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Abstract: Machine Learning (ML) techniques have been applied in the field of nanotoxicology with
very encouraging results. Adverse effects of nanoforms are affected by multiple features described
by theoretical descriptors, nano-specific measured properties, and experimental conditions. ML
has been proven very helpful in this field in order to gain an insight into features effecting toxicity,
predicting possible adverse effects as part of proactive risk analysis, and informing safe design. At this
juncture, it is important to document and categorize the work that has been carried out. This study
investigates and bookmarks ML methodologies used to predict nano (eco)-toxicological outcomes
in nanotoxicology during the last decade. It provides a review of the sequenced steps involved in
implementing an ML model, from data pre-processing, to model implementation, model validation,
and applicability domain. The review gathers and presents the step-wise information on techniques
and procedures of existing models that can be used readily to assemble new nanotoxicological in
silico studies and accelerates the regulation of in silico tools in nanotoxicology. ML applications in
nanotoxicology comprise an active and diverse collection of ongoing efforts, although it is still in their
early steps toward a scientific accord, subsequent guidelines, and regulation adoption. This study is
an important bookend to a decade of ML applications to nanotoxicology and serves as a useful guide
to further in silico applications.
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1. Introduction

Nanomaterials/nanoforms (NMs) display high heterogeneity regarding their physicochemical
(p-chem) properties, quantum-mechanical properties, and, as such, their toxicological impact, which
renders assessing their risk a case-by-case challenge. Traditional hazard assessment relies mostly on
in vivo testing that poses technical challenges, e.g., regarding the validity of extrapolation to humans,
ethical dilemmas, but also comes with high resource demands in cost and time [1]. Such an approach
is not conducive to efficient identification and mitigation of possible risks, especially within emerging
technologies where the pace of development is rapid. There is a momentum from scientific and policy
influencing bodies globally to promote in silico models as alternatives methods in compliance with the
3R (Replacement, Reduction, and Refinement) principles for reducing the use of animals in research.
Moreover, developing the knowledge base needed for robust modelling for predicting NM properties,
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exposure, and hazard potential would also improve the design of new materials while maximizing
utility and minimizing adverse biological effects (safe-by-design) [2,3]. In order to investigate the
potential of modelling the toxicity and properties of NMs, the European Commission has funded
several modelling projects [4,5]. However, in silico tools are not yet accepted by regulators as a
stand-alone solution due to a lack of standardization, but as a complementary tool [6,7].

Diverse computational models have been developed during the last decade for predicting
toxicological properties or the adverse effects of NMs. As the use of computational tools is increasing,
the goal of this manuscript is to provide a snapshot of all processing steps in model implementations
of the last decade, in order to provide paradigms that can lead to more robust model building. A
Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship
(QSPR) are among the most used tools in the nanotoxicology prediction. Villaverde et al. [8]
analyzed QSAR/QSPR tools for risk assessment, modeling methods, and validation procedures with
regard to their potential for meeting requirements within the European legislative framework for
authorization of nano-formulations. The authors argued that the standardization of protocols is
needed, even for high-quality and well-described datasets. Quik et al. [9] analyzed available models
and their parametrization related to NM properties for risk assessment. The authors showed an
opportunity for development of new predictive in silico methods when full mechanistic functioning
of the NM-biological surfaces system is accounted for. The Nanoinformatics Roadmap 2030 [5] is
a compilation of state-of-the-art commentaries from multiple scientific fields dealing with issues
involving NM risk assessment and governance. The authors addressed three recognized challenges
that nanoinformatics face in general such as limited data sets, limited data access, and regulatory
requirements for validating and accepting computational models. The authors warned for the
need of interconnecting harmonized databases in a framework that entails early use of data for
regulatory purposes, e.g., read-across method of filling data gaps, to prevent unstructured progress in
generating data.

Schemes for clustering NMs have been proposed and reviewed elsewhere [10–12]. Lamon et
al. [11] addressed categorization schemes, grouping for read-across approaches and computational
applications for ranking NMs. The authors stated that the few studies dealing with NM similarities
used non user-friendly tools on limited datasets. The authors suggested that toxicity datasets and
nano-specific properties should both be investigated to identify groups of NMs. Giusti et al. [12]
noted how in silico methods contribute at different stages of NM grouping such as in developing vs.
supporting initial grouping hypotheses. The methods to be used vary, from read-across, unsupervised,
and supervised machine learning (ML) methods to several QSAR approaches.

The Organization for Economic Cooperation and Development (OECD) have published a set
of validation principles of QSAR models [13]. These principles detect that models should have a
well-defined endpoint, unambiguous algorithm, defined domain of applicability, appropriate measure
of goodness-of-fit, robustness and predictivity, and mechanistic interpretation. Such principles are
fundamental and must be taken into account when dealing with in silico models in general. More
in depth information about the OECD model validation principles can be found elsewhere [14,15]
including suggestions for extension. Puzyn et al. [4] discussed relevant considerations to be taken into
account when evaluating QSAR models, according to the OECD principles, including the quality of the
data and the model results reproducibility. Basei et al. [14] critically analyzed existing approaches of ML
techniques based on their predictive ability regarding health hazard endpoints and proposed possible
developments. The authors provided adopted criteria to evaluate computational tools that predict
nanotoxicity, inspired by the OECD principles. Lamon et al. [16] proposed the use of harmonized
model reporting templates or QSAR Model Reporting Format (QMRF), for systematically describing
models of NM regulatory risk assessments. The templates include an adaptation of the QMRF, a
reporting template for Physiologically-Based PharmacoKinetic (PBPK) and environmental exposure
models, applicable to NMs. The authors demonstrated the value of these templates on reporting
different models and overviewing the landscape of available models for NMs. ToxRTool (Toxicological
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data Reliability assessment Tool), which is a compilation of reliability assessment questions, can also
be employed to asses meta-analyzed studies for human health hazard assessments [17].

Based on the above reviews, it is evident that a lot of effort and research is needed so that in silico
tools are both accepted by regulators and implemented in a harmonized way to maximize their utility.
The applicability domain was discussed through the existing reviews as well as the limitations of the
dataset (e.g., size), the lack of nano-specific descriptors, and the validation performance. This paper
provides an extensive up-to-date review focusing on the techniques that are used to predict a human
health and/or environmental outcome including selection of algorithms and the employed performance
metrics and applicability domain methods. The review gathers and presents step-wisely information
on techniques and procedures of existing models that computational toxicologists and researchers can
adopt to assemble their own nanotoxicological in silico studies.

Our research finds that data preprocessing, including selecting the features, addressing class
imbalance, normalizing data and methodological splitting, is essential before model implementation.
Proper model performance metrics and statistics, including uncertainty and sensitivity analysis, are
indispensable elements of model evaluation. This study shows that tree algorithms (i.e., random
forest) are the most common ML used due to insensitivity of data defects, resistance to overfitting, and
robustness in small datasets. Regression models traditionally used in classic QSARs are still common
but trending shifts are toward nonlinear algorithms. Artificial Neural Networks have a great deal of
potentiality but data paucity limits their use for the time being. This review is preceded by another
analysis of the literature identified herein, focusing on data collection, curation, and utilization [18] as
a precursor to data pre-processing and model implementation.

2. Methods

2.1. Search Design

In order to investigate ML models in the field of nanotoxicology, we explored several sources
of the peer-reviewed scientific literature and reports executing a systematic Boolean search with
key terms, such as “nanoparticle,” “nanomaterial,” “in silico,” “computational,” “machine learning,”
“model,” and “nanotoxicity.” These were used to form defined multiple search strings, which were
applied to publicly available electronic search engines (Google Scholar, ScienceDirect, Web of Science,
and PubMed) with the aim of being able to discover studies that implement an ML model to predict
nanotoxicity (Table 1). The final technical report of NanoComput project, “Evaluation of the availability
and applicability of computational approaches in the safety assessment of nanomaterials” carried out
by the European Commission’s Joint Research Centre (JRC) was taken into consideration for studies
before 2017 [15].

Table 1. Review protocol.

Subject Description Subject Description

Databases
Google Scholar, Elsevier
(Scopus and ScienceDirect),
Web of Science and PubMed

Exclusion criteria

Studies predicting
nano-properties,
environmental outcomes,
pharmacokinetic modelling

Keywords
nanoparticle, nanomaterial, in
silico, computational, machine
learning, model, nanotoxicity

Publication type Peer-reviewed journals and
reports

Search files title, abstract, keywords Time interval 2010–2019

2.2. Eligibility and Exclusion Criteria

We focused on ML models predicting ecotoxicological (e.g., effects on terrestrial organisms,
aquatic toxicity, etc.) and human health toxicological endpoints. In this review, the endpoint is a
specific biological effect defined in terms of biological target structure and associated changes in
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tissue structures and/or other parameters [19]. Therefore, studies predicting properties of NPs such
as solubility, dispersion, absorption, zeta potential, partition coefficients, Poisson’s ratio or Young’s
Modulus, and environmental outcomes (e.g., bioaccumulation, degradation) were not included. In
addition, Physiologically-Based PharmacoKinetic (PBPK) modelling was not addressed in this study
since it has been addressed recently elsewhere [20,21].

