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Billions of people worldwide have experienced irreversible kid-
ney injuries, which is mainly attributed to the complexity of
drug-induced nephrotoxicity. Consequently, there is an urgent
need for uncovering the mechanisms of nephrotoxicity caused
by compounds. In the present study, a network-based method-
ology was applied to explore the mechanisms of nephrotoxicity
induced by specific compounds. Initially, a total of 42 nephro-
toxic compounds and 60 kinds of syndromes associated with
nephrotoxicity were collected from public resources. After-
ward, network localization and separation algorithms were
used to map the targets of compounds and diseases into the hu-
man interactome. By doing so, 199 statistically significant
nephrotoxic networks displaying the interaction between com-
pound targets and disease genes were obtained, which played
pivotal roles in compounds-induced nephrotoxicity. Subse-
quently, enrichment analysis pinpointed core Gene Ontology
and Kyoto Encyclopedia of Genes and Genomes pathways
that highlight commonalities in nephrotoxicity induced by
nephrotoxic compounds. It was found that nephrotoxic com-
pounds primarily induce nephrotoxicity by mediating the
advanced glycosylation end products-receptor for advanced
glycosylation end products signaling pathway in diabetic com-
plications, human cytomegalovirus infection, lipid and athero-
sclerosis, Kaposi sarcoma–associated herpesvirus infection,
apoptosis, and the phosphatidylinositol 3-kinase-Akt path-
ways. These results provide valuable insights for preventing
drug-induced nephrotoxicity. Furthermore, the approaches
we used are also helpful in conducting research on other kinds
of toxicities.

INTRODUCTION
The kidneys, as the main metabolic and excretory organ, can excrete
hazardous substances from our body. Drugs and their metabolites
pose a particular risk of kidney damage during the process of glomer-
ular filtration and tubular reabsorption, given the rich blood flow and
high oxygen consumption of the kidneys.1 Nephrotoxicity (renal
toxicity), as one of the primary adverse effects of drugs, refers to
the toxic side effects of drugs on renal function and the induction
Molecular The
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of toxic reactions in the kidney.2 According to data jointly released
by the American Society of Nephrology, the International Society of
Nephrology, and the European Renal Association, over 850 million
people worldwide have experienced irreversible damage to their renal
function.3 More than 40% of acute kidney injuries (AKIs) in patients
were attributed to drug-induced nephrotoxicity.4 In addition, drug-
induced kidney injury is a major cause of the termination of candidate
drugs in clinical trials and withdrawal from markets. To date, the
research on drug nephrotoxicity has primarily focused on, for
example, animal models, 2-dimensional cell models, organoids, organ
chips, network pharmacology, and metabolomics. Gu et al.5 evaluated
the nephrotoxicity of esculentoside A in Phytolacca acinosa Roxb. by
using renal organoids derived from human induced pluripotent stem
cells. It was found that esculentoside A–induced nephrotoxicity was
mainly involved in the epithelial-mesenchymal transition via the
stimulator of interferon genes signaling pathway. Cohen et al.6 inte-
grated tissue-embedded microsensors into a vascularized proximal
tubular spherical chip, which not only clarified nephrotoxic mecha-
nisms that could not be uncovered by animal experiments but also
confirmed that their method has an advantage in elucidating the
mechanisms for drug-induced nephrotoxicity. He et al.7 identified
potential biomarkers and therapeutic targets by integrating network
pharmacology and metabolomics techniques. Subsequently, the
mechanism of cantharidin-induced nephrotoxicity in HK-2 cells
was revealed. This result provides a theoretical basis for reducing
the toxic side effects of cantharidin in clinical applications.

Conventionally experimental methods are costly, labor-intensive, and
time-consuming, whereas computational approaches have great
rapy: Nucleic Acids Vol. 34 December 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Workflow for the analysis of nephrotoxic compounds-induced nephrotoxicity

Molecular Therapy: Nucleic Acids
advantages in enhancing the efficiency and diminishing the costs of
pharmaceutical analysis.8 Network medicine, with the booming
development of systems biology, has the ability to not only integrate
multiomics data but also gain deeper insights into biological associa-
tions between complex phenotypes and disease states at the molecular
level.9,10 Although the current human interactome is incomplete and
unexplored,11 adequate coverage of the protein–protein interaction
(PPI) network is sufficient to effectively address most cutting-edge is-
sues in network medicine.12,13 Dai et al.14 used network-based ap-
proaches to construct the overlapping network of hepatotoxic disease
genes and three hexabromocyclododecane (HBCD) diastereoisomer
targets on the basis of the human interactome. Subsequently, gene
enrichment analysis was performed to investigate the mechanisms
of HBCD-induced hepatotoxicity according to the shortest path
length between compound targets and disease genes. Network-based
drug repurposing developed dramatically during the coronavirus dis-
ease 2019 (COVID-19) pandemic. Wang et al.15 built the COVID-19
disease module based on the human interactome and identified the
core targets playing critical roles in the pathogenic progress of
COVID-19, which were expected to be significant guides in the repo-
sitioning of the prioritization analysis of registered drugs and repur-
posed drugs. Morselli Gysi et al.13 used experimental PPIs recorded in
public databases to construct the human interactome. Subsequently,
network diffusion and network proximity algorithms were imple-
mented to identify drugs able to be repurposed against severe acute
2 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
respiratory syndrome coronavirus-2, which was conducive to reduce
research costs and stimulate the development of innovative drugs.
The accomplishments of the aforementioned studies collectively
demonstrate the efficacy of network-based methodologies in drug
and disease research.

At present, the prediction and mechanism analysis of drug nephro-
toxicity remain significant challenges for the scientific community.
Moreover, critical pathways and mechanisms for most nephrotoxic
compounds have not been comprehensively elucidated. In the
present work, to explore the molecular mechanisms of nephrotoxi-
city in more detail, we classified compounds-induced nephrotoxicity
into heterogeneous pathological changes and clinical manifestations.
The categories of the collected nephrotoxic compounds were also
investigated based on their chemical structures. Network-based
localization and network-based separation algorithms16 were used
to construct nephrotoxic compound targets-nephrotoxic disease
genes networks. Subsequently, enrichment analysis for core genes
and intersection calculation were performed with the aim of
screening out core Gene Ontology (GO) terms and core Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways. Ultimately,
the mechanisms of compounds-induced nephrotoxicity were
probed to reflect the commonality of nephrotoxicity caused by
nephrotoxic compounds. The workflow for our research is depicted
in Figure 1.



Table 1. The 10 nephrotoxic compounds studied in this article

Nephrotoxic
compound

Molecular
formula

PubChem
CID

Molecular
weight (g/mol)

Tetrandrine C38H42N2O6 73078 622.7

Aloe-emodin C15H10O5 10207 270.24

Arecoline C8H13NO2 2230 155.19

Evodiamine C19H17N3O 442088 303.4

Matrine C15H24N2O 91466 248.36

Cinnamaldehyde C9H8O 637511 132.16

Rhein C15H8O6 10168 284.22

Geniposide C17H24O10 107848 388.4

Podophyllotoxin
(Podofilox)

C22H22O8 10607 414.4

Gossypol C30H30O8 3503 518.6
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RESULTS
Nephrotoxic compounds and syndromes classification

A total of 42 nephrotoxic compounds, 60 pathological changes, and
clinical manifestations were assembled from PubMed and (China Na-
tional Knowledge Infrastructure (CNKI, https://www.cnki.net/)
(Table S1). Synonymous terms of 60 pathological changes and clinical
manifestations gathered byMedical Subject Headings (MeSH, https://
meshb.nlm.nih.gov/search), Unified Medical Language System
(UMLS, https://uts.nlm.nih.gov/uts/umls/home), Human Phenotype
Ontology (HPO, https://hpo.jax.org/app/), and the literature are
listed in Table S1A. Moreover, a total of 5,299 compound targets
and 58,288 disease genes were gathered from 15 biomedical databases
after removing redundancy (Table S2). In addition, we explored the
categories of the collected 42 nephrotoxic compounds (Table S1B)
based on their chemical structures. Figure S1 illustrates that among
the 42 nephrotoxic compounds, 13 were classified as alkaloid, making
it the category with the highest number of nephrotoxic compounds.
Following alkaloids, the categories with significant representation
were terpenoid and phenol. This result suggests that researchers
should be vigilant about these three categories of nephrotoxic com-
pounds because compounds belonging to these categories may
possess nephrotoxicity.

