as listed in Table 1. For the evaluation of
the computational time, five cores (3.00 GHz Intel i9-
10980XE) were used if the ML model development tools
(i-e., scikit-learn and XGBoost) support parallelization of the
model training and prediction (ie., for KNN, RF, and
XGBoost); otherwise, one CPU (3.00 GHz Intel i9-
10980XE) core is used (for GP and KRC). For ANN, an
NVIDIA Quadro RTX 8000 graphics processing unit (GPU)
was used. The ANN, GP, XGBoost, and KRC algorithms
require about 15 iterations, while the RF and KNN algorithms
take 21 and 26 iterations, respectively. Although XGBoost and
ANN require a similar number of iterations, as shown in Table
1, XGBoost is the fastest algorithm (about 3 h on average for
running an ALCI full cycle), while ANN is the slowest one
(about 8 h and a half on average) considering the overall
computational time due to the time-consuming training
procedure of ANN models even using the GPU. The KRC
algorithm, which is using only one CPU core, exhibited a
reasonably good performance, showing the second lowest
computational cost (i.e, about 4 h and a half). Although KRC
showed different convergence trends in the excitation energy
calculations, most of the calculations converged to very similar
excitation energies (Figure S9). Compared to the KRC, GP
employed ca. 20% more time and converged to a slightly
higher excitation energy. Like XGBoost, RF and KNN can also
use multiple cores for parallel processing in ML model training,
and these algorithms show faster convergence than XGBoost
for naphthalene. However, for tetracene, RF and KNN took
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Table 2. ALCI Protocol Results with the Optimized Input Parameters for Naphthalene, Anthracene, and Pyrene”

ML threshold for CI average number of
system algorithm coeff. iterations
naphthalene (10e, 100) KRC 0.01 9.0
0.005 8.0
ANN 0.01 13.3
0.005 10.3
XGBoost 0.01 10.7
0.00S 9.7
CASCI (10e, 100)
anthracene (14e, 140) KRC 0.01 11.3
0.005 11.7
ANN 0.01 11.7
0.005 10.3
XGBoost 0.01 9.7
0.00S 12.3
CASCI (14e, 140)
pyrene (16e, 160) KRC 0.01 13.7
0.005 16.7
ANN 0.01 14.7
0.005 15.7
XGBoost 0.01 12.7
0.00S 20.0

CASCI (16e, 160)

number of important number of important  excitation energy

configurations SDs (eV)
369 4104 4.48

722 8379 445

356 3828 4.50

698 7942 4.46

362 4072 4.48

662 7701 447
8953 63 504" 4.46
1062 37971 4.07
2474 100 328 3.97
923 23 462 4.10
2353 78 577 3.98
1041 37278 4.07
2328 97 536 4.01
616227° 11778 624° 3.89
1444 41961 413
3660 225039 3.98
1243 45457 4.15
3424 151508 3.99
1407 40522 4.14
3505 155 884 4.00
5196 627" 165 636 900° 3.79

“Results are average values of three separate calculations for each model that are performed to obtain better statistics. ®Total number of

configurations or determinants in the active space.
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Figure 6. ALCI protocol convergence in terms of excitation energy for naphthalene, anthracene, and pyrene. Three independent calculations (as
indicated with different marker types) are performed for each model. The CI coefficient threshold for important configuration is 0.01. Iteration zero

corresponds to the RASCI (1 = 2) calculation.

more iterations (i.e, 16 iterations for XGBoost vs 21 and 26
iterations for RF and KNN, respectively) and more computa-
tional time (about 3 h for XGBoost vs 4 h 40 min and 6 h 20
min for RF and KNN, respectively) than XGBoost. For all of
the ML algorithms tested, a portion of the wall timing for ML
predictions is negligible (up to 1.5%). Except for ANN and
GP, which require 83 and 61% of the computational cost used
for training ML models, the most time-consuming part of the
ALCI protocol for the remaining ML algorithms is the SCI
calculation (i.e, more than 90%). For the subsequent
investigations, considering both the number of iterations and
the computational time of the tested ML algorithms, we
selected three ML algorithms, namely, ANN (smallest
numbers of iterations), XGBoost (fastest algorithm for
tetracene), and KRC (it uses only one CPU core but shows
good performance).