As summarized in Table 1, the literature review utilized different inclusion criteria. Additionally,
studies should (i) focus on the model implementation, (ii) have been published during the last
decade, (iii) published in English, and (iv) published in peer-reviewed journals or final project reports.
The search restrictions were applied to the title, abstract, and keywords. In addition, manual searches
were performed addressing reference lists from published papers in order to identify any additional
studies overlooked by the electronic search. Using this structured approach, 86 articles implementing
ML models for nanotoxicity prediction, published in the last decade, were identified.

2.3. Analysis

Each of the 86 identified articles were reviewed in detail and information related to the feature
selection process, data processing techniques, model implementation (model category and algorithm),
model validation, and applicability domain was extracted. There were no definite guidelines in
choosing pre-processing techniques, model implementation, and validation metrics in order to assess
the performance and applicability domain of computational models. Figure 1 shows a summary
diagram of the process steps applied to the identified, which follows a generalized roadmap from data
extraction to model validation and applicability domain.
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Figure 1. A summarized general roadmap for implementing a model in the field of nanotoxicology.
The roadmap can be divided into five main parts: dataset formation, data pre-processing, model
implementation, model validation, and applicability domain.

This roadmap comprises five main sequential parts and our focus herein are the four subparts
consisting of data pre-processing, model implementation, validation, and applicability domain.
The first sequential part of Figure 1 such as dataset formation that addresses the endpoint and an in
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depth-analysis (mapping) of the most common endpoints predicted in the reviewed studies has been
addressed in a separate, companion article. However, it is briefly discussed hereafter [18].

3. Results

3.1. Dataset Formation

The first part in processes of ML model implementation, Dataset formation (Figure 1), contains
four subparts. First, data collection is carried out, either from existing literature and databases or from
new data experimentally created. A combination of the previously mentioned sources can also be
used. Second, the information on NPs is extracted, including nano-specific descriptors (size, coating,
zeta potential, etc.) and the type of NPs (metal, metal oxide, carbon-based, etc.), derived either from
the data sources or elsewhere, e.g., the manufacturer data sheets. Besides nano-specific descriptors
as inputs and theoretical descriptors can be generated using available software and used as input
data. Third, inputs including study design information is attained, such as the testing system (in vitro,
in vivo), species (human, bacteria, etc.), tissue (lung, kidney, etc.), exposure conditions (dose, duration),
and in vitro experimental features (e.g., cell line: A549, Caco2, etc.) or detailed toxicological assays.
Lastly, the toxicological endpoint of the study is obtained to be used as the predicted output of the
model. A detailed description of the datasets used can be found elsewhere [18].

3.2. Data Pre-Processing

The second part in the processes of ML model implementation, after dataset formation, consists
of data-preprocessing methods such as features reduction, features selection, and data pre-processing
techniques (Figure 1).

3.2.1. Feature Reduction

After the generation of theoretical descriptors of NMs, an initial reduction can be performed
among variables to reduce the amount of irrelevant or redundant information [22]. Such cases include
constant or near constant descriptors with low variance, descriptors with missing or zero values,
and collinear highly correlated pairs of variables. In the case of correlated variables, the one with
higher correlation with the endpoint is chosen in developing the model [23]. In addition to descriptors’
reduction, a feature selection process is followed in order to optimize the performance of the model.
Feature selection may be appropriate for two key reasons including to avoid overfitting training data
and, second, to enable expert assessment of the mechanistic basis for the model [4,24]. Almost half of
the identified studies applied some form of a feature selection process to their initial dataset.

3.2.2. Feature Selection

In building a QSAR model, statistical performance metrics of the best, (one- to five-) variable
models selected by feature selection are calculated [25]. As the rule of thumb, model validation is
performed by increasing the number of involved variables and assessing performance [26,27]. The ratio
of (count of NMs)/(count of descriptors) has a cut-off value of 5 (Topliss ratio), which is recommended
while regulating to avoid needless complexity, according to the parsimony principle [16,28]. The final
number of QSAR descriptors should not exceed six, but when knowledge of the relevance of properties
to nanotoxicity is limited, a large number of initial descriptors should be sought [29].

Six studies, out of the 86 gathered, used Genetic Algorithm (GA) for feature selection [30–35].
Five of them used Pearson correlation coefficients between pairs of variables to identify those that
correlate with the endpoint or correlations among variables to avoid inter-correlations [36–39]. Few of
the studies applied more than one feature selection technique. Papa et al. [40] used GA optimized
for Multiple Linear Regression (MLR) models based on ordinary least squares (MLR-OLS) and for
support vector machines (SVMs). Using both methods revealed differences in the results related to
optimizations for either linear or non-linear approaches. Mu et al. [41] selected optimal descriptors
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using MLR combined with Pearson and pair-wise correlations, clustering, and Principal Component
Analysis (PCA). Clustering and PCA are performed on variables that have significant correlations with
observed toxicities. In another study, double cross-validation was additionally used to GA to reduce
method-specific selection bias [31]. An overview of feature selection techniques used in the studies is
provided in Table 2.

Table 2. An overview of selection techniques used in the reviewed studies.

Feature Selection Description References

Principal component
analysis (PCA)

Widely used for analysis of multivariate datasets applies transformation of
observations to PC space with an objective to minimize the correlation and
maximize the variance.

[42,43]

Partial least squares
(PLS) with plots

Applied to predict a set of dependent variables from independent ones, finding
the best correlation between them by extracting a number of latent variables
preserves information. PLS reveals the most important variables and determines
the influence of inputs on output. Star plots produce qualitative selections
regarding descriptor importance.

[38,44–46]

Jackknifing A resampling technique preceding bootstrap that estimates variance and bias. [47]

Genetic algorithm (GA)
GA is applied to select from descriptors the best combinations for highest
predictivity. Based on biological evolution, GA performs function optimization
stochastically.

[23,27,30,31,44,45]

Enhanced replacement
method (ERM)

ERM is a full search algorithm that avoids local minima and shows little
dependency on the initial set of descriptors. As such, it can be preferable to GA,
depending on the case.

[26,48]

Genetic function
approximation (GFA)

The GFA method finds out the most frequent descriptors in a large set. The GFA
smoothing factor controls the number of independent variables and is varied to
determine the optimal number of descriptors.

[32,46]

Sequential forward
selection (SFS) and
sequential forward
floating selection (SFFS)

At each step of the selection process, the descriptor that led to the highest model
performance is retained until a specified number of descriptors are selected. As
an extension to SFS, after each forward selection step, SFFS conducts backward
elimination to evaluate descriptors that can be removed.

[49–52]

Multiple linear
regression (MLR)
feature selections

(1) In MLR, a set of models is examined for stability and validity.
(2) One of the most commonly used methods is the GA-MLR. GA deals with
optimizing the nonlinear parameters, while the linear ones are calculated by MLR.
(3) MLR with expectation maximization (MLREM) is an iterative method that
increases the dataset sparsity varying the values of control hyperparameters.
The descriptors are selected at the iteration beyond which the model quality is
significantly reduced.
(4) MLR models based on ordinary least squares (MLR-OLS).

[53–58]

Attribute
significance-Importance

(1) Evaluation and ranking for selecting descriptors based on the variance
reduction or entropy as a measure of information gain.
(2) Relative importance quantitative estimation based on information or entropy
gained from the models. The advantage of the importance based on model
information is that it is closely tied to model performance.
(3) Comparison of leave-one-out (LOO) errors. Dependences and complements
among multiple attributes may not be accounted for by LOO.
(4) Worth of an attribute e.g., RELIEF algorithm estimates attributes according to
how well their values distinguish among similar instances.
(5) Weights calculation by chi-square. A nonparametric statistical technique that
compares the observed distribution of frequencies with an expected
theoretical one.

[59–67]

3.2.3. Pre-Processing Techniques

Several techniques exist for pre-processing data in order to make them more suitable for use in
computational tools. In the literature reviewed, normalization was used in 18% of cases but other
techniques such as one hot encoding, balancing the outcomes, data gap filling, and line notation were
used among others.

3.2.4. Normalization and Discretization

In Danauskas and Jurs [22], the base-10 logarithm was applied to limit the range of data while
others used normalization of inputs and outputs for increasing accuracy [68]. Another method
for homogeneous normalization was taken by References [38,69], where the descriptor pool was
pre-processed prior to modeling by autoscaling. This approach is necessary when the data consists of
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variables with different scaling. A robust z-score is used to normalize the data in order to minimize the
influence of outliers [70]. Choi et al. [60] examined several normalization techniques (z-score, min-max,
log10) for each attribute in order to reduce the skewness of the data and choose the most appropriate
showing that each dataset (and each variable) may require different normalization techniques.

However, there are cases of models where dependent variables are encoded to indicators that only
express presence or absence in each dataset instance. One hot encoding is a procedure of converting
categorical variables into numeric data to be applied to ML algorithms. These variables take values
of 0 or 1 depending on whether a particular nano-feature or experimental endpoint is absent or
present [56,71]. Studies used one-hot encoding in models where categories cannot be used, such as
in linear regression [60,72]. Within the reviewed articles, one hot encoding was applied in 7% of
the studies.

Attribute transformation, such as discretization of numerical attributes and functional
transformation, are also commonly performed [73]. Discretization of input was performed in two of the
reviewed studies [74,75] based on expert judgment or equal frequency distributions. Discretization is
usually performed on classifiers. For binary classification prediction, a cut-off value is used to separate
the classes e.g., substances with cellular viability >50% will be regarded as non-toxic. Fourches et
al. [76] resulted in binary classification, which transforms the features by splitting at their arithmetic
mean. Furxhi I. et al. [18] demonstrated that almost half of the cases derived from the studies in their
literature review predicted the outcome in a binary format.

3.2.5. Class Balancing

An issue encountered in both the training and evaluation phases is that hazard classes (i.e., the
toxicity classes) are often unbalanced, which means that the number of samples corresponding to one
value of the class (e.g., non-toxic) is much higher than the number of samples corresponding to the
other values of the class (e.g., toxic) [14]. This imbalance in a dataset, which is an issue particularly
prevalent in nanotoxicology, has a negative effect on the algorithm performance. Furthermore, 8%
of the studies mention that their dataset had equal outcome classes, while, on the other hand, 4% of
studies tackled the imbalance issue by resampling the training dataset. Resampling can be done by
applying the Synthetic Minority Oversampling Technique (SMOTE), which is a supervised instance
algorithm that oversamples the minority instances using the k-nearest-neighbor (kNN) [60,67,77].
This method balances the dataset by generating more data points. The rest of the studies did not
mention class balance issues.

3.2.6. Missing Values

Handling missing values enhances the reliability of the dataset and expands data interoperability,
which offers the nano-safety community complete datasets to be used in novel modelling. There are
three types of supervised data filling approaches, such as QSAR methods [78], trend analysis, and
read-across (interpolation or extrapolation). They are based on different assumptions and, as such,
require a different minimum number of data points [5]. Gajewicz [79] mention that existing methods of
read-across methodologies are expert knowledge-dependent making the prediction prone to bias. To
tackle this issue, they propose a novel quantitative read-across approach based on a simple transparent
algorithm for filling data gaps. Several computational tools have been developed for supporting
grouping and read-across. Giusti et al. [12] provide an update of existing approaches in NMs grouping
while suggesting future recommendations. Other approaches for filling data have been proposed that
are dataset-specific. For example, Ban et al. [80] used curve-fitting to calculate missing ages based
on the age-weight relationships of different species. While assessing data quality and completeness,
nano-specific filling in of missing values using manufacturer’s specifications and/or estimations [60,64]
was suggested within the Safe and Sustainable Nanotechnology (S2NANO) (http://portal.s2nano.org/

(Webpage accessed autumn 2019)) database. Furxhi et al. [72] investigated the robustness of several
ML tools on generated versions of the dataset by removing values artificially. Recently, an integration

http://portal.s2nano.org/
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of two data gap filling techniques to predict neurotoxicity for non-NMs was implemented, which
demonstrated the capacity of integrating methodologies [81].

3.2.7. Molecular Structures’ Codification

An additional issue in the pre-processing of data is the description of molecular structures.
Among the most common methods to codify chemical structures are (i) the chemical graph, which
represents structures by connection tables, (ii) the linear notations as Simplified Molecular Input-Line
Entry System (SMILES), and iii) the de-facto standard chemical formats. SMILES can be obtained
by common software like ChemSketch (https://www.acdlabs.com/resources/freeware/chemsketch/

(Webpage accessed autumn 2019)). From the cases gathered, 23 of them use line notations such as
SMILES (5 cases), based optimal quasi-SMILES (14 cases), and Improved SMILES (4 cases). Experimental
in vitro characteristics and exposure conditions are important variables in the representation of a
potential toxicity since the same type of NPs may exhibit diverse effects in different biological conditions.
This makes the development of classic QSAR difficult [82]. Toropova et al. [83] suggested a quasi-SMILES
approach to represent molecular structures, p-chem properties, and experimental conditions (eclectic
data) with NMs [37,82]. The eclectic data are translated into optimal nano-descriptors (the sum of
weights of quasi-SMILES) for the outcome prediction and Monte Carlo optimization is used to select
the optimal descriptors. Optimal-based SMILES descriptors can be calculated with the International
Chemical Identifier (https://iupac.org/who-we-are/divisions/division-details/inchi/ (Webpage accessed
autumn 2019)) even though, as noted by References [84,85], SMILES-based descriptors can have some
drawbacks for describing endpoints for some NMs and for the interpretability of the models. To
overcome the limitations of optimal-SMILES, the Improved SMILES-Based Optimal Descriptors has
been proposed [84] as a novel descriptor characterizing structural and chemical properties, which
interprets the endpoint more accurately. In a recent study, pseudo-SMILES were tested as descriptors
for a random forest method and compared with the linear regression based on an optimal descriptor
method [86].

3.2.8. Data Splitting

The final component of data pre-processing/transformation is the splitting of the dataset prior to
model implementation. Surprisingly, only 41% of studies mention the technique used and even fewer
mention the presence of outliers and how the removal improved model performance. Often such
information is omitted as unimportant. Yet such details ensure the reproducibility of a method. Datasets
are split into different sub-sets with different roles of (i) a set for training a statistically significant and
reliable model, (ii) the test set to measure robustness, and (iii) the validation set to assess predictability
of the trained model. Training is done to adjust the model parameters while preventing overfitting.
Good predictivity may be achieved for substances significantly similar to those in the training set.
A model will perform inadequately for test set substances that differ from the training set. Thus,
instances should be selected in a way that ensures that test set substances lie within the properties
space defined by the training set [46,87]. In some cases, for further evaluation, unseen datasets are
used in order to test the model on data, which are absent in the training and validation step [60,88,89].

Distribution of variables into the training and validation set has an influence on model
performance [89]. Several techniques are mentioned in the reviewed studies, including balanced
splitting based on one specific variable [90]. Keeping extreme responses (i.e., the highest and lowest
range of a variable in the training set [46,84,91]) avoids the risk of extrapolating out of the response
range. For this concept, Kar et al. [46] used PCA score plots to confirm that each test set compound was
near to or within the chemical space of at least one training set compound. Ghorbanzadeh et al. [55]
performed a diversity analysis to check whether structures of the training and test sets represent those
of the whole data set. This method enhances model stability and verifies the appropriateness of the
external test set to assess the morel predictivity. Some other methods for data division are the k-means
clustering method [56,57,71] or the modified Kennard-Stone algorithm where the response vector is

https://www.acdlabs.com/resources/freeware/chemsketch/
https://iupac.org/who-we-are/divisions/division-details/inchi/
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replicated k (number of descriptors) times in order to enhance the influence of the response on the
splitting results [26,48].

Random splitting is the most employed method across the studies, yet different distributions
should be tested for the training and validation set to realistically estimate the influence of splitting
and, thus, confirm that the final model quality was not random [83,92,93]. Mikolajczyk et al. [94] sorted
NPs along increasing values of zeta potential, and then included every third NP in the validation set,
using the remaining NPs to form the training set [35]. The same methodology has also been followed
elsewhere [48,84]. The methodology used by Puzyn et al. [35] added to the validation set some cases,
which do not fall in the range of the training set (validation and reliability testing at the same time).
The complete dataset should be provided to potential dataset users, including nanomaterial, endpoints,
and descriptor information, together with the clearly defined training and test sets [4].

3.3. Model Implementation

The third component of the roadmap is the model implementation of linear or nonlinear models
(Figure 1). In this section, the second OECD validation principle—an unambiguous algorithm—requires
full model structure and accurate values of all the model parameters to be specified.

Of the 86 studies reviewed, 48 performed linear modelling, 51 performed non-linear analysis,
and 13 performed both modelling techniques. For each of the studies examined, the combination of
model implementation, validation metrics, and the applicability domain were recorded separately,
which causes many extractions per study. If, for example, another model was created with the above
specifications unchanged, this would be introduced as new case within the analysis. However, if a
different dataset is used with the same model, this also leads to a new insertion. This process resulted
in the extraction of 273 predictive models (cases) implemented in 86 individual studies (Figure 2).
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Figure 2. Model (cases) categories, their population (left), and detailed breakdown (right, zoomed
box) as extracted from the 273 cases derived from the 86 studies gathered. Instance based (Inst Based),
decision tress (D. Tree), Bayesian networks (Bayes), neural networks (N. Network), and dimensionality
reduction algorithms (D. reduction).

The most popular data mining ML algorithms can be combined into categories such as (1) rules,
(2) instance based, (3) trees, (4) bayes, (5) neural networks, (6) dimensionality reduction algorithms, (7)
regression, and (8) meta/ensemble algorithms [95].
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In most of the cases, 87 out of 273 trees were implemented (Figure 2) and the most popular
algorithm was Random Forest (RF) (31 cases) (Figure 2, zooming box, D. Tree). Functional Trees (FT),
Classification Trees (CT), and Decision Trees (DT) followed with 19, 11, and 16 cases, respectively.
Random Trees (RT) and Genetic Programming-based decision Trees (GPTree) were used in five and four
cases each, whereas only one study implemented an M5 model trees (M5P) algorithm. The application
of trees algorithms in the studies to predict diverse endpoints is shown in Table 3.

Table 3. Endpoints predicted by trees category extracted from the studies gathered.

Reference NMs Category Output Reference NMs Category Output

[80]
Carbon-based,

Metal, Metal Oxide,
Quantum Dots

Accumulation,
reproductive toxicity [64] Metal, Metal oxide

Cellular
Viability

[63] Carbon-based

Total protein,
Macrophages,

Membrane integrity,
Neutrophils

[73] Metal

[65]
Metal, dendrimer,

metal oxide,
polymeric

Aggregated [96] Dendrimers

[97] Metal, Metal oxide,
Quantum Dots [98]

Carbon-based

[30] Metal, Metal oxide Aggregated, Exocytosis,
Viability [37]

[36] Metal
Cell association

[66]

Carbon-based, Metal,
Metal Oxide, Polymeric,
dendrimers, Quantum

Dots

[40] Metal [67] Metal

[30] Metal Oxide Cellular uptake [99] Quantum Dots

[100] Carbon-based Dose-response [25]

Metal Oxide
[40] Metal Oxide Membrane integrity [60]

[101] Metal, Metal oxide
Minimum Inhibitory
Concentration (MIC),

Viability

[77]

[102] [87]

[103] Carbon-based Mitotoxicity [104]

[105] Metal Oxide

No-Observed-Adverse-Effect
concentration (NOAEC),
Oxidative stress, Protein

carbonylation

The DT classifier is a rooted tree where each of its nodes is a partition of the instance space based
on gaining information. Horev-Azaria et al. [73] used one of the most common DT algorithms, C4.5,
and their implementation starts with cases that are examined for patterns that require categorization
of groups. Jones et al. [96] also employ the C4.5 algorithm while Zhang et al. [100] used an RT to
associate cytotoxicity with energy conductivity and metal dissolution. They found that the model
captured nonlinear dependence between descriptors and cytotoxicity as well as possible interactions.
RF is an ML recursive ensemble algorithm based on a combination of independently grown binary
decision trees constructed with various samples of a bootstrap [64]. By aggregating the predictions
of each tree, the RF algorithm makes forecasts depending significantly on two model parameters.
The number of trees and number of variables chosen to be used at each node are rarely mentioned
in the studies [80]. Similarly, the RT algorithm divides the output population into groups based on
numerical input inequality or categorical input grouping. The input factor and the split criterion
are chosen at each branching point to achieve the greatest gain of information [63]. M5P is another
algorithm that implements base routines for generating trees and rules [65]. CT starts with a ‘root node’
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that contains all objects (i.e., NMs), and then divides by recursive binary splitting into child nodes.
Each split is defined by a threshold that takes into account the selected descriptor values at a given
stage [105]. The GPTree uses a simplified fitness function from a random population of solutions with
repeated attempts to find better solutions through the application of genetic operators. The best trees
are chosen by their predictivity [30].

Regression models were the second most commonly used computational tools in nanotoxicology
with 63 cases (Figure 2) in the reviewed literature. Multiple Linear Regression (MLR, 40 cases) and
Linear Regression (LR, 18 cases) are mostly preferred while the Generalized Linear Model (GLM,
2 cases) is less commonly applied. Logistic R, Multivariate Adaptive Regression Splines (MARS
or EARTH), and Projection Pursuit Regression (PPR) appeared only once in the reviewed studies.
The application of regression algorithms in studies to predict diverse endpoints is shown in Table 4.

Table 4. Endpoints predicted by regression tools extracted from the studies gathered.

Reference NMs Category Output Reference NMs Category Output

[32] Carbon-based Aggregated, Viability [60]

Metal Oxide

Viability

[56]
Metal Oxide

Apoptosis, Cellular
uptake [82]

[58] Apoptosis [72]

[50]
Metal Cell association

[34]

[40] [46]

[103] Carbon-based Mitotoxicity [57]

[55]

Metal Oxide Cellular uptake

[31]

[50] [41]

[89] [84]

[33] [106]

[58] [35]

[107] Metal Oxide,
Quantum Dots

Inhibition Ratio,
Viability [108]

[109] Carbon-based Mutagenicity [110]

[57] Metal Oxide Membrane integrity,
oxidative stress [83]

[111]

Metal Oxide Membrane integrity

[112]

[28] [69]

[113] [97] Dendrimers

[114] [115]
Metal

[116] [117]

In MLR, the output is expressed as a linear function of the inputs and the degree of descriptors’
influence on output is obtained by the weights of the coefficients. The MLR model is designed to
minimize the sum of squares of observed and expected value differences [55]. A descriptor array can
be selected using the MLREM sparse feature reduction process. The approach is repeatedly applied
increasing sparsity and optimal descriptors are obtained at the starting point of model performance
deterioration [56]. One approach for selecting descriptors is to investigate the statistical value of
all possible descriptor combinations by using MLR-OLS, which can be performed in QSARINS
(http://www.qsar.it/ (webpage accessed winter 2019)) [28]. Partial least squares (PLS) is another method
that, due to the lower number of data points, can be used for selected descriptors in a stepwise
approach. In the case of PLS, a strict test for the importance of each consecutive element is necessary
in order to prevent overfitting [107]. GLM is an extension of conventional regression models, which
allows the mean to rely through a relation function on explanatory variables and the response to
be any member of a group of distributions called the exponential family. GLM includes statistical

http://www.qsar.it/
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models such as LR for normally distributed responses, binary data logistics models, and counting data
log-linear models through its general model formulation [60,97]. PPR is a non-parametric approach
based on developing a number of non-linear univariate smooth functions. The regression function is
then represented by the sum of a finite number of ridge functions. Among the infinite direction of
projections, an optimization technique enables a sequence of projections to reveal the data set’s most
important structures [40]. The EARTH algorithm constructs models of regression without making any
assumptions between dependent and independent variables. The input space is divided into regions
with their own regression equation [40].

Instance-based algorithms appeared in 30 of the reviewed studies (Figure 2). The most popular
instance-based algorithms were Support Vector Machine (SVM, 14 cases) and k-Nearest Neighbors
(kNN, 13 cases). Less frequently used were Kstar and a Locally Weighted Learning (LWL) algorithm.
The application of instance-based algorithms in studies to predict diverse endpoints is shown in Table 5.

Table 5. Endpoints predicted by instance-based tools extracted from the studies gathered.

Reference NMs Category Output Reference NMs Category Output

[118] Carbon-based exposed/not exposed
groups [60] Metal Oxide

Viability[76] Metal, Metal oxide,
Quantum Dots

Aggregated, Cellular
uptake [98] Carbon-based

[119] Metal Aggregated [72] Metal Oxide

[111]
Metal, dendrimer,

metal oxide,
polymeric

[96] Dendrimers

[36]
Metal Cell association

[67] Metal

[111] [61] Carbon-based

[40] [120]
Metal Oxide

Dose-response
[50]

Metal Oxide Cellular uptake [65]

[62] [28] Membrane
integrity

[65]
Metal, dendrimer,

metal oxide,
polymeric

Mortality rate [102] Metal, Metal
oxide

MIC, mortality
rate, viability

The kNN method classifies a case in the feature space based on the nearest training instances [62]
relying on the similarity principle [40]. Based on weighted majority voting, each case is allocated
to the class of the kth closest neighbors. The optimal k value is selected using distances (generally
Euclidian distances) as weighting factors for voting, which characterizes compounds’ dissimilarity in a
multidimensional feature space [76]. The k value can be selected by a cross-validation method [102].
Fourches et al. [76] used an algorithm combining kNN and a variable selection procedure to maximize
model accuracy. SVM is another widely used algorithm for classification and regression. First, SVM
defines decision boundaries parting data into different classes [60]. Second, data are mapped in a higher
dimensional descriptor space, where a linear representation can better fit [121]. SVM performance
depends on kernel function’s shape and on parameters associated with the distribution of learning
data. The usual practice to discover the optimal parameters is through the grid search [40]. Three
rarely used instance-based algorithms in the field of nanotoxicology are the LWL, Kstar, and Lone-Star.
LWL uses an instance-based algorithm for locally weighted learning [96]. In KStar, the class of a test
case is based upon the similarity with the training cases, using an entropy-based distance function [65].
The sparse classification Lone-Star algorithm implements optimization methods to overcome issues
inherent to nanotoxicity modeling, such as unequal distribution of classes and unknown relationships
between inputs. This method, when compared to traditional SVMs, takes advantage of the combined
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l1-norm and l2-norm SVM’s ability to select a small set of features while ignoring the redundant ones
to achieve both the classification goal and the selection of correlated features simultaneously [118].

Neural Networks were applied in 41 cases (Figure 2). In four of the cases, the type of Neural
Networks was not provided, but, for the rest, a number of different algorithms were used including
neural networks controlled by Laplacian Prior (BRANNLP, 12 cases) or by Gaussian Prior (BRANNGP,
9 cases). Radial Basis Function Neural Networks (RBFNN), General Regression Neural Networks
(GRNN), Multi-Layer Perceptron (MLP), and the Counter Propagation neural network (CPANN)
algorithms were used in a few instances. The Self-Organizing Map (SOM) algorithm was found in
nine cases and the application of the Neural Networks algorithms in the reviewed studies to predict
diverse endpoints is shown in Table 6.

Table 6. Endpoints predicted by a neural network extracted from the studies gathered.

Reference NMs Category Output Reference NMs Category Output

[122] Metal, Metal oxide,
Quantum Dots Aggregated

[88] Polymeric

Viability

[70] [60]

Metal Oxide
[123] Metal, Metal oxide [72]

[56] Metal Oxide
Apoptosis

[57]

[58] Quantum Dots [70]
Metal, Metal

Oxide,
Quantum Dots

[40] Metal Cell association [57] Metal Oxide Membrane
integrity[56]

Metal Oxide Cellular uptake

[28] Metal Oxide

[55] [103] Carbon-based Mitotoxicity

[57] Metal Oxide Oxidative
stress

Neural Networks were conceived based on functions of the central nervous system and became
very popular in discovering relationships between parameters [88]. Different architectures and
topologies were noted in the reviewed studies such as RBF, MLP, and GRNN [122]. In MLP, each
network is built from several layers connected by weights. These weights are adjusted iteratively
during training to reduce network errors [55]. RBFNN are composed of three layers and descriptors
are transmitted to the hidden one unprocessed. The hidden layer is made of a few centers whose
number and location are automatically defined. Hidden centers’ activation is computed from a transfer
function depending on the distance between the center and the cases [40]. GRNN differ from RBF as it
forms hidden layers of as many units as the cases. Activations of these units are calculated using a
non-parametric estimator for a given object with a probability density function [40]. SOM’s neural
networks use unsupervised learners, projecting data onto a two-dimensional display providing an
indicator of the degree of similarities between cases. Shorter distances of projection indicate crucial
similarities [70]. SOM does not perceive differences between classes and dependent variables [123].
CPANN consists of two active levels of which one is a SOM. Inputs are connected to all units of the
map with randomized weights and, for each input pattern, a neuron most similar to the descriptors is
determined to enhance the fit in SOM. The neuron is projected in the same place in the second level with
adjusted weights between the two maps [40]. In contrast to backpropagation networks, regularized
Bayesian networks do not need a validation array to establish when learning should stop. Bayesian
regularization controls the complexity of models using Gaussian and Laplacian priors (BRANNGP
and BRANNLP, respectively). Laplacian priors prune unrelated descriptors, which leads to robust
models by optimizing the sparsity and predictivity [56].

Dimensionality reduction methods were used within 20 of the studies reviewed (Figure 2). Partial
Least Squares (PLS) was used in 15 cases and Linear Discriminant Analysis (LDA) was used in five
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cases. The application of dimensionality reduction algorithms in studies to predict diverse endpoints
is shown in Table 7.

Table 7. Endpoints predicted by a dimensionality reduction extracted from the studies gathered.

Reference NMs Category Output Reference NMs Category Output

[45] Polymeric

Arginase: iNOS,
cathepsin,

IL-10/protein,
TNF-α/protein

[107] Metal Oxide,
Quantum Dots

Viability[52] Metal, Metal oxide,
Quantum Dots

Aggregated

[46]
Metal Oxide

[124] [53]

[39] Metal, Metal oxide [51] Metal, Metal
oxide[125] [39]

[36]
Metal Cell association

[38] Metal Exocytosis

[47] [113] Metal Oxide Membrane
integrity

[103] Carbon-based Mitotoxicity

LDA is a method that seeks a hyperplane to discrete different endpoints and, as such, LDA
is commonly used for dimensionality reduction and classification. Within two of the reviewed
studies [124,125], LDA was employed for classification to search for the perturbation model using a
forward step-wise procedure. PLS is a fusion of MLR and Principal Component Regression (PCR)
and it is one of the most popular approaches in QSARs. Through a linear combination of the original
variables, PLS produces a set of components to best represent the output in the descriptor space [40].

Two rules models were found to be employed in the studies reviewed as two versions of Decision
Table algorithms (DT) (Figure 2). Rules, as classifiers, include algorithms that dissect the dataset by
rules. DT classifiers carry all links between input and output data using the majority of values or the
nearest neighbors in the case of unknown data. DT/naive Bayes (DTNB) hybrid classifier splits the
attributes into two sub-assemblies: one for DT and the other for naive Bayes [96]. Such Rules models
have been used in the studies reviewed to predict only cellular viability.

Twenty-one consensus models with meta/ensemble algorithms were found in the reviewed
literature (Figure 2). In this case, ensemble methods unite multiple individual algorithms into
a consensus final model to reduce variance and bias or enhance predictivity. The application of
meta/ensemble algorithms in studies to predict diverse endpoints is shown in Table 8.

Table 8. Endpoints predicted by the ensemble extracted from the studies gathered.

Reference NMs Category Output

[65] Metal, dendrimer, metal oxide, polymeric Aggregated

[126] Metal Oxide, Quantum Dots Aggregated, cellular uptake, viability

[121] Metal Oxide Cellular uptake

[102] Metal, Metal Oxide MIC, mortality rate, viability

[25]
Metal Oxide

Viability[84]

[72]

[96] Dendrimers

[98] Carbon-based

Chau and Yap [121] used a meta algorithm based on the majority voting for the top five out of
2100 individual classifiers. The bagging algorithm generates multiple versions of a predictor, which
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are then used to generate an aggregated predictor based on multiple versions [65]. In the Decision Tree
Boost (DTB), a stochastic boosting is applied repeatedly to increase prediction accuracy. Each function’s
output is then merged with weighting to minimize the total prediction error and the loss function in
the training set. In the Decision Tree Forest (DTF), independent trees are developed in parallel without
interacting. Learning sets are then drawn randomly with replacement from the training dataset, which
produces different models to predict the entire dataset. The models are then aggregated. The DTF uses
data rows left out to validate the model without the requirement of a separate data set. Kovalishyn et
al. [102] built an ensemble of backpropagation neural networks while applying the kNN method to
determine the local correction of the Associative Neural Networks (ASNN). Their ASNN ensemble
included 100 networks.

While Bayes models offer visual representation of the variables’ connection and perform well
with missing values, only nine cases were found to be applied in the reviewed literature including
seven of which were Bayesian Networks (BN) and two were Naïve Bayes (Figure 2). BN are graphical
models that encode probabilistic relationships among random variables. The distribution of these
variables with respect to the categories is used to assign a probability of pertinence to each category.
The accumulated pertinence probability across all nodes, which are presumed independent, are used
for categorization. The application of Bayes algorithms in studies to predict diverse endpoints is shown
in Table 9.

Table 9. Endpoints predicted by Bayes models extracted from the studies gathered.

Reference NMs Category Output

[77] Metal, Metal oxide, polymeric Disrupted cellular processes

[59] Quantum Dots IC50, viability

[75] Metal, Metal Oxide
Aggregated

[127] Carbon-based, Metal, Metal Oxide

[128] Metal, Metal Oxide

[72] Metal Oxide
Viability

[73] Metal

[96] Dendrimers

BN can be fed with varying datasets that may lack data through their ability to iteratively refine
prediction as novel knowledge becomes accessible [128]. The structure of the model is optimized using
data for every node and the conditional probability tables to determine the ideal configuration of the
nodes’ interactions [127]. Naive Bayes uses posterior probability to predict the target attribute’s value.
The classifier tries to find the value that maximizes the conditional probability of the target attribute by
using a given input [96]. Assuming that, for a given outcome, input attributes are independent, naïve
Bayes is easily implemented since the calculation of the probability is straightforward based on the
Bayes theorem by counting the frequency of values and combinations in historical data [73,121].

In Figures 3 and 4, we demonstrate the different machine learning categories used over the last
decade and their relation with the data size samples (Figure 3). In addition, we show the categories
used in relation to the number of theoretical descriptors used in the final model and the percentage of
the nano-specific p-chem properties over the years (Figure 4).
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3.4. Model Validation and Applicability Domain

The fourth OECD principle includes goodness-of-fit, robustness, and predictability measures
aiming at distinguishing the elements between internal and external validation. As stated in the OCED
document [19], no absolute predictivity calculation is sufficient for all purposes and varies depending
on the statistical methods used in the analysis.

3.4.1. Goodness-of-Fit

Of the studies reviewed, 78% report internal validation with calculation of performance metrics to
demonstrate the goodness-of-fit, which is a measure of how well the model accounts for variability
in the training set’s response. The quality of regression can be assessed by the squared correlation
coefficient (R2) [54] or the standard error of estimation (SEE) [57]. Only models with a higher R2 than
the thresholds defined in previous studies should be considered acceptable [8]. Furthermore, the
adjusted R-squared (Radj2) value can also be calculated in order to prevent over-fitting [38]. Radj2 is
interpreted in the same way as the R2 value except that it takes the number of degrees of freedom into
account. The equations of the above metrics can be found in Supplementary Materials. A number of
studies did not report internal validation, as they focus on more demanding metrics like robustness.

3.4.2. Robustness

The term ‘robustness,’ in this case, refers to the stability of model predictions when a perturbation
is applied to the training set and 69% of the studies reviewed provide some information about model
robustness. Commonly, robustness evaluation for ML is done through a k-fold cross-validation, by
randomly dividing the data set into k subsets, and then computing the average performance across
all k trials [63]. Root Mean Square Error (RMSE) may be used to specify the model’s calibration
ability. If two regression models have similar RMSE, F-values (the ratio between explained and
unexplained variance) and P-values (the probability of finding the observed or more extreme results)
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can help determine the model of choice [22,129]. Robustness metrics such as squared cross validated
correlation coefficient (Q2), leave-one-out cross-validation coefficient (Q2

LOO), and leave-many-out
cross-validation coefficients (Q2

LMO−10% and Q2
LMO−25%) are popular robustness indicators [46,47].

To avoid the possibility of overestimation by using only leave-one-out cross validation, a bootstrap
procedure (Q2

Boot) is suggested [23] and is mainly suitable for a limited number of training cases [50].
These approaches systematically take out data points from the training set, reconstructing the model,
and then predict the left-out data points. The leave-many-out approach remove a different number of
values from the data set (10%, 20%, 25%, or 50%), depending on the size of the dataset even though there
is no rule-of-thumb as to the percentages one should apply for cross validation or data split. Besides
Q2

LOO, the root-mean square error of cross-validation (R2
CV) can be calculated [38,94]. The minimum

criteria for a successful QSAR model is R2
≥ 0.6 and Q2

LMO of ≥ 0.5 [84], whereas training and the test
set R2 value difference should not exceed 0.3 [56].

To further assess the robustness, standard deviation based on predicted residual sum of squares
(PRESS) can be calculated [55], which, in small values, suggests model insensibility to single data
points. For binary classification problems, validation metrics derived by the confusion matrix, for both
goodness-of fit and robustness, include accuracy, sensitivity, specificity, and the correct classification
rate (CCR) [76]. Across these approaches, the classification models are regarded as acceptable if CCRCV

≥ 0.6 and CCRtest ≥ 0.6 [76]. Other metrics include the F1-score, Matthews correlation coefficient (MCC),
discriminant power, and the Receiver Operating Characteristic (ROC) curve. The ROC graph can be
applied to show, comparatively, two-group classification models’ predictive capabilities. The equations
of the above metrics are provided in Supplementary Materials.

3.4.3. Chance Testing

Where there is a large number of variables, such as is often the case in nanotoxicology,
some variables are likely to be chosen by chance. To verify model robustness, a y-randomization
permutation test is used to avoid “correlation-by-chance” possibilities confirming the model’s statistical
significance [76]. Within the y-randomization permutation test, the values of output are mixed and
the correlation coefficient is determined. The scrambled-output R2 is compared to the model’s R2.
The model is not reliable if the two values are identical [40,44]. Similarly, the “true” model can
be characterized by calculating the values of RMSE and RMSECV [34]. Monte Carlo can also be
used, whereby the dependent variable is randomized and the models rerun [22], as well as ensuring
model’s Q2

CV statistically significance value [54], the CCR acceptance thresholds [76], or its prediction
accuracy [30]. QUIK (Q under influence of K) rule [28], which is a basic criterion that optimizes the
ranking of the best features combinations, enables high predictor collinearity models to be rejected [40].
While all previous studies mentioned compare the values of the “true” and random models, a new
metric is used elsewhere [46,53]. The randomized model’s squared average correlation coefficient (R2

r )
should be lower than the original model’s R2. Another metric (based on the R2

r ) cR2
p can range from 0 to

1 with a cR2
p value greater than 0.5 defining what can be considered an acceptable model. The equations

of the above metrics are provided in Supplementary Materials. Models should be selected for further
external validation if they can predict the training set (goodness-of-fit) and the test set (robustness).

3.4.4. Predictability

The use of external validation is being increasingly recommended by researchers and authorities
for the assessment of model reliability. Internal validation provides an optimistically skewed estimate
of the real predictive potential [14]. In addition, 60% of the reviewed studies performed some form
of external validation. However, this does not indicate that the reported statistics are sufficient to
fully evaluate model performance. In addition, using more than one validation metric to calculate the
accuracy of the model prediction is always advantageous [29]. The quality of the resulting models
can be evaluated by the mean squared error (MSE) [63] and the Q2

ext value [42]. A standard error of
prediction (SEP) or its deviation (SDEP) and slopes k have also been used [130]. SEP is the calibrated
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error to the degrees of freedom between predicted and measured endpoints [57]. Predictability can also
be assessed through the root mean square error of prediction (RMSEP) [41]. Mean absolute error (MAE)
is regarded as a straightforward error determinant [25] and QSARs should meet the criteria: MAE ≤ 0.1
× (train set range) and MAE + 3σ ≤ 0.2 × (train set range). Concordance correlation coefficient (CCC)
is a restrictive parameter for predictability [95,126]. The r2

m metric provides the stringent external
validation criterion at a given threshold value, which can be adopted for regulatory processes [131].

Likewise, it is possible to use r2
m(LOO) for the training set [46], which may reflect the model’s external

validation characteristics [53]. Among the metrics mentioned, r2
m displays significantly different values

from other measures including CCC, which is the most confident [131]. For binary classification, the
sensitivity, specificity, accuracy, and ROC curves can be calculated [73,104]. Some of the reviewed
models within the peer-reviewed literature did not demonstrate any validation metrics at all [123,127].

3.4.5. Ranking of Classifiers

Roy et al. [132] proposed a composite score of predictions using a reliability indicator. This is a tool
based on absolute prediction errors to rank the quality of predictions. The tool ranks the models into
good, moderate, and bad, using three criteria. However, the tool is presently valid only for MLR models.
Furxhi et al. [72] proposed a composite score based on a Copeland index to rank classifiers according
to their performance on diverse datasets, validation stages, and performance metrics. Tamvakis et
al. [133] proposed a dissimilarity performance index based on their voting performance to recommend
the optimal ensemble combination. A variety of different datasets were used in this scenario to evaluate
the relationship between voting results and dissimilarity measurements. Tsiliki et al. [134] proposed
an integrated, fully validated procedure framework, which implements multiple models and uses
cross-validation averages for model selection.

3.4.6. Applicability Domain (AD)

The descriptor space in which the model was trained is essential and defining the applicability
domain (AD) is required as the third OECD principle of validation. Predictions extrapolated outside
the model’s AD may be less accurate [76]. While model AD is a dynamic area of modelling analysis,
there is no universal AD definition technique. Usually, the AD definition is based on an arbitrarily
outlined distance between the analyzed NM and the training set compounds [135]. Several methods
for determining the AD exist [136] as seen in Figure 5 and approximately half of the studies reviewed
define the AD of their models.
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As used in three of the studies reviewed [28,40,111], the AD of classifiers can be checked by
PCA using the descriptor correlation matrix to symbolize the training and prediction distribution set
within the used model’s space. Consideration of the descriptors’ ranges is a straightforward way to
characterize the AD. This method assumes that the descriptor values obey a normal distribution and,



Nanomaterials 2020, 10, 116 19 of 32

therefore, could be inaccurate if this presumption is breached. Singh and Gupta [126] used different
approaches to evaluate the AD with the first based on the ranges of descriptors and the second based
on the leverage approach. The second most common method is based on the leverage approach
and Williams plot (Figure 5). The leverage approach offers an inspection of multivariate normality
providing a measure of a compound’s distance from the model’s space centroid. Williams’s plot
(standardized cross-validated residuals vs. leverage values) can be used to visualize a QSAR’s AD and
check the existence of outliers [23]. It is stressed that the leverage in the William graph quantifies only
linear similarity. Therefore, this approach is only applicable to linear regression models [14]. In addition
to AD based on Williams plot, Euclidean-based AD can be used to detect the outliers. Determination
of the AD for non-linear models can be accomplished by the average kernel similarity [50]. AD can
also be determined based on a kernel density estimator, which is a non-parametric probability density
distribution-based method [137]. Non-parametric techniques have the capacity to detect empty spaces
within and to generate regions around the interpolation space boundaries to reflect the distribution
of data.

AD’s distance approach (e.g., Euclidean, Manhattan, and Mahalanobis) is based on calculating
the distance of a test compound and a defined point in the model’s descriptor space. The prediction is
inaccurate if the distance exceeds the threshold [61]. The benefit of this approach is that, by drawing
isodistance contours in the interpolation space, confidence levels can be associated with the AD.
The disadvantage is, once again, the assumption of a normal distribution for the underlying data. Xia
et al. [138] verified the AD of their models by the leverage approach versus the Euclidean distances
measured by the jackknifed residuals. If a compound’s jackknifed residual is greater than 2.5 times,
the compound will be treated as an outlier.

Sizochenko et al. [104] estimated the AD based on minimum-cost-tree of variable importance
values in the space of descriptors while Kar et al. [46] used diverse approaches to assess AD, such
as the leverage approach and distance to the model in X-space (DModX) (Figure 5). The DModX
approach is usually applied for PLS models and the basic theory is that Y and X residuals have
a diagnostic value for model reliability. Since there are a number of X-residuals, a summary is
required and this is accomplished by the standard deviation of the X of the matrix corresponding
row. Kovalishyn et al. [102] used the ensemble predictions standard deviation (STD), which correlates
with predictions’ accuracy. The method shows that the prediction is more likely to be unreliable if
dissimilar models give significantly dissimilar predictions for a case and STD is preferably used as a
model uncertainty estimator.

Toropova and Toropov [114] suggested the idea of “defect” to the AD of quasi-QSARs (Figure 5).
The quasi-SMILES defect is characterized as the sum of each quasi-SMILES component defect and
is calculated according to probabilities [37]. Another method is the multiple threshold method used
by Chau and Yap [121], which is a method originally proposed by G. Fumera [139]. The AD can also
be calculated by the standardization approach, which is a straightforward method proposed by Roy
et al. [140] for terming the outliers and for identifying compounds outside the domain (validation
and prediction set) [105]. Compared with the leverage strategy, the proposed method works well.
The method does not, however, consider inter-correlation between descriptors and does not consider
descriptor relative contribution.

Twenty-six out of 86 studies fully validated their models and demonstrated the AD as shown in
Table 10. The minimum amount of data rows was 6 data points and the maximum was around 7000
data points.
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Table 10. Studies performing goodness-of-fit, robustness, and predictivity and assessing the
applicability domain.

Reference Algorithm
Category

Endpoint
Class Reference Algorithm Category Endpoint

Class

[35]

Regression Numerical

[55] Neural Networks
Numerical

[114] [126] Meta

[116] [64]
Trees Binary

[141] [97]

[108] [46] Regression, Dimen. Red.
Numerical[112] [107]

[110] [25] Trees, meta

[142] [40] Neural networks, instance
based, trees, regression[34] [28]

Binary[31] [102] Meta, trees, instance based
[41] [98]

[36]
Instance Based Numerical

[76]
Instance Based

[62] [61]

4. Discussion

We provided an overview of data pre-processing techniques, model implementation, validation,
and applicability domain of ML methods used in predicting human health and ecotoxicological hazard
endpoints. We focused on recording methodologies rather than a critical assessment of the available
tools, leaving the fifth OECD principle, which is a mechanistic interpretation, out of the scope of
this study.

4.1. The Framework

Variable selection was commonly used in the articles reviewed with almost 50% of the studies using
a feature selection method. Since most of the models developed have been based on implementing
classic QSARs (i.e., using generated theoretical descriptors), initial feature reduction and selection were
required. Various metrics of variable correlation may give different results and descriptors that seem
highly associated with one method may not be redundant. Selecting the most appropriate descriptors
is always based on the process (e.g., choice of GA or ERM). GA showed great performance among
the different methods for feature selection, while ERM was superior in some cases as a total search
algorithm and, thus, less reliant on the initial set of descriptors. Such cases make the selection of
statistical features a dynamic research area [4]. We recommend either a combination of different feature
selection techniques to evaluate possible differences in the results, or, more efficiently, an integration of
techniques proven to outperform individual methods and mitigate any method bias [143].

Different models that use measured p-chem properties and experimental data, including biological
data, exploit all the features since those properties are nano-specific [60,77]. QSAR-perturbation models,
in addition to classical QSARs, make use of all available descriptors by generating several pairs of
variables using the moving average approach [122,125]. Contrary to the feature reduction problem of
theoretical generated descriptors, using nano-specific properties comes with data lacunas and the need
for more descriptors. Properties like size, surface area, crystallinity, composition, solubility, shape, and
surface reactivity affect NP biological interactions and should be represented explicitly or implicitly by
proxies in models [144].

Several studies have developed quasi-QSARs using line notation methods, such as SMILES,
to represent the structure of a molecule in a character string. This codification enables using the
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SMILES-specific models to classify non-SMILES descriptors. It should be noted that the application of a
mixture of SMILES generated by different software packages is improper [93]. Optimal SMILES-based
models outperform models based on optimal descriptors, since combining global attributes and SMILES
components provides more information on the molecular structure than traditional descriptors [130].

Class imbalance reflects an unequal distribution of class values within a dataset and poses a
challenging problem because classifiers exhibit biases of the results. This has been rarely accounted
for properly during training [60,67,72,74]. The most common technique used was SMOTE. SMOTE
looks at the feature space for the minority class data points and generates new points considering its k
nearest neighbors. The class imbalance not only affects model performance, but it also affects features
correlation. Once a balanced dataset is attained, feature correlation becomes more accurate.

Regarding data normalization, it is advisable to select a different normalization technique (z-score,
min-max, log10) for each variable, according to the skewness of feature data [60].

Single random splitting was common across the studies. However, our research shows clearly that
multiple random training and validation distributions should be examined to investigate the influence
that the split may have on attribute distribution and to ensure randomness. Even though there is a no
general rule-of-thumb for setting a splitting point, the 80/20 was the most commonly used ratio, often
referred to as the Pareto principle [145]. If the dataset is not balanced, the data should be stratified
before splitting. However, such information is often not reported. Since most of the datasets used
in nanotoxicology are quite small and splitting may hinder a satisfactory variance in the estimates,
k-cross validation should be performed. Moreover, after splitting, correlation between the data in the
training or test set should be minimal and the test data should be contained within the chemical space
identified by the training data. The latter can be covered by using the PCA score plot or diversity
analysis [46,55] and investigation of multiple splitting can be performed following the methodology
from Puzyn et al. [35], which ensures that validation data are evenly distributed within the range of
toxicity of the training dataset. The complete dataset of substances, endpoints, and descriptor values
should be annexed in each analysis, along with clearly defined learning and test sets [4].

In order to evaluate model performances, it is essential to provide proper metrics and statistics
and 78% of the reviewed studies presented evidence of internal validation. Almost half of the
studies investigated robustness performance and 60% of the studies performed external validation.
k-fold validation provides a superior estimate of the generalization error since it is less affected by
overfitting [73]. R2 can be artificially increased by adding parameters while Q2

cv, decreases when a
system is over-parameterized, which makes Q2

cv a more accurate measure of models’ predictability [54].
The Matthews Correlation Coefficient (MCC) is a good choice to demonstrate any biases in

the dataset and even in the presence of imbalance classes [146]. MCC is equivalent to the Pearson
Correlation Coefficient for binary variables [147] and has been selected as an evaluation metric for
micro-array-based predictive models by the MicroArray Quality Control (MAQC) Consortium [148].
From the gathered studies, only six used MCC as a performance metric [77,118,121,122,124,126].

Table 10 presents the studies that, in compliance with OECD principles, applied measures of
robustness and predictivity validation, and estimated the applicability domain. It should be noted
that choosing the right metric depends on data distribution and splitting, and a combination or
aggregation of metrics should be preferred. Statistical hypothesis testing could be performed to
investigate whether the difference between the ranked models is statistically significant. Besides the
statistical methods already used and reported in the Methods section, Rodríguez-Fdez et al. [149]
compiled techniques specialized for ML algorithms and made available online, which can be readily
applied for comparing classifiers.

Overall, there was an inadequate assessment of the uncertainty and sensitivity of the methods in
the studies collected. A thorough study of uncertainties and areas of variability, bias, and influence
of QSAR models is presented in the work of Cronin et al. [150]. Based on their analysis, the authors
provide uncertainty assessment criteria for QSAR evaluation classified as relevant to Model Creation,
Description and Application. The first two themes follow and extend the OECD validation principles,
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while the third one complements the assessment on issues of practical use of a model, its reproducibility,
and fit-of-purpose. Only a portion of the 49 criteria suggested by the authors are addressed by several
nanotoxicological studies.

4.2. The Algorithms

Within the reviewed studies, trees, neural network, and regression algorithms were abundant
compared to rules, bayes, or meta algorithms. Trees algorithms were used in most of the cases with RF
being the most favorable approach applied. Trees are simple to understand and interpret and can be
used even with small datasets. They are unaffected by data shortcomings that result in small changes of
the outcome and are associated with high dimensionality, correlated variables, and missing values [66].
RF has been demonstrated to be ideal for rigorous meta-analysis of complex and heterogeneous
data [64]. Helma et al. [36] note in their study that, with the exclusion of p-chem/proteomics descriptors,
the RF model performed better than PLS and weighted average models. They showed excellent
predictivity with small or large datasets, which performed well even with missing values. Furxhi et
al. [72] demonstrated that RF ranks first among individual classifiers and compete with meta-algorithms.
RF is highly tolerant of overfitting, as it combines a number of simple models and has the ability to
deal with special issues, such as descriptors counting higher than observations [40]. RT has shown
great results in the sense of parsimony, but are more susceptible to biases relative to RF. In addition, RF
has the benefit of fully investigating parameter’s values as opposed to RT, which usually includes a
small subset of the data set. RF is also less prone to data vulnerabilities due to overrepresentations in
datasets, which cause instances to appear influential. RF’s randomized selection ensures analysis of all
variables [63].

DT easily handles feature interactions and they are non-parametric but some drawbacks is the
non-support of ongoing learning. Therefore, trees must be rebuilt with each inclusion of new data.
They easily overfit and can also take up a lot of memory.

Regression models were the second most commonly used usually as MLR and LR. As a result
of their simplicity and uncomplicated interpretation, MLRs are used widely. Compared to other
models that cannot be visually presented, e.g., RF and MLR can be prioritized due to its transparent
structure [87]. PLS can be used instead of MLR in cases of smaller data sets, assuring that strict
component significance tests are applied to avoid overfitting [107]. PLS is suitable when there is
descriptors co-linearity, while the parameters of the model, such as weights, regression coefficients,
selectivity ratios, and the scores of variable importance on projections can be used to measure variable
significance [38]. Logistic regression is generally based on the hypothesis that there is a relationship
between dependent and independent variables. When the assumption is not true, algorithms that
do not make such an assumption, e.g., instance-based algorithms, outperform logistic regression
models [121].

The most popular instance-based algorithms were SVMs and kNN. The kNN method is a popular
read-across strategy as it requires few similarities and is less computationally intensive and easier to
implement than SVM. However, in the case of the complex problem of multi-label variables, kNN may
take longer to find the k nearest neighbors. In such cases of very high-dimensional spaces, SVM is
more appropriate. SVM is highly accurate, insensible to overfitting, and can work well with a suitable
kernel even if data cannot be linearly separated in the feature space. However, SVMs are hard to adjust
and interpret. SVMs are memory-intensive. Similar to DT and LR, kNN is highly influenced by the size
of the available data set and more data may help in making the model more consistent and accurate.

Bayes can be restructured as new scientific data becomes available and contemporary research
grows, which enhances underlying assumptions in the construction of the initial model [77]. BNs
provide the capacity to merge different common (i.e., experimental data) and non-traditional (i.e.,
expert judgment, simulated data) knowledge bases into the BN parameterization process. This is
attractive in data-scarce environments such as the nanotoxicology arena [75]. BNs based on Bayes’
theorem are relatively simple to build and particularly valuable for large data sets. Naive Bayes is
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recognized to outperform sophisticated methods of classification along with simplicity, and is also a
good choice when memory resources are a restrictive factor. It should be noted that Bayes classifiers
use categorical data. Therefore, numerical attributes have to be converted to each category by replacing
numerical data by their corresponding bin-ranges. The finer a range splitting, the more precise the
representation of the data and the more demanding computationally the model is. The uncertainty
introduced by grouping the data into bins should be addressed when Bayes models are implemented.

Meta algorithms can improve model predictivity and reduce overfitting. The need, though, for
developing models that include a directed causality between the nanoform and its toxic activity is
clearly stated under the fifth OECD QSAR validation principle and has discouraged the meta-algorithm
application. On the other hand, although lacking a mechanistic interpretation, RF has often been used
for combining robustness, resources efficiency, and simple parameterizations.

A neural network structure is not easily readable. Their trained parameterizations are hard to
comprehend and they can be very resource and memory intensive. Bayesian regularized networks
create models that are reasonably insensitive to the number of hidden layer nodes, which makes
architecture optimization effortless [58]. A lot of research has been dedicated to ANN especially in
pattern recognition, and the advances in the algorithms have been ported to nanotoxicity applications.
Due to their potential high complexity, ANN can accommodate plenty of data and still achieve high
accuracies with evident computational cost. However, while ANN can accommodate large datasets,
small datasets, on the other hand, render ANN prone to overfitting.

4.3. Challenges and Perspectives

When only small data sets are available, models that have few parameters (low complexity) and/or
a prior strength should be used and, in this case, a ‘prior’ can be interpreted as any assumption on how
the data behaves. In linear regression, for instance, the number of parameters can be easily adapted
and the models assume only linear interactions. In simple terms, Bayesian models such as Naive Bayes
deal with a few parameters and a direct way to adjust their prior.

Neural networks were the only ML algorithm reviewed using more datasets exceeding 1000 cases
than smaller ones (Figure 3, right). Trees and regression models were used, as expected, to handle
smaller datasets. It is worth noting that Bayesian networks, although not frequently preferred, have
been used in all ranges of dataset sizes. Given the present scarceness of nanotoxicity data, the use of
effective modelling of small datasets is required [29]. However, even the best algorithm trained with
small datasets can be defeated by less sophisticated algorithms trained with more data [151]. Datasets
and/or databases integration can be a solution to data scarcity, which generates new hypotheses and
knowledge [152]. Karcher et al. [152] highlighted the importance of data integration in nanotechnology
and provided recommendations for advancing integration.

Regarding the number of descriptors in the models reviewed (Figure 4 left), ~75% of the studies
used less than 10 descriptors, which reflects computational limitations or a lack of data. In Furxhi I. et
al. [18], a thorough analysis of the data issue in computational nanotoxicology is provided, stretching
from missing data to experimental protocols and concepts. There is a shift in ongoing research toward
monitoring, identifying, and quantifying p-chem properties of nanoforms (Figure 4, right). This is
evident both in terms of increases in the base expectation of particle characterization in academic
journals and also in the objectives of new projects such as the Horizon 2020 project Nanocommons
(https://www.nanocommons.eu/ (Webpage accessed autumn 2019)), where Work package 5 is focused
on learning from raw experimental data, such as microscopic images or spectral data.

There are no specific trends revealed by breaking down the number of cases by the ML technique
used over the last decade (Figure 3, left), other than those of trees and bayesian networks that started
gaining popularity during the last five years, and neural networks and regression maintaining a
longstanding presence in the field. Targeting multiplicity and arbitrariness in model implementation,
the EU funded Horizon 2020 project NanoSolveIT (https://nanosolveit.eu/ (Webpage accessed autumn
2019)) aims at delivering a validated, sustainable, multi-scale nano-informatics strategy, via OECD-style

https://www.nanocommons.eu/
https://nanosolveit.eu/
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case studies for the assessment of potential adverse effects of NM on human health and the environment.
The project includes the development of cost effective nano-informatics tools and models based on
Artificial Intelligence for the prediction of crucial NMs functionalities and adverse effects from
descriptors and physical characteristics of NMs.

Nanoforms toxicity databases are available at a developmental stage and data obtained from
research studies originate from different experimental procedures. Furthermore, the development of
reliable data sets from a computational perspective requires that data be sufficient to allow splitting
after assessing its accuracy and suitability specifically for computational use [8]. Knowledge-based
expert systems often refer to data-driven modeling. Those systems of expertise derive information from
both literature and databases and are considered important tools for predicting toxicity. Considering
the lacunas and variations in the accessible nanotoxicity data, knowledge-based expert systems can be
a valuable approach for QSARs with a kind of “text data mining” capacity constantly capturing new
knowledge that emerges in the literature and knowledge-transfer extracting knowledge from diverse
fields [14,29].

5. Conclusions

This review of the current state-of-the-art ML computational tools in nanotoxicology, addressing
both human health and eco-toxicological endpoints, identified several models that provide prediction
to numerous nanotoxicological outcomes. The main conclusions are:

i a variety of ML algorithms have been used during the last decade with non-linear modelling
gaining popularity;

ii linear regression is still a popular method, enriched with nonlinear techniques;
iii there is a clear shift from theoretical descriptors and traditional QSAR modelling to models

incorporating nano-specific features, even though there is limited consensus on which features
must be considered;

iv there is great diversity in data pre-processing techniques depending on datasets and the ML
algorithm chosen;

v there is little technical convergence in pre-modelling stage methods compared to model
implementation and validation;

vi there is, in general, a lack of justification of model selection. There is also little justification on the
validation metrics choice.

Implementing ML in nanotoxicology comprises a very active and diverse collection of ongoing
efforts. While still in their infancy toward a scientific accord and subsequent guidelines and regulation
adoption, ML applications are transforming our ability to predict toxicities from nano-features and
experimental conditions. