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Abstract: Compared to other ethnicities, Hispanic children incur the highest rates of leukemia, and
most cases are diagnosed as Acute Lymphoblastic Leukemia (ALL). Despite improved treatment
and survival for ALL, disproportionate health outcomes in Hispanics persist. Thus, it is essential to
identify oncogenic mutations within this demographic to aid in the development of new strategies
to diagnose and treat ALL. Using whole-exome sequencing, five single nucleotide polymorphisms
within mitogen-activated protein kinase 3 (MAP2K3) were identified in an ALL cancer patient library
from the U.S./Mexico border. MAP2K3 R26T and P11T are located near the substrate-binding site,
while R65L and R67W localized to the kinase domain. Truncated-MAP2K3 mutant Q73* was also
identified. Transfection in HEK293 cells showed that the quadruple-MEK3 mutant (4M-MEK3)
impacted protein stability, inducing degradation and reducing expression. The expression of 4M-
MEK3 could be rescued by cysteine/serine protease inhibition, and proteasomal degradation of
truncated-MEK3 occurred in a ubiquitin-independent manner. MEK3 mutants displayed reduced
auto-phosphorylation and enzymatic activity, as seen by decreases in p38 phosphorylation. Fur-
thermore, uncoupling of the MEK3/p38 signaling pathway resulted in less suppressive activity on
HEK293 cell viability. Thus, disruption of MEK3 activation may promote proliferative signals in ALL.
These findings suggest that MEK3 represents a potential therapeutic target for treating ALL.

Keywords: MAP2K3; MEK3; MAPK p38; ALL; Hispanic; protein degradation; leukemia; cell prolif-
eration; health disparities

1. Introduction

Acute lymphocytic leukemia (ALL) is a blood and bone marrow cancer that primarily
affects children [1]. It is responsible for causing more deaths than any other childhood
cancer, and its incidence is highest among Hispanics [2–4]. Less than 1% of biorepository
specimens and 2% of samples in genome-wide association studies are derived from His-
panics [5]. This underrepresentation might reflect the disproportionate health outcomes
observed in some minority groups [6]. While current ALL treatments have improved
the five-year free survival rate to ~90%, not everyone has benefited equally [7]. Some
patients experience refractory or ALL relapse, where the 5-year free survival rate falls by
between 15 and 50% [8]. Unfortunately, the cause of these statistics is poorly understood
due to the complex etiology of ALL. Advances in next generation sequencing support the
role of genetic factors in driving ALL. Here, we sought to identify novel mutations from
Hispanic patients residing at the U.S/Mexico border that experience a higher incidence of
ALL [6]. Understanding the molecular mechanisms responsible for driving ALL in this
demographic is essential to developing new therapeutic strategies [9].

Using whole-exome sequencing (WES), five single nucleotide polymorphisms (SNPs)
on MAP2K3 were identified. MAP2K3 encodes the mitogen-activated protein kinase 3
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(MEK3) belonging to the mitogen-activated protein kinase (MAPK) signaling pathway.
Dysregulation of the MAPK pathway is frequently observed in various cancers [10]. MEK3
is a dual-specificity kinase that belongs to the MAPKK family responsible for the phospho-
rylation of serine/threonine and tyrosine residues of downstream MAPK substrates [11].
Critical to the MAPK p38 signaling pathway, MEK3 and MEK6 activate p38 to induce cellu-
lar differentiation, migration, survival, apoptosis, and metabolism [12–14]. Mice lacking
MEK3 and MEK6 are more likely to develop cancer than their wild-type counterparts [15].
Similarly, MEK3 expression is often downregulated in breast, colon, liver, esophageal
squamous cell carcinoma, and thyroid cancer [16–19]. Furthermore, inhibition of p38 is
associated with resistance to therapy in hematopoietic malignancies [20–23].

In this study, we investigated the role of four MEK3 mutations found within an
ALL cohort, including R65L and R67W localized near the ATP binding site and P11T and
R26T residing in the amino-terminal domain [24]. We speculated that MEK3 R65L and
R67W would create physicochemical distortions by replacing polar Arg with hydrophobic
residues, while P11T and R26T would affect protein binding interactions. Here, we provide
evidence that these variants impact MEK3 stability by increasing degradation. Further-
more, MEK3 mutants disrupted auto-phosphorylation, which resulted in a loss of kinase
activity and subsequent p38 phosphorylation. MEK3 is responsible for activating MAPK
p38 to mediate growth-inhibitory and pro-apoptotic signals. Thus, inhibition of p38 by
degradation of MEK3 may render this pathway inactive and contribute to aberrant growth
and survival signals in ALL. These findings suggest that MEK3 activation represents a
potential therapeutic target for treating ALL.