Significantly distributed modules in the human interactome

Based on the two criteria of network-based localization algorithm (see
supplemental methods), we constructed 10 nephrotoxic compound
modules and 22 nephrotoxic disease modules that were significantly
distributed in the human interactome (Tables S3A and S3B). The mo-
lecular formula, PubChem Compound Identification (CID), and mo-
lecular weight (g/mol) for the 10 nephrotoxic compounds are pre-
sented in Table 1. These 32 modules obeyed the following
requirements: (1) more than 25 compound targets or disease genes,
(2) the largest connected component (lcc) size S was significantly
larger than the random expectation lcc[rand], and (3) p < 0.05. Using
an intersection-based approach, we conducted an analysis to deter-
mine whether there are common targets or genes shared between
the 10 nephrotoxic compounds and 22 nephrotoxic syndromes,
respectively. It was found that among the 22 nephrotoxic syndromes,
only 21 shared 1 gene, indicating that these syndromes may operate
through distinct molecular mechanisms, as evidenced by the lack of
significant gene overlap among them (Table S3C). Meanwhile, among
the 10 nephrotoxic compounds, only 9 share a common target (Table
S3D), suggesting that they may induce different kinds of nephrotoxic
syndromes. This result highlights potential variations in their under-
lying mechanisms and resulting clinical effects.

The shortest path length between compound targets and

disease genes

The lower shortest path length between compound targets and dis-
ease genes denotes the higher degree of aggregation. In 10 compound
modules and 22 diseasemodules, the shortest path length (=0, 1, 2, >2,
N/A) between compound targets and disease genes for each twomod-
ules was calculated through a network-based separation algorithm
(see the dis_ab column of Tables S4, S5, S6, S7, S8, S9, S10, S11,
S12, and S13). dis_ab = 0 means that the disease gene and compound
target are overlapped in the network, whereas dis_ab = 1 indicates
that the disease gene or compound target is one step away from the
compound target or disease gene, and so forth. dis_ab =N/A indicates
that there is no path or connection between the disease gene or com-
pound target and the compound target or disease gene. The distribu-
tion of the shortest path length between most compound targets and
disease genes was observed to be %3, indicating that each paired
module tended to cluster together in the network. Taking the AKI
module (lcc size S = 1,417, Z score of observed lcc z 3.00/3.11,
p < 0.05; see Table S3A and supplemental methods) and the tetran-
drine module (lcc size S = 70, Z score of observed lcc z 62.56/
61.39, p < 0.001; see Table S3B) as examples, the shortest path length
between all 108 compound targets and 1,359 of 1,649 disease genes
was %3 (including common nodes, see Table S13). Consequently,
for the subsequent analysis, only nodes with dis_ab% 1 were consid-
ered for further analysis.

Nephrotoxic compound targets-disease genes networks

Based on 32 significantly distributed modules, 10 nephrotoxic com-
pound modules were sequentially matched with 22 nephrotoxic dis-
ease modules, which formed 220 compounds targets-diseases genes
networks. The 199 significantly distributed compound targets-dis-
ease genes networks were obtained by network-based localization
algorithm (see Tables S4, S5, S6, S7, S8, S9, S10, S11, S12, and
S13), and the 21 compound targets-disease genes networks that
were not significantly distributed in the human interactome are
listed in Table S14. With matrine targets-tubular necrosis genes
network as an example, the lcc size S = 193 (Z score of observed
lcc z 13.78/14.25, p < 0.001) was significantly larger than the
random expectation lcc[rand] = 5.438/5.222 (see Table S10). Figure 2
displays various sets formed by nodes with different degrees of ag-
gregation in the matrine targets-tubular necrosis genes network.
The outermost circle of the network listed discrete genes that had
no interactions. The rectangle in the inner parts refers to the lcc in-
terconnected by 193 core genes (including 13 common nodes, 47
compound targets, and 133 disease genes), whereas the remaining
Molecular Therapy: Nucleic Acids Vol. 34 December 2023 3
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Figure 2. Matrine targets-tubular necrosis genes network

Distinct colors have distinct meanings. Rose: common nodes between disease genes and compound targets. Purple: disease genes. Green: compound targets. Different

shapes have different implications. Rose circle: disease gene and compound target overlapped. Purple circle: disease gene was 1 step away from compound target. Green

circle: compound target was 1 step away from disease gene. Triangle: disease gene or compound target was 2 steps away from compound target or disease gene. Diamond:

disease gene or compound target was >2 steps away from compound target or disease gene. Square: disease gene or compound target was 0 steps away from compound

target or disease gene.
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11 are partially connected genes. The annotations for parameters of
network-based localization are sufficiently described in Table S10.
According to the statistics from Table S10, the shortest length
path for 304 nodes out of all 315 nodes was %2 in the network.
We also found that the common nodes for matrine and tubular ne-
crosis were located in the core gene set. The other 9 representative
nephrotoxic compounds targets-disease genes networks are pro-
vided in Figure S2. Except for aloe emodin targets-bicarbonaturia
genes network, most common nodes shared by disease genes and
compound targets for the remaining 8 networks were located in
the core gene set.