3.3. ALCI Results for Acenes and Pyrene. 3.3.1. Active
Spaces up to (16e, 160). We applied the workflow presented
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in Figure 3 to compute the excitation energy of naphthalene.
For this molecule, the 7 and #* active space consists of 10
electrons in 10 orbitals. The CASCI (10e, 100) result is
compared with the ALCI results (Table 2). The CASCI (10e,
100) corresponds to 8953 configurations (63 504 SDs) and
predicts an excitation energy of 4.46 eV. In Figure 6, the ALCI
convergence (using ANN, KRC, and XGBoost) using a CI
coefficient threshold of 0.01 is shown. At iteration 0 (i.e.,
RASCI (n = 2) calculation), the excitation energy is 5.57 €V,
with about a hundred of important configurations. The
excitation energy decreases in subsequent iterations, converg-
ing after 9—14 iterations. The converged excitation energies
are between 4.48 and 4.50 eV. The number of important
configurations in the last iteration cycle is about 360 (about
4000 SDs). It is impressive that the excitation energies are
similar to the CASCI (10e, 100) one but with 2 orders of
magnitude fewer CSFs. The excitation energy decreases upon
iterating, which suggests that the newly included configurations

https://doi.org/10.1021/acs.jctc.1c00769
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Table 3. ALCI Protocol Results with the Optimized Input Parameters for Tetracene, Pentacene, and Hexacene®

ML threshold for CI average number of
system algorithm coeff. iterations
tetracene KRC 0.01 15.0
(18¢, 180) 0.005 22.7
ANN 0.01 10.3
0.005 18.0
XGBoost 0.01 15.0
0.005 24.3
CASCI (18e, 180)
pentacene KRC 0.01 12.7
(22¢, 220) 0.005 25.0
ANN 0.01 10.7
0.005 16.0
XGBoost 0.01 17.0
0.005 25.0
CASCI (22¢, 220)
hexacene KRC 0.01 17.3
(26e, 260) 0.005 18.7
ANN 0.01 12.3
0.005 15.0
XGBoost 0.01 24.0
0.005 36.3

CASCI (26e, 260)

number of important number of important excitation energy

configurations SDs (ev)
1759 53213 3.86

4788 251320 3.74

1491 32663 391

3944 179952 3.73

1741 53125 3.88

4642 234622 3.75

44152 809" 2,363 904 400" N/A
1793 31491 3.50

4780 216678 3.46

1713 22622 3.44

4195 175336 3.48

1979 47 645 3.47

4941 231838 3.46
3241135 527" 497 634 306 624" N/A
2430 27 468 2.89

4061 58237 3.02

2366 24760 2.89

4574 101015 3.03

2670 51247 2.93

5952 245 534 3.03
241813226 1517 108 172 480 360 000° N/A

“Results are average values of three separate calculations for each model that are performed to obtain better statistics. ®Total number of

configurations or determinants in the active space.

improve the excited-state wave function more significantly than
the ground-state wave function. This is not surprising, since the
excited state is more multiconfigurational than the ground
state, and therefore, the former requires the inclusion of higher
excitations for a more accurate description.

Anthracene has a 7—n™* active space of 14 electrons in 14
orbitals. The (14e, 140) CASCI (6.16 X 10° configurations
and 1.12 X 10’ SDs) excitation energy is 3.89 eV. The
excitation energies computed with ALCI are reported in Table
2 and Figure 6. The RASCI (n = 2) excitation energy (at
iteration = 0) is 5.72 eV, and then, it decreases during the
iterative procedure, reaching the value of 4.10 eV after 10—12
iterations. With the CI coefficient threshold of 0.01, the ALCI
excitation energy is about 0.2 eV higher than the CASCI value,
but it corresponds to only about 10° configurations (about (2—
4) X 10* SDs) in the last SCI calculation. So, overall in these
calculations, there are 2 or 3 orders of magnitude fewer
configurations/SDs than in the CASCI ones. It should be
noted that using a smaller CI coefficient threshold of 0.005
results in even closer excitation energies (about 0.1 eV higher)
to the CASCI limit.