2. Results
2.1. Identification of Potential Oncogenes Involved in ALL

WES analyzed with OncoMiner Pipeline [25] was used to identify potential genes
involved in driving ALL in Hispanic patients from the U.S./Mexico border. OncoMiner
variants identified from nine ALL patient samples and seven healthy controls were sepa-
rated into three groups: kinases, phosphatases, and cancer-related genes. Twenty-three
kinase variants observed in ALL were statistically significant from the controls. From these
variants, eight were predicted to have a deleterious impact on protein function as indi-
cated by the Protein Effect Analyzer (Provean) score. Five variants occurred in MAP2K3,
while the other three occurred in MYLK, GUCY2C, and ERBB2 (Figure 1). The latter
variants were confined to amino (MYLK and GUCY2C) or carboxylic domains (ERBB2)
and were previously reported as natural variants [26], resulting in their exclusion from
subsequent analysis.

2.2. Identification of MEK3 Variants in ALL Patient Samples

MAP2K3 isoform-1 was found harboring five potentially pathogenic SNPs indicated
by Provean prediction scores of less than −2.5 [27]. Each SNP found in MAP2K3 is shown
with its Provean score, exact location, amino acid (A.A.) change, and prevalence in Table 1.
Each of them was absent in the control group (Table 1). MAP2K3, R26T, and P11T were
located in the amino-terminal end near the p38 binding site, while R65L, R67W, and
Q73* localized to the kinase domain near the ATP binding site (Figure 2). Of these, four
were previously reported in ClinVar P11T, R26T, R65L, and R67W (dbSNP:rs33911218,
dbSNP:rs36047035, dbSNP:rs56067280, and dbSNP:rs56216806, respectively) yet have not
been mechanistically characterized. Eight patients harbored the four missense mutations
and the unreported nonsense mutation that translates to a truncated MEK3 protein lacking
245 A.A. from its carboxyl-terminal end (Table 1 and Figure 2). Only one patient from the
cohort had full-length MEK3 with the four missense mutations near the ATP binding site
and the substrate-binding site (Table 1 and Figure 2).
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MAP2K3 Provean A.A.From Location A.A.To Patients Controls 
chr17.21202191.c.a.c -5.539 P 11 T 9 0 
chr17.21202237.g.c.g -2.605 R 26 T 9 0 
chr17.21204187.g.t.g -6.557 R 65 L 9 0 
chr17.21204192.c.t.c -5.085 R 67 W 9 0 
chr17.21204210.c.t.c -7.739 Q 73 * 8 0 
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Figure 1. Identification of potential oncogenes involved in ALL. Schematic diagram showing the criteria used to identify
ALL variants with a PROVEAN score of less than −2.5.

Table 1. Identification of SNPs in the MAP2K3 gene using the OncoMiner Pipeline.

MAP2K3 Provean A.A.From Location A.A.To Patients Controls

chr17.21202191.c.a.c −5.539 P 11 T 9 0
chr17.21202237.g.c.g −2.605 R 26 T 9 0
chr17.21204187.g.t.g −6.557 R 65 L 9 0
chr17.21204192.c.t.c −5.085 R 67 W 9 0
chr17.21204210.c.t.c −7.739 Q 73 * 8 0

* Stop codon.
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probed for MEK3 using an anti-cMYC tag. The 4M-MEK3 construct displayed signifi-
cantly lower protein expression compared to WT-MEK3 (Figure 3A lanes c and b, respec-
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of ~15 kDa (Figure 3A lane d). To determine whether the decreased expression of MEK3 
was specific to the HEK293 system, HepG2 cells were also transfected with MEK3 con-
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Figure 2. Linear representation of MEK3 indicating location of ALL mutations. Schematic diagram
of MEK3 showing mutations identified from the ALL patient library. Amino acids are shown located
within structural domains of MEK3.

2.3. Quadruple and Truncated MEK3 Mutants Decrease Protein Stability

To investigate the functional role of MEK3 mutants, quadruple (4M-MEK3) and trun-
cated (∆-MEK3) MEK3 mutants were generated. Their impact on protein expression was
assessed in HEK293 cells transfected with either wild type (WT) or mutant MEK3 con-
structs. At 24 hours post-transfection, cells were harvested, and total cell lysate (TCL) was
probed for MEK3 using an anti-cMYC tag. The 4M-MEK3 construct displayed significantly
lower protein expression compared to WT-MEK3 (Figure 3A lanes c and b, respectively).
No band was observed for the truncated ∆-MEK3 construct with the expected size of ~15
kDa (Figure 3A lane d). To determine whether the decreased expression of MEK3 was
specific to the HEK293 system, HepG2 cells were also transfected with MEK3 constructs.
Similarly, 4M-MEK3 had significantly reduced levels of expression compared to WT-MEK3,
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and again ∆-MEK3 was absent (Figure 3B lanes c and d, respectively). All membranes were
reprobed for GAPDH to ensure equal loading (Figure 3C,D).
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Figure 3. Quadruple and truncated MEK3 mutants decrease protein stability. Cells were not transfected (NT) or transiently
transfected concurrently with WT-cMYC or MEK3-cMYC mutant constructs. (A) Total cell lysates (TCL) from HEK293
(B) and HEPG2 cells transfected with either WT, quadruple (4M), or truncated (∆) MEK3 constructs, separated by SDS-PAGE
(4–20%) and immunoblotted (WB) as indicated. MEK3 protein expression band intensities were normalized to GAPDH
using densitometric analysis. (C) Quantification of MEK3 mutant protein expression relative to WT in HEK293 and (D) in
HEPG2 cells. Data are presented as mean ± SEM (n = 3). One-way ANOVA with post hoc Tukey’s test for multiple
comparisons was used to determine statistical significance * p < 0.01. (E) Immunofluorescence of transfected HEK293 cells.
Subcellular localization of MEK3 was determined by staining for cMYC (middle panel), and nuclei using DAPI (left panel).
Right panel shows merged images. Scale bar 20 µM.

Next, dual-labeled immunofluorescent confocal microscopy was utilized to determine
whether WT-MEK3 and MEK3 mutants have similar subcellular localization as previously
reported [28]. Transfected HEK293 cells were probed for nuclei using the DNA binding
fluorescent stain DAPI (Figure 3E, left panel). WT-MEK3 localized to the nucleus and
cytoplasm (Figure 3E, right panel) with a punctuate staining pattern in the cytoplasm
(Figure 3E, middle panel), while 4M-MEK3 had an equal distribution across the cytoplasm
and nucleus. However, the expression of 4M-MEK3 was much lower than WT-MEK3
(Figure 3E, middle panel). There were no detectable levels of ∆-MEK3 (Figure 3E, middle
panel), as seen with immunoblot analysis. Taken together, these data suggest that ALL-
derived MEK3 mutants not only impact protein expression but also localization.

2.4. Quadruple MEK3 Mutant Was Degraded at an Accelerated Rate Compared to
Wild-Type Protein

The observed decreased expression of 4M-MEK3 could be attributed to a higher rate
of turnover. Therefore, the half-life of 4M-MEK3 was analyzed in the presence of the
translational inhibitor cycloheximide (CHX) and compared to WT-MEK3. Both WT-MEK3
and 4M-MEK3 showed a progressive decrease in protein expression over time, yet their
turnover rate differed remarkably (Figure 4). Pronounced turnover of 4M-MEK3 was
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observed as indicated by a half-life of less than 12 hours (h) compared to WT-MEK3 protein
occurring at 48 h (Figure 4).
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Figure 4. Quadruple MEK3 mutant was degraded at an accelerated rate compared to wild type.
HEK293 cells were not transfected (−) or transiently transfected with (A) WT-cMYC or (B) 4M-MEK3-
cMYC mutant construct. Twenty-four hours post-transfection, cells were left untreated (−) or treated
with CHX (+) for the indicated time points. Cell lysates were collected and separated by SDS-PAGE
and immunoblotted (WB), as indicated. (C) Quantified protein expression of WT-MEK3 or 4M-MEK3
is shown relative to time 0. Band intensities were normalized to GAPDH using densitometric analysis
and presented as a ratio of cMYC to GAPDH. Data are presented as mean ± SEM (n = 3). A t-test
(unpaired) was used to determine statistical significance. *, p < 0.05.