Enrichment results for the nephrotoxic networks

We performed GO annotations and KEGG functional enrichment
analysis on core genes with dis_ab %1 for 199 significantly distrib-
uted nephrotoxic compound targets-disease genes networks (see
4 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
enrichment analysis column of Tables S4, S5, S6, S7, S8, S9, S10,
S11, S12, and S13). The results of GO and KEGG enrichment anal-
ysis are listed in Tables S15, S16, S17, S18, S19, S20, S21, S22, S23,
and S24. Taking the results of the matrine targets-tubular necrosis
genes network (see Table S21) as an example, the chord diagrams
in Figure 3 displayed the top 10 GO terms, the top 20 KEGG terms
and the enriched core genes. Figure 3A indicates that the core
genes were mainly involved in gland development, cellular
response to chemical stress, gliogenesis, response to lipopolysac-
charide, regulation of apoptotic signaling pathway, cellular
response to oxidative stress, response to molecule of bacterial
origin, response to oxidative stress, epithelial cell proliferation,
and response to reactive oxygen species (ROS). Among them,
cellular response to chemical stress, regulation of apoptotic
signaling pathway, cellular response to oxidative stress, epithelial
cell proliferation, and response to ROS may act as important roles



Figure 3. Results of enrichment analysis for matrine targets-tubular necrosis genes network

(A) Top 10 biological process (BP) terms. (B) Top 10 MF terms. (C) Top 10 CC terms. (D) Top 20 KEGG terms. The left half of the chord diagrams represents enriched core

genes with dis_ab %1. The right half of the chord diagrams is the range of padj.
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in the process of matrine-induced tubular necrosis. Figures 3B and
3C display the top 10 molecular function (MF) terms and top 10
cellular component (CC) terms. The most significant MF and
CC terms were cytokine receptor binding and vesicle lumen,
respectively. The top 20 KEGG terms (Figure 3D) implied that
the core genes in matrine targets-tubular necrosis genes network
may be engaged in the advanced glycosylation end products-recep-
tor for advanced glycosylation end products (AGE-RAGE)
signaling pathway in diabetic complications, hepatitis B, tumor ne-
crosis factor (TNF) signaling pathway, proteoglycans in cancer,
pancreatic cancer, lipid and atherosclerosis, human cytomegalo-
virus infection, Kaposi sarcoma–associated herpesvirus (KSHV)
infection, malaria, fluid shear stress and atherosclerosis, hepatitis
C, phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway,
toxoplasmosis, colorectal cancer, Chagas disease, bladder cancer,
influenza A, measles, epidermal growth factor receptor tyrosine
kinase inhibitor resistance, and tuberculosis. Notably, the most
significantly enriched KEGG pathway was the AGE-RAGE
signaling pathway in diabetic complications (padj = 1.04E�20,
pAdjustMethod = Bonferroni). The KEGG pathway with the highest
number of enriched genes was the PI3K-Akt signaling pathway.
Therefore, it was speculated that matrine-induced tubular necrosis
was closely related to the AGE-RAGE signaling pathway in diabetic
complications and the PI3K-Akt signaling pathway.

Commonality of nephrotoxic compounds-induced

nephrotoxicity

After 10 nephrotoxic compounds were paired with multiple nephro-
toxic diseases to combine into the “pairs,” GO intersection terms
and KEGG intersection terms were calculated based on the enrich-
ment results of 199 compound targets-disease genes networks (see
Table S25). For instance, the nephrotoxic compound tetrandrine
was matched with 22 nephrotoxic diseases, forming a total of 22 pairs
(Table S25). Figure 4 displays the intersection terms of GO-biological
process between each pair. It is evident from the UpSet plot that the
GO-biological process intersection term with the highest number of
pairs is located in column39. Twenty pairs in column39 forman inter-
section term together. This coreGO-biological process was the cellular
response to chemical stress. Figure 5 illustrates that the KEGG inter-
section terms involving the highest number of pairs were distributed
in the first column of the UpSet plot. These core KEGG pathways
were the AGE-RAGE signaling pathway in diabetic complications,
chronic myeloid leukemia, hepatitis B, human cytomegalovirus infec-
tion, and prostate cancer, respectively. Intersection terms of GO-MF
Molecular Therapy: Nucleic Acids Vol. 34 December 2023 5
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Figure 4. Intersection terms of GO- BP for tetrandrine-induced nephrotoxicity

Nephrotoxic compound tetrandrine was matched with 22 nephrotoxic diseases to form 22 pairs. Intersection calculation was performed on the GO-BP results of each pair.

The columns in the bar charts represent BP intersection terms shared by the pairs of the UpSet parts. BP intersection terms are listed at right; each number and each color

corresponds with those of the bar charts.
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and GO-CC for tetrandrine-induced nephrotoxicity are provided in
Figures S3 and S4, which involve the highest number of pairs were
ubiquitin protein ligase binding as well as ubiquitin-like protein ligase
binding, membrane microdomain, and membrane raft, respectively.
In general, the core KEGG terms for 10 nephrotoxic compounds-
induced nephrotoxicity were chronic myeloid leukemia, AGE-
RAGE signaling pathway in diabetic complications, prostate cancer,
human cytomegalovirus infection, hepatitis B, lipid and atheroscle-
rosis, KSHV infection, PI3K-Akt signaling pathway, and apoptosis
(Figure 6). In addition, the core GO-MF and GO-CC for 10 nephro-
toxic compounds-induced nephrotoxicity are shown in Figure S5.

DISCUSSION
In this study, we constructed nephrotoxic networks using network-
based algorithms based on the human interactome. We then per-
formed calculations to identify core GO and KEGG terms to investi-
gate the mechanisms of compounds-induced nephrotoxicity. To
conduct a comprehensive analysis, we initially divided compounds-
induced nephrotoxicity into 60 pathological changes and clinical man-
ifestations and classified nephrotoxic compounds into 13 categories
according to chemical structures. Then, a network-based localization
algorithm was used for the acquisition of significantly distributed
modules of 10 nephrotoxic compounds and 22 nephrotoxic diseases.
In addition, a network-based separation algorithm was used to calcu-
late the shortest path length between compound targets and disease
genes for the further filtration of nodes with dis_ab%1. Subsequently,
a network-based localization algorithm was used to construct the 199
significantly distributed compound targets-disease genes networks.
Finally, we performed GO and KEGG enrichment analysis on core
6 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
genes with dis_ab %1 in the 199 nephrotoxic networks. Intersection
terms of GO and KEGG were calculated to identify core GO and
core KEGG terms that may act pivotal roles in the process of nephro-
toxic compounds-induced nephrotoxicity.

Take matrine-induced tubular necrosis as an example, six core KEGG
pathways were identified (Figure 3D). The genes and targets enriched
in these pathways were used for the construction of 6 networks (Fig-
ure 7), which display the relationships between them. To investigate
whether these six predicted pathways play significant roles in the pro-
cess of matrine-induced tubular necrosis, their biological mechanisms
were analyzed. With regard to the AGE-RAGE signaling pathway in
diabetic complications, it is intimately linked to the inflammation
and fibrosis of the kidneys.17,18 AGEs accumulation has been impli-
cated in ROS generation, apoptosis, and injury of renal tubular cells.19

A pictorial representation of the AGE-RAGE signaling pathway in dia-
betic complications involved in matrine-induced tubular necrosis is
provided in Figure S6. Matrine, when acting on the AGE-RAGE
signaling pathway,may lead to the accumulation of ROS, thereby exac-
erbating oxidative stress. Activation of NFKB1 (nuclear factor kB) in
this context can promote the expression of cytokines such as TNF,
interleukin-1b (IL-1b), and interleukin-6 (IL-6). In addition, the in-
duction of apoptosis can occur through the upregulation of caspase
3 (CASP3) expression.Hepatitis B cirrhosis, triggered by the prolonged
infection of hepatitis B virus, is related to AKI in cirrhotic patients.20,21

For lipid and atherosclerosis, atherosclerosis has a relationship with
chronic kidney disease.22 Lipid accumulation may subsequently
develop into lipotoxicity, which further induces pathological injury
in proximal tubular cells.23Most of the patients who experience human



Figure 5. Intersection terms of KEGG for tetrandrine-induced nephrotoxicity

Nephrotoxic compound tetrandrine was matched with 22 nephrotoxic diseases to form 22 pairs. Intersection calculation was performed on the KEGG results of each pair.

The columns in the bar charts represent KEGG intersection terms shared by the pairs of the UpSet parts. KEGG intersection terms are listed at right; each number and each

color corresponds with those of the bar charts.
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cytomegalovirus (HCMV) disease have HCMV DNA in their renal
tubular epithelial cells.24 Human cytomegalovirus can promote the for-
mation of renal fibrosis by activation of TGF-b1 after the infection of
renal tubular epithelial cells. It may also play a role in renal tubular
injury and interstitial nephritis.25,26 KSHV prevalence gradually be-
comes higher in end-stage renal disease (ESRD) patients.27 Patients
with ESRD were more likely provoked by acute tubular necrosis.28

The PI3K-Akt signaling pathway is a pivotal signal transduction
pathway that regulates cell proliferation, apoptosis, and inflammatory
activity.29,30 Numerous studies have shown that the PI3K-Akt
signaling pathway plays a critical role in the pathogenesis of drug-
induced nephrotoxicity.31–36 Renal tubular cell function can also be
regulated by the PI3K-Akt pathway in diabetes mellitus patients.37

Obviously, these 6 core KEGG pathways were directly or indirectly
correlated with renal toxicity. To the best of our knowledge, chronic
myeloid leukemia and prostate cancer were less often documented in
related research, especially for the associations with nephrotoxicity.
These two core KEGG pathways deserve further investigation and
analysis. It is apparent that 5 common nodes—AKT serine/threonine
kinase 1 (AKT1), IL-6, mitogen-activated protein kinase 1 (MAPK1),
nuclear factor kappa B subunit 1 (NFKB1), and RELA ptoto-oncogene
(RELA)—fully appeared in 6 networks. Inhibiting the expression of
mitochondrial AKT1 in renal proximal tubules will aggravate the
development of renal tubular injuries.38 When renal tubular epithelial
cells undergo necrosis, they will release proinflammatory cytokines
such as IL-6, followed by the initiation of signal transducer and acti-
vator of transcription 3 signaling, which may increase the infiltration
of inflammatory cells in the kidney.39 MAPK1 participates in the acti-
vation of the NF-kB pathway, which is associated with cell apoptosis
and inflammatory response. The depletion of MAPK1 alleviates renal
injury and inflammation.40 The activation of NF-kB has correlation
with ROS generation and cellular apoptosis. NF-kB signaling
pathway controls the expression of several inflammatory cytokines
that take part in modulating kidney inflammation.41 RELA, a key
component of the NF-kB signaling pathway, plays a pivotal role in
the progression of inflammation.42,43 Numerous studies have previ-
ously demonstrated that drug-induced nephrotoxicity is associated
with inflammation, oxidative stress, immune response, apoptosis,
and necrosis.4,44–48 Thus, it can be concluded that the above 6 core
KEGGpathways and 5 common genes play significant roles in the pro-
gression of matrine-induced tubular necrosis, and nephrotoxic com-
pounds-induced nephrotoxicity is regulated by multitargets and
multipathways.

Several drawbacks were embodied in our study. First, the incomplete-
ness of the human interactome will result in the lack of exploration for
the mechanisms of other nephrotoxic compounds and diseases. Sec-
ond, a network-based separation algorithm can also be used to mea-
sure pathobiological similarities between two disease modules.16

Therefore, we will further compare the pathobiological and clinical
similarities for 60 pathological changes and clinical manifestations
of nephrotoxicity. Third, in some cases, nephrotoxic compounds-
induced nephrotoxicity is dose dependent. In future research, sound
attention should be paid to the doses of nephrotoxic compounds.

Conclusions

The results of the compound classification highlight the importance
of exercising caution when dealing with substances classified as
Molecular Therapy: Nucleic Acids Vol. 34 December 2023 7
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Figure 6. Core KEGG and GO-BP for 10 nephrotoxic compounds-induced nephrotoxicity

The intersection terms of KEGG and BP with the highest number of pairs involved are defined as core KEGG and core GO-BP.
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alkaloid, terpenoid, and phenol, due to the potential risks associated
with nephrotoxicity. By using network analysis, core nephrotoxic
compound targets and disease genes having significant implications
in nephrotoxicity were identified. The core GO terms and KEGG
pathways that play crucial roles in the progression of nephrotoxic
compounds-induced nephrotoxicity were comprehensively analyzed.
Although our study has several drawbacks, it will undeniably lay the
foundation for the safety assessment and clinically reasonable appli-
cation of nephrotoxic drugs. What is more, the methods used in
this study have the potential to extend their utility to other investiga-
tions within the realm of toxicity research.

MATERIALS AND METHODS
Nephrotoxic compounds and diseases collection

To explore the diversity of compounds-induced nephrotoxicity, we
conducted a literature search using the key words “nephrotoxicity”
and “renal toxicity” to identify literature-recorded nephrotoxic com-
pounds and nephrotoxic diseases. The majority of nephrotoxic com-
pounds were successfully mapped with their PubChem CID through
the PubChem database,49 whereas the remaining compounds, which
had no PubChem CID, were also considered in this research. To
investigate the main categories of nephrotoxic compounds, classifica-
tion of the collected nephrotoxic compounds was conducted based on
chemical structures through the PubChem database. Mulliner et al.
classified drug-induced liver injury (also known as hepatotoxicity)
into 96 types based on clinical chemistry findings and morphological
findings.50 For the construction of the hepatotoxicity lexicon and the
8 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
filtration of hepatotoxicity term candidates in the Literature Mining
for Toxicology database, 2 selection criteria formulated by Cañada
et al.51 were as follows: (1) a trigger of hepatotoxicity (e.g., transami-
nitis, steatosis, hepatotoxic) was included in one noun phrase of the
terms, and (2) one trigger standing for the hepatobiliary system
(e.g., hepatocyte, liver) together with toxicity or adverse event–
associated words (e.g., injury, necrosis) were both contained in the
same noun phrase. Inspired by the above methods of hepatotoxicity
classification, nephrotoxic compounds-induced nephrotoxicity was
divided into heterogeneous pathological changes and clinical mani-
festations (nephrotoxic diseases), which were assembled from
PubMed and CNKI. Various synonymous terms of the pathological
changes and clinical manifestations were gathered by MeSH-Entry
Term(s), UMLS-Atom(s), and HPO-Synonym(s).52 The rest of the
nephrotoxic diseases that were not documented in the above three
public resources were also taken into account in this research.

Nephrotoxic compound targets and disease genes collection

To acquire comprehensive and relevant data, a total of 15 biomedical
repositories, including 7 compound targets databases and 8 disease
genes databases, were adopted. Human targets of nephrotoxic com-
pounds were collected from An Intelligent Network Pharmacology
Platform Unique for Traditional Chinese Medicine (INPUT 2.0),53

Herbal Ingredients’ Targets Platform (HIT 2.0),54 an integrative data-
base of traditional Chinese medicine enhanced by symptommapping
(SymMap version 2),55 a high-throughput experiment- and refer-
ence-guided database of traditional Chinese medicine (HERB),56



Figure 7. Relationships of enriched targets and genes in six core KEGG pathways
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an encyclopedia of traditional Chinese medicine (ETCM),57 the
Traditional Chinese Medicine Systems Pharmacology Database and
Analysis Platform (TCMSP),58 and the Search Tool for Interactions
of Chemicals (STITCH).59 All synonymous terms of nephrotoxic
diseases were used as search terms for the collection of human genes
of diseases. Disease genes were manually curated from the NCBI-
Gene (https://www.ncbi.nlm.nih.gov/gene), the Universal Protein
Knowledgebase (Uniprot),60 Online Mendelian Inheritance in
Man (OMIM),61 GeneCards,62 the Therapeutic Target Database
(TTD),63 DisGeNET,64 the Comparative Toxicogenomics Database
(CTD),65 and Centers for Disease Control and Prevention Public
Health Genomics and Precision Health Knowledge Base (PHGKB)-
Phenopedia.66 Redundant compound targets and disease genes
were removed.

Selection of significantly distributed modules

The module was established after importing compound targets or dis-
ease genes into the human interactome constructed byMenche et al.16

Components of the human interactome are listed in the supplemental
methods. A network-based localization algorithm was used to obtain
modules that were significantly distributed in the human interactome.
The gene symbol of the collected compound targets and disease genes
was transferred into uniform ENTREZ gene ID by the conversion tool
of TheDatabase for Annotation, Visualization and Integrated Discov-
ery (DAVID, https://david.ncifcrf.gov/home.jsp).67 Subsequently, the
network-based localization algorithm was used to individually import
compound targets and disease genes into the human interactome for
the construction of compound modules and disease modules. The lcc
is generated by the highest number of targets and/or genes that are
directly connected to one another in the human interactome. To
assess whether the modules generated by compound targets or disease
genes were significantly distributed in the human interactome, we
performed random simulations 1,000 times. During each simulation,
we randomly selected sets containing the same number of targets or
genes as each module,14 generating the random expectation lcc[rand].
Retention and abandonment of the module were determined based
on two criteria: (1) the number of compound targets or disease genes,
and (2) the value of lcc[rand] and p value in the random expectation.
According to the percolation theory,16 only compounds or diseases
with more than 25 compound targets or disease genes could have
an observable module in the human interactome. The lcc size S is
used to describe the number of targets and/or genes that are intercon-
nected to form lcc. If the lcc size S is significantly larger than the
random expectation lcc[rand], the observed module is not randomly
agglomerated by compound targets or disease genes.16 Therefore,
only modules that have p < 0.05 and meet the above requirements
Molecular Therapy: Nucleic Acids Vol. 34 December 2023 9
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will be retained; these are called significantly distributed modules. For
the reliability of the results, network-based localization for each mod-
ule was performed twice. After ignoring targets or genes that were not
in the human interactome, significantly distributed compound mod-
ules and disease modules were obtained.