The pyrene molecule is a nonlinear PAH and its active space
includes 16 electrons in 16 orbitals. The CASCI (16e, 160)
corresponding to 5.20 X 10° configurations (1.66 X 10® SDs)
predicts an excitation energy of 3.79 eV. In Figure 6, the
excitation energies obtained with ALCI are shown. The RASCI
(n = 2) excitation energy is 5.98 eV, and the iterative protocol
converges to about 4.0—4.15 eV in 13—20 iterations. By using
the 0.01 threshold, the ALCI method provides an excitation
energy within 0.3 eV from CASCI, with the inclusion of only
(1.2—1.4) X 10° configurations ((4—4.5) X 10* SDs), so 3 or 4
orders of magnitudes fewer than CASCIL Using a smaller
threshold for the CI coeflicients, 0.005, the predicted excitation
energies are about 3.9 eV (i.e, a decrease of 0.1-0.16 eV
compared to using the threshold of 0.01), which are closer to
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the CASCI result. This suggests that by adopting the lower
threshold, the ALCI protocol can detect more configurations
with small but non-negligible coeflicients. However, in return
for accuracy, a larger number of iterations and important
configurations is needed in the ALCI calculations, resulting in
the increased computational cost (2.2—4.7 times depending on
ML algorithms. See S6.3 for more details). It is observed that
all of the tested ML algorithms such as KRC, XGboost, and
ANN vyield similar excitation energies.

In terms of the number of screened important configurations
at each iteration, Figure SI1 shows that, for KRC and
XGBoost, the number of important configurations increases
rapidly at initial iterations (up to 3—6 iterations). In the
following iterations, the increase in the configurations becomes
smaller, ended in almost no increment in the last iterations.
Compared to the KRC and XGBoost models, the ANN models
exhibit poor reproducibility of the ALCI protocol calculations,
suggesting that the hyperparameter tuning and training of the
ANN models have not been totally successful. This may be due
to an insufficient amount of training data for the large hyper/
model parameter space of the ANN models.

Regarding timings, ALCI can be performed in about 22 min
(using XGBoost with five Intel i9-10980XE @3.00 GHz) with
respect to about 3 h (using one Intel i9-10980XE @3.00 GHz)
required for CASCI (14e, 140) for anthracene. For pyrene,
ALCI requires only about 46 min (using XGBoost with five
Intel i9-10980XE @3.00 GHz), while CASCI requires more
than 91 h (using one Intel i9-10980XE @3.00 GHz). For
larger active spaces, CASCI calculations become infeasible,
while ALCI calculations are affordable. From the above ALCI
results for naphthalene, anthracene, and pyrene, it is shown
that the ALCI method is able to identify the important
configurations needed to be included in the SCI calculations in
few iteration cycles.
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Figure 7. ALCI protocol convergence in terms of excitation energy for tetracene, pentacene, and hexacene. Three separate calculations (as
indicated with different marker types) are performed for each model. The CI coefficient threshold for important configuration is 0.01. The iteration

zero corresponds to the RASCI (n = 2) calculation.

The ground- and excited-state wave functions for anthracene
and pyrene have then been analyzed by comparing the active
orbital occupation numbers obtained with ALCI and CASCL
These values are reported in Section S6. The differences in
occupation numbers between ALCI and CASCI are within
0.03, pointing to accurate ALCI wave functions.

3.3.2. Active Spaces beyond (16e, 160). We used the ALCI
method to compute excitation energies for larger active spaces,
for which the respective CASCI calculations are not affordable,
and the results are reported in Table 3 and Figure 7. Tetracene,
pentacene, and hexacene have been investigated, with active
spaces of (18e, 180), (22e, 220), and (26e, 260), respectively.
While CASCI calculations are not feasible, experimental data
are available, and therefore, they have been used as
benchmarks for the ALCI results.