2.5. Cysteine/Serine Protease Inhibitors Rescue Quadruple MEK3 Mutant Protein Expression

To investigate the proteolytic pathway involved in the degradation of 4M-MEK3,
HEK293 cells were transiently transfected with WT-MEK3 or 4M-MEK3 and incubated
with CHX in the presence of the following proteolytic inhibitors: MG132 (proteasomal inhi-
bition), chloroquine (CQ) (lysosomotropic agent), and cysteine/serine protease inhibitors
(leupeptin and aprotinin, respectively). Expression of WT-MEK3 was stabilized by MG132
proteasomal inhibition (Figure 5A), and no effect was observed in the presence of CQ and
the serine/cysteine protease inhibitors (data not shown). Degradation of 4M-MEK3 was
accelerated by MG132 proteasomal inhibition, but was insensitive to CQ lysosomotropic
agents (Figure 5F,D, respectively). The accelerated degradation observed during protea-
some inhibition could suggest that proteins involved in 4M-MEK3 degradation accumulate
to facilitate its breakdown. Interestingly, the expression of 4M-MEK3 was rescued by the
cysteine/serine proteolytic inhibitors leupeptin and aprotinin (Figure 5G).
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Figure 5. Cysteine/serine protease inhibitors rescue quadruple MEK3 mutant protein expression. HEK293 cells were
not transfected (−) or transiently transfected with WT-cMYC or 4M-MEK3-cMYC mutant constructs. At 24 hours post-
transfection, cells were left untreated (−) or treated with CHX or a combination with proteolytic inhibitors for the indicated
time points. (A,B) WT-MEK3 was treated with MG132. 4M-MEK3 was treated with either (C,D) CQ, (E,F) MG132, or
(G,H) cysteine/serine protease inhibitors. Cell lysates were separated by SDS-PAGE and immunoblotted (WB) as indicated.
Quantified protein expression of WT-MEK3 or 4M-MEK3 is shown relative to time 0 (Lower panels B, D, F and H). Band
intensities were normalized to GAPDH using densitometric analysis and presented as a ratio of cMYC to GAPDH. Data are
presented as mean ± SEM (n = 3 and n = 2 for Panel H). A t-test (unpaired) was used to determine statistical significance.
*, p < 0.05.

2.6. Proteosomal Degradation of Truncated MEK3 Mutant Is Ubiquitin Independent

To explore whether the absence of ∆-MEK3 was due to reduced expression or rapid
degradation, HEK293 cells were transfected with MEK3 constructs and incubated without
or with MG132. Stable levels of WT-MEK3 and 4M-MEK3 expression were accomplished
at 8 h, while the proteasome inhibitor MG132 rescued truncated ∆-MEK3 expression at 4 h
(Figure 6A, top panel). These data suggest that ∆-MEK3 is more susceptible to degradation
than both WT-MEK3 and 4M-MEK3. As expected, the anti-ubiquitin immunoblot showed
an accumulation of ubiquitinated proteins after MG132 treatment (Figure 6A, middle panel).
Membranes were reprobed for GAPDH to ensure equal protein loading (Figure 6A, bottom
panel). Typically, proteasome degradation requires substrate modification by the addition
of ubiquitin to Lys residues. Hence, to assess MEK3 ubiquitination, lysate harvested from
transfected cells were immunoprecipitated for c-MYC tagged MEK3, and membranes were
probed for ubiquitin. No evidence of ubiquitination was observed (Figure 6B, top panel).
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Cell lysates from transfected cells probed with anti-ubiquitin showed high-molecular
weight ubiquitinated proteins (Figure 6C, top panel). Indeed, several proteins are degraded
in a ubiquitin-independent manner, as reviewed by Jariel-Encontre et al., 2008 [29]. The
absence of ubiquitination could likely be due to exhaustion of the ubiquitin pool or be
due to unstructured regions acting as proteasome initiation sites [29]. The relevance of
ubiquitination to MEK3 signaling requires additional study. The absence of detectable
∆-MEK3 is likely due, in part, to enhanced proteasomal degradation.
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Figure 6. Degradation of truncated MEK3 mutant by the proteasome is ubiquitin-independent. HEK293 cells were not
transfected (NT) or transiently transfected concurrently with WT-cMYC or MEK3-cMYC constructs (4M-MEK3 and ∆-MEK3).
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After 24 hours of transfection, cells were left untreated (−) or treated with MG132 (+) as per the indicated time points. (A)
Cell lysates were separated by SDS-PAGE and immunoblotted as indicated. (B) Transfected cells were treated with DMSO
(−) or MG132 (+) for 8 h and immunoprecipitated (IP) for cMYC, and (C) probed using cell lysate. Samples were separated
by SDS-PAGE and immunoblotted (WB) as indicated. (D) Quantified protein expression of WT-MEK3 or MEK3 constructs
is shown relative to time 0. Band intensities were normalized to GAPDH using densitometric analysis and presented as a
ratio of cMYC to GAPDH. Data are presented as mean ± SEM (n = 3). T-test (unpaired) was used to determine statistical
significance. *, p < 0.05.

2.7. MEK3 Mutants Disrupt Auto-Phosphorylation at T222 and Reduce T180/Y182
Phosphorylation of p38 MAPK

To determine whether 4M-MEK3 and the newly identified ∆-MEK3 mutant could
regulate the MAPK p38 signaling pathway, activation of downstream p38 was assessed.
HEK293 cells were transfected with WT-MEK3 or mutant MEK3 constructs. Twenty-four
hours post-transfection, cells were lysed, pelleted, and immunoprecipitated for MEK3 using
the cMYC antibody. MEK3 autophosphorylation was assessed using a phospho-specific
antibody against T222 (pT222). The corresponding lysate was collected and probed for
p38 activation using a phospho-specific antibody against MAPK p38 T180/Y182 (Phospho-
p38 MAPK). A densitometric analysis of phosphorylated protein was performed and
normalized to total cMYC or p38. Compared to WT-MEK3, quadruple 4M-MEK3 and
truncated ∆-MEK3 mutants displayed an inability to autophosphorylate (Figure 7A, top
panel) and activate p38 (Figure 7A).
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Figure 7. MEK3 mutants disrupt auto-phosphorylation at T222 and reduce T180/Y182 phosphoryla-
tion of p38 MAPK. HEK293 cells were not transfected (NT) or transiently transfected concurrently
with WT-MEK3 or MEK3-cMYC constructs (4M-MEK3 and ∆-MEK3). (A) Immunoprecipitated (IP)
cMYC or cell lysate was separated by SDS-PAGE and immunoblotted (WB) as indicated. (B) Phospho-
p38 band intensities were normalized to total p38 by densitometric analysis. Data are presented as a
ratio of cMYC to GAPDH. Quantification of phospho-p38 is shown relative to WT. Representative
data for n = 3 are presented as mean ± SEM. One-way ANOVA with post hoc Tukey’s test for multiple
comparisons was used to determine statistical significance. *, p < 0.05.
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2.8. Quadruple and Truncated MEK3 Mutants Exhibited Less Suppresive Activity on the Viability
of HEK293 Cells

Previous studies demonstrated an essential role for MEK3 in cell proliferation by acti-
vating p38. Thus, the ability of MEK3 mutants to induce cell proliferation was assessed by
MTS assay in transfected HEK293 cells. Cells were seeded in 96-well plates and measured
for viability 24 h post-transfection. Data are presented as percent viability. Compared to
WT, the quadruple (4M-MEK3) and truncated (∆-MEK3) mutants showed significantly less
suppressive activity on the viability of HEK293 cells (Figure 8).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 15 
 

 

to WT, the quadruple (4M-MEK3) and truncated (Δ-MEK3) mutants showed significantly 
less suppressive activity on the viability of HEK293 cells (Figure 8).  

 
Figure 8. Quadruple and truncated MEK3 mutants exhibited less suppressive activity on the viabil-
ity of HEK293 cells. HEK293 cells were non-transfected (NT) or transiently transfected concurrently 
with WT-cMYC or MEK3-cMYC mutant constructs (4M-MEK3 and Δ-MEK3). Cell viability was 
measured at 24 h using MTS. Values from two independent experiments are presented as percent 
viability (mean ± SEM). One-way ANOVA with post hoc Tukey’s test for multiple comparisons was 
used to determine statistical significance *, p < 0.01. 