Calculation of the shortest path length

Each significantly distributed nephrotoxic compound module was
paired with each significantly distributed nephrotoxic disease mod-
ule. To find nodes (compound targets or/and disease genes) with
shorter distances to one another, the network-based separation al-
gorithm was used to calculate the shortest path length (dis_ab)14,68

between compound targets and disease genes for each paired
module,

dis ab =
1

k A k
X

a˛A

1
k B k

X

b˛B

dða; bÞ (Equation 1)

where a and b are nodes of the nephrotoxic disease module and neph-
rotoxic compound module, respectively. A represents the set of neph-
rotoxic disease genes, and B is the set of nephrotoxic compound
targets.

Construction of nephrotoxic compound targets-disease genes

networks

Each significantly distributed compound module was matched with
multiple significantly distributed disease modules. Hence, the
network-based localization algorithm was exploited to construct
nephrotoxic compound targets-disease genes networks. According
to the above-mentioned criteria for retention and abandonment of
modules, only significantly distributed nephrotoxic compound tar-
gets-disease genes networks were retained. For each nephrotoxic
compound targets-disease genes network, network-based localization
was performed twice using the same methodology. To screen out core
nodes, which may play important roles in nephrotoxic compounds-
induced nephrotoxicity, according to Equations 2 and 3, the nodes
in a network were classified into diverse sets (i.e., discrete gene set,
partially connected gene set, core gene set) based on the extent of
agglomeration in the network. If there was no interaction between
nephrotoxic compound targets and disease genes in the human inter-
actome, then nodes were defined as discrete genes. Nodes in the lcc
belonged to the core gene set. The remaining nodes were taken as a
partially connected gene.

Nd = Ng � Ni (Equation 2)

Nd and Ng are nodes in a discrete gene set and gene set obtained by
importing nephrotoxic compound targets and disease genes into
the human interactome, respectively. Ni stands for nodes in a gene–
gene interaction network formed by compound targets and disease
genes that have interactions in the human interactome.
Np = Ni � Nc (Equation 3)
10 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
Np means nodes in the set of partially connected genes, and Nc stands
for nodes in the core gene set. Nodes in the core gene set are equiva-
lent to nodes in the lcc.

Then, ENTREZ gene ID of compound targets and disease genes
was converted into a uniform gene symbol using the biological
DataBase network (bioDBnet, https://biodbnet-abcc.ncifcrf.gov/).
The visualization of the compound targets-disease genes networks
was accomplished by Cytoscape version 3.9.1.69

Enrichment analysis for core geneswith the shortest path length

%–1

In the human interactome, a higher extent of node agglomeration in-
dicates greater functional and biological similarities.16 Thus, we per-
formed GO annotations and KEGG functional enrichment analysis
(pAdjustMethod = Bonferroni, pvalueCutoff = 0.05) on core genes
(the nodes of lcc) with dis_ab %1 by using clusterProfiler version
4.4.470 in significantly distributed compound targets-disease genes
networks. Only the top 10 GO terms and the top 20 KEGG terms
were reserved in this research. The enrichment results were visualized
by Sangerbox3.0 (http://vip.sangerbox.com/home.html).71

Core GO terms and core KEGG pathways

For the above-mentioned significantly distributed compound targets-
disease genes networks, each nephrotoxic compound was systemati-
cally paired with multiple nephrotoxic diseases, forming what we
refer to as pairs. Afterward, GO and KEGG intersection terms were
calculated using Hiplot (ORG) (https://hiplot.cn/)72 based on enrich-
ment results of the networks. UpSet diagrams plotted by ChiPlot
(https://www.chiplot.online/) were applied to seek out GO and
KEGG pathways that could reflect the commonality of compounds-
induced nephrotoxicity. We defined intersection terms of GO and
KEGG with the highest number of pairs as core GO and core
KEGG. In addition, ChiPlot was applied to plot Sankey diagrams
for the core GO and core KEGG.

DATA AND CODE AVAILABILITY
The analyzed data are provided in the supplemental information. The
pipeline for our toxicological network analysis is available at https://
github.com/MarvinXi/Nephrotoxicity.
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