For tetracene, ALCI with a CI coefficient threshold of 0.01
yields an excitation energy of about 3.9 eV in 10—15 cycles,
including about (1.5—1.7) X 10* configurations ((3—5) X 10*
SDs). A decrease of about 0.1—0.2 eV in the predicted
excitation energy is achievable by decreasing the CI coefficient
threshold to 0.005 at the expense of computation cost (i.e., 6—
9.4 times). For pentacene, ALCI converges to an excitation
energy of about 3.4—3.5 eV in 11-17 iterations, including
about (1.7-2) X 10° configurations ((2—3) X 10*
determinants) in the wave function when the 0.01 threshold
is chosen. Finally, in the case of hexacene, ALCI converges to
an excitation energy of about 2.9 eV in 12—24 iterations,
including only about (2.4—2.7) X 10* configurations ((2.5—
5.1) X 10* SDs) in the wave function. Considering that the
number of determinants for a CASCI (26e, 260) calculation is
about 1.08 X 10", ALCI can reduce this number by 10 orders
of magnitude, making this calculation feasible with a
reasonable computational time (about 19 h using KRC and
ANN and 50 h with XGBoost. See the SI, Section S6.6).
Unexpectedly, we see that excitation energies using ALCI with
the lower threshold of 0.005 showed almost no improvement
for pentacene and even deterioration for hexacene. This could
happen if less relevant configurations (i.e, configurations that
only marginally contribute to the overall energy) from the vast
CASCI configuration space are included in the training set for
each iteration by lowering the CI coeflicient threshold for such
a large system. To overcome this issue for larger systems,
different featurization methods and advanced ranking strategies
for choosing queries need to be developed and integrated with
our ALCI protocol in future work.
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With increasing acene size, the computational time for the
ML model training/predictions becomes negligibly small while
the computational cost for the SCI calculations grows
especially when using KRC or XGBoost (detailed timing
data for arbitrary selected ALCI calculations are reported the
SI, Section $6.7). For example, the relative computational costs
for the ML model training/predictions and SCI calculations for
hexacene are 3.2 and 96.6%, respectively, when using KRC,
and 0.8 and 99.0%, respectively, when using XGBoost. In the
case of ANN, although the time of the SCI calculations
increases with the acene size, for hexacene, about half of the
time is spent in the ANN model training (i.e., 48.7%).
Regarding the overall computational cost for the ALCI
protocol, XGBoost, which is the fastest algorithm for tetracene,
becomes the slowest one among the three ML algorithms
tested for pentacene and hexacene (about 11 and 50 h for
pentacene and hexacene, respectively, on average using five
Intel i9-10980XE @3.00 GHz. See the SI, S6.5 and S6.6). The
slow convergence of the ALCI calculations based on XGBoost
for the large systems (i.e., pentacene and hexacene) results
from the fact that, as shown in Figure S11, XGBoost cannot
identify important configurations effectively as the iterations
proceed compared to the KRC and ANN algorithms, resulting
in larger (average) numbers of important configurations (ie.,
in the case of hexacene, 2670 for XGBoost vs ca. 2400 for KRC
and ANN) and iterations (about 24, 17, and 12 iterations for
XGBoost, KRC, and ANN, respectively) than other ML
algorithms. On the other hand, ANN performs better as the
acene size increases, leading to a similar computational cost of
about 19 h compared to the fastest ML algorithm, KRC (see
the Supporting Information, Table S14). This trend indicates
that ANN would be the best-performing ML algorithm in the
ALCI method for systems with active spaces larger than (26e,
260).