3. Discussion 
ALL represents a significant problem in pediatric health that is marked among His-

panics. Screening for common genetic signatures is becoming standard in diagnostic rou-
tines and may exclude oncogenic variants found in Hispanic patients where data have 
generally been limited. Thus, genomic analyis of diverse cancer patient samples is needed 
to identfy potential oncogenes and tumor suppressor genes driving ALL. Kinase activat-
ing mutations have gained attention given their targetability. However, loss-of-function 
kinase mutations are also of great importance [30], considering that they can impact pro-
tein production, decrease stability or affect folding kinetics. Such mutations can instigate 
protein unfolding or create incorrectly folded proteins [31]. Here, we present evidence 
that MEK3 R26T, P11T, R65L, R67W, and Q73* mutations cause instability and limit cel-
lular protein expression (Figure 3). Quadruple 4M-MEK3 expression was rescued by cys-
teine/serine protease inhibitors (Figure 5). In contrast, the expression of truncated Δ-
MEK3 could be rescued by proteasome inhibition, and its degradation was observed to 
occur in a ubiquitin-independent manner (Figure 6). Furthermore, both quadruple and 
truncated MEK3 mutants displayed reduced enzymatic activity (Figure 7). Consequently, 
loss of p38 activation resulted in reduced suppressive activity on HEK293 cell viability. 
(Figure 8). These data suggest that 4M-MEK3 and Δ-MEK3 mutations prevent auto-phos-
phorylation, inhibit p38 activation, and promote proliferative signaling within the 
HEK293 system. It is tempting to speculate a similar role for MEK3 in lymphocytes and 
ALL. Further studies on MEK3 loss of function mutations and transformation potential 
are needed to assess MEK3 signaling as a viable target for ALL and other cancers. Here, 
we show that reoccurring quadruple and truncated MEK3 mutants observed from ALL 
patients can impact protein expression and downstream MAPK p38 signaling.  

The structural features and the molecular mechanisms implicated in MEK3 turnover 
have not been characterized. Structural data of MEK family proteins are available for 
MEK1/2 and MEK6 [32]. MEK3 shares roughly 80% of its homology with MEK6 [28], and 
most differences are restricted to the amino-terminal end. Residue K64 is essential for ki-
nase activity following binding to the α and β phosphates of ATP [24]. Amino acids R64, 
R65, and R67 are located within a hydrophobic cluster domain [24]. Unsurprisingly, we 
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viability (mean ± SEM). One-way ANOVA with post hoc Tukey’s test for multiple comparisons was
used to determine statistical significance *, p < 0.01.

3. Discussion

ALL represents a significant problem in pediatric health that is marked among Hispan-
ics. Screening for common genetic signatures is becoming standard in diagnostic routines
and may exclude oncogenic variants found in Hispanic patients where data have gener-
ally been limited. Thus, genomic analyis of diverse cancer patient samples is needed to
identfy potential oncogenes and tumor suppressor genes driving ALL. Kinase activating
mutations have gained attention given their targetability. However, loss-of-function kinase
mutations are also of great importance [30], considering that they can impact protein pro-
duction, decrease stability or affect folding kinetics. Such mutations can instigate protein
unfolding or create incorrectly folded proteins [31]. Here, we present evidence that MEK3
R26T, P11T, R65L, R67W, and Q73* mutations cause instability and limit cellular protein
expression (Figure 3). Quadruple 4M-MEK3 expression was rescued by cysteine/serine
protease inhibitors (Figure 5). In contrast, the expression of truncated ∆-MEK3 could
be rescued by proteasome inhibition, and its degradation was observed to occur in a
ubiquitin-independent manner (Figure 6). Furthermore, both quadruple and truncated
MEK3 mutants displayed reduced enzymatic activity (Figure 7). Consequently, loss of p38
activation resulted in reduced suppressive activity on HEK293 cell viability. (Figure 8).
These data suggest that 4M-MEK3 and ∆-MEK3 mutations prevent auto-phosphorylation,
inhibit p38 activation, and promote proliferative signaling within the HEK293 system. It is
tempting to speculate a similar role for MEK3 in lymphocytes and ALL. Further studies on
MEK3 loss of function mutations and transformation potential are needed to assess MEK3
signaling as a viable target for ALL and other cancers. Here, we show that reoccurring
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quadruple and truncated MEK3 mutants observed from ALL patients can impact protein
expression and downstream MAPK p38 signaling.

The structural features and the molecular mechanisms implicated in MEK3 turnover
have not been characterized. Structural data of MEK family proteins are available for
MEK1/2 and MEK6 [32]. MEK3 shares roughly 80% of its homology with MEK6 [28], and
most differences are restricted to the amino-terminal end. Residue K64 is essential for
kinase activity following binding to the α and β phosphates of ATP [24]. Amino acids R64,
R65, and R67 are located within a hydrophobic cluster domain [24]. Unsurprisingly, we
discovered that variants within these regions affect both auto-phosphorylation and MEK3
expression (Figures 2 and 7, respectively). It is likely that the quadruple MEK3 mutant
is only partially folded compared to WT, resulting in accelerated degradation [33]. These
mutations also likely create changes in hydrophobicity and thermal stability.

The MAPK p38 signaling pathway plays a crucial role in inhibiting cell proliferation
and apoptosis [34]. MEK3 arrests growth by upregulating cyclin-dependent kinase (CDK)
inhibitors and downregulating both cyclin D1 protein and polycomb protein Bim1 [35–37].
It is therefore intuitive that dysregulation of these physiological processes can lead to aber-
rant consequences and contribute to hematopoietic malignancies. The evidence provided
herein supports the hypothesis that the disruption of the MAPK p38 pathway by loss of
MEK3 contributes to aberrant cell proliferation (Figure 8). Indeed, the phosphorylation
of the retinoblastoma (RB) tumor suppressor by p38 delays G1 cell cycle progression [38].
Conceivably, the inactivation of genes in the MAPK p38 pathway represents one mecha-
nism to escape cell cycle arrest in ALL. The role of p38 in hematopoietic cell proliferation
was described elsewhere [39].

Current evidence suggests that p38 activation sensitized by genotoxic agents, such
as cisplatin and gemcitabine [40], is essential to the antileukemic effects of IFNα [23].
Thus, whether these variants affect resistance to chemotherapeutic agents warrants inves-
tigation. Perhaps drugs that mimic p38 phosphorylation of downstream targets or use
small-molecule inhibitors to target negative regulators of p38 might elicit a therapeutic
benefit. The use of cysteine/serine protease inhibitors for re-establishing p38 activation
in the presence of 4M-MEK3 requires further investigation. Reactivating the MAPK p38
pathway may represent a therapeutic strategy for ALL that is particularly relevant to
patients harboring MEK3 mutations.

4. Materials and Methods
4.1. Whole-exome sequencing

All research utilizing human subjects and human-derived cell lines were approved by
The University of Texas at the El Paso Institutional Review Board (UTEP IRB, El Paso, TX,
USA) committee. All participants gave written informed consent. The genomic DNA from
7 healthy controls and 9 patients diagnosed with ALL (UTEP biorepository, El Paso, TX,
USA) was isolated using Purgene Kit A (Qiagen, Germantown, MD, USA) according to
the manufacturer’s instructions, purified, and sent to Otogenetics Corp. Atlanta, GA, USA
for WES.

4.2. Bioinformatics

Analysis of WES data was performed by the Border Biomedical Research Core (BBRC,
UTEP, El Paso, TX, USA) Bioinformatics unit using OncoMiner to separate variants into
three groups: kinases, phosphatases, and cancer-related genes. The kinase group was
screened for variants that were predicted to impact protein function using a PROVEAN
score of less −2.5 [27] and including those not present within the control group [25].

4.3. Cell Culture

The human embryonic kidney HEK293 available from ATCC (ATCC CRL-1573, Man-
assas, VA, USA) and the human liver cancer HEPG2 obtained from ATCC (ATCC HB-8065™
cell lines were maintained in RPMI 1640 medium containing 10 % fetal bovine serum (FBS;
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Atlanta Biologicals, R&D Systems, Minneapolis, MN, USA), 2 mM L-glutamine (Corning,
New York, NY, USA), and 1 % penicillin-streptomycin (Corning).

4.4. Plasmid and Site-Directed Mutagenesis

The RC218101 plasmid for MAP2K3 was purchased from OriGene (Rockville, MD,
USA). The primers were designed using the Agilent mutagenesis primer design tool.
Primers included MAP2K3 R65L (forward 5’-tggccgtgaagctgatccgggccac-3’ and reverse 5’-
gtggcccggatcagcttcacggcca-3’); P11T (forward 5’-gcacccaaccccacaaccccccgg-3’ and reverse
5’-ccggggggttgtggggttgggtgc-3’); R67W (forward 5’-cgtgaagcggatctgggccaccgtgaa-3’ and re-
verse 5’-ttcacggtggcccagatccgcttcacg-3’); R26T (forward 5’-ttcatcaccattggagacactaactttgaggt
ggaggctg-3’ and reverse 5’-cagcctccacctcaaagttagtgtctccaatggtgatgaa-3’); Q73 stop (forward
5’-ccgggccaccgtgaactcataggagcagaa-3’ and reverse 5’-ttctgctcctatgagttcacggtggcccgg-3’).
MEK3 mutants were made using the Quickchange II XL Site-directed Mutagenesis kit (Agi-
lent Technologies, Santa Clara, CA, USA) according to the manufacturer’s instructions. The
MEK3 quadruple mutant (4M-MEK3) contained R65L, P11T, R67W, and R26T mutations,
whereas the truncated MEK3 (∆-MEK3) contained the Q73 stop mutation. All mutations
were verified by DNA sequencing at the Genomic Analysis Core Facility of the BBRC at
UTEP, El Paso, TX, USA.

4.5. Transfection, Lysis of Cells, Immunoprecipitation, and Western Blots

HEK293 cells were seeded in 6-well plates and transiently transfected until they
reached 90–95% confluency. Transfection efficiency was measured by the expression of
the target protein at different time points (i.e., 24, 36, and 48 hours). Maximum protein
expression occurred at 24 h and was utilized for all transfection experiments. MEK3-
WT, 4M-MEK3, or ∆-MEK3 were transfected (3 µg) concurrently using 5 µl of Invitrogen
Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA) according to the manu-
facturer’s instructions. At 24 hours post-transfection, cells were pelleted and lysed in Triton
lysis buffer, as previously described [41]. Total protein concentration was determined
using the Pierce bicinchoninic acid method (Thermo Fisher Scientific, Waltham, MA, USA).
MEK3 constructs were immunoprecipitated using 2 µg of the cMYC antibody (SC-40).
Samples were separated in 4–20% SDS-PAGE, transferred to a PVDF membrane, and im-
munoblotted as previously described [41] using the following antibodies: MEK3 pT222
(OriGene, Rockville, MD, USA) or p38 ppT180/Y182 (cell signaling 4115S). Anti-cMYC
(SC-40) was used to assess total MEK3; anti-ubiquitin (A104R) was used to detect protein
ubiquitination; and anti-GAPDH was used as a loading control. Membranes were devel-
oped using HRP goat anti-rabbit or anti-mouse antibodies and visualized by enhanced
chemiluminescence using LICOR and Image Studio Lite software (Lincoln, NE, USA). For
reblotting, membranes were placed in the stripping buffer (62.5 mM Tris (pH 6.7), 2% SDS,
and 100 mM β-mercaptoethanol) for 30 min at 55 ◦C, then blocked and reprobed with
anti-GAPDH or anti-cMYC.

4.6. Immunofluorescence

Transfected HEK293 cells were seeded in a 96-well plate, fixed with 8% formaldehyde
and permeabilized with 0.1% Tween 20 v/v in PBS. Cell staining was performed as previ-
ously described [42] using the mouse monoclonal anti-cMYC (Santa Cruz Biotechnology,
Dallas, TX, USA) and goat anti-mouse IgG (H+L) Alexa Fluor Plus 488 as a secondary
antibody. High-resolution digital fluorescent images were captured from the stained cells
using a LSM 700 confocal laser scanning microscope equipped with a 40× immersion oil
objective (Zeiss, New York, NY, USA). Images were captured in the multitrack scanning
mode (Alexa-488 and DAPI) and analyzed using the ZEN 2009 software (Zeiss). Visual-
ization of transfected cells by fluorescence microscopy against the cMYC tag was used
to estimate the transfection efficiency of MEK3. Transfection efficiency was determined
as follows: number of cells stained with fluorescent dye divided by the total number of
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cells in the field, and this figure was multiplied by 100. This method yielded a transfection
efficiency of roughly 75% in the HEK393 model system.

4.7. Protein Half-Life Studies

HEK293 cells were plated in 6-well plates and transfected as previously stated. At
24 h post-transfection, cells were incubated without or with the translational inhibitor
cycloheximide (CHX) at a final concentration of 100 µg/mL. Cells were collected at 0, 12, 24,
and 48 hours. Similarly, to investigate protein turnover, cells were treated with CHX with
the addition of proteolytic inhibitors: proteasome inhibitor MG132 (10 µM), lysosomotropic
agent chloroquine (CQ) (100 µM), or the cysteine/serine protease inhibitors (aprotinin and
leupeptin) (100 µM). Non-transfected (NT) cells were used as a negative control.

4.8. Cell Viability Assay

To examine whether MEK3 mutants impact proliferation, HEK293 cells were trans-
fected in 6-well plates with 3 µg of WT or MEK3 mutant plasmids. At 24 h post-transfection,
cells were harvested and plated in 96-well plates and incubated overnight at 37 ◦C, allowing
cells to become adherent. Cell viability was measured using the MTS (3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) reagent (Promega, Madi-
son, WI, USA) as previously described [43]. Absorbance was measured using a iMark
microplate reader (BIO-RAD, Hercules, CA, USA). Data represent the mean and stan-
dard deviations from two independent experiments in triplicates and are presented as
percentages of cell viability.
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