3.3.3. Comparison with Experimental Data. Finally, the
excitation energies using ALCI (with KRC, XGBoost, and
ANN as ML algorithms) and CASCI are compared to
experimental values in Figure 8.° Before discussing our
results, it should be noted that a direct comparison between
experimental and computed excitation energies is often
difficult because experimentally one measures band maxima,
which are usually red-shifted with respect to the computed
vertical excitations.” For all of the acenes analyzed in this
work, there are two possible lowest singlet excited states
depending on the orbitals that take part in the excitation
process. One of them is labeled L,, corresponding to a HOMO
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Figure 8. Excitation energy for different acene lengths computed with
ALCI (using KRC, XGBoost, and ANN as ML algorithms) and
CASCI. The experimental results from ref 92 are also reported.

to LUMO excitation, while the other (L;) arises from a
mixture of the HOMO — 1 to LUMO and the HOMO to
LUMO + 1 excitations.”””>** The computed lowest excited
states with different methods (along with the experimental
ones) are shown in Table 4. Note that the ALCI method yields
almost the same excitation energy using the three different ML
algorithms. The ALCI and CASCI lowest excited state is Ly, for
both naphthalene and anthracene. The CASCI method
recovers only part of the electron correlation, and therefore,
a subsequent calculation on top of the CASCI wave function is
required to compute accurate energies. This is usually done
using the perturbation theory (PT2)’*°° or the more recent
pair-density functional theory (PDFT)”’ starting from a
multiconfigurational wave function. We thus performed a
PT2 calculation on top of CASCI, CASCI + PT2, to compute
excitation energies using the computational procedure
reported in Section S8. The lowest excited state for anthracene
is now L,, as experimentally found. Moreover, we notice that
the PT2 correction does not change sizably the L excitation
energy, but it lowers the L, energy by about 1 eV, with respect
to CASCI. ALCI and CASCI predict the same excitation
energy for naphthalene, while ALCI yields a higher excitation
energy than CASCI (by about 0.2 eV) for anthracene. For
larger acenes, CASCI calculations are not affordable, and
therefore, we compare the ALCI results only with experiments.
For the series of acenes analyzed, the computed excitation
energy decreases with the acene length, reproducing the
experimental trend. The ALCI excitation energies overestimate
the experimental ones by about 0.3 eV when L, is the lowest
excited state. The ALCI and experimental value discrepancy is
higher (about 0.8 eV) when L, is the lowest excited state. We
notice that the ALCI excitation energies of L, states are higher
with respect to the experimental ones, but the PT2 correction
would lower them, based on the naphthalene and anthracene
CASCI + PT2 results, and therefore, this correction will be
needed to achieve higher accuracy. The important finding is
that the ALCI results can reproduce the experimental trend,

and since the ALCI wave functions are similar to the CASCI
ones, but they are considerably less expensive, (Section S7),
they can be used as starting points for subsequent PT2 or
PDFT calculations.

4. CONCLUSIONS

We developed an iterative active machine learning method,
called the active learning configuration interaction (ALCI)
method, that can be used to efficiently identify important
configurations in large active spaces calculations. As a first
application, we tested the ALCI method to compute the first
singlet excited state of naphthalene, anthracene, tetracene,
pentacene, hexacene, and pyrene. ALCI can identify the most
important configurations within 10—20 iterations, yielding
excitation energies that differ at most by 0.3 eV from the
CASCI ones but with orders of magnitude fewer config-
urations. We employed ALCI to calculate excitation energies
for active spaces up to (26e, 260), for which CASCI is
unfeasible. In the cases where we could not perform the
CASCI calculation, we compared ALCI excitation energies to
the experimental ones and found that ALCI is able to
reproduce the experimental trend, namely, the lowering of the
excitation energy with the increasing acene length. For
hexacene (26e, 260), ALCI converges with only about 2400
configurations (25000 Slater determinants) in the wave
function, with a reduction of the number of determinants of
about 10 orders of magnitude with respect to the
corresponding CASCI. This study shows that, among the
various ML algorithms tested, namely, KRC, KNN, GP, RF,
XGBoost, and ANN, the ANN model exhibits the best ALCI
performance in terms of both fewer iterations and the lowest
computational cost of about 19 h for the largest system,
hexacene. Integrating the ALCI protocol with recently
developed efficient CI solving algorithms*>”*~'% could enable
us to investigate even larger active spaces. Finally, the ALCI
wave functions can be used as the starting point for PT2 or
PDFT subsequent calculations to achieve higher accuracy in
predicting excitation energies.
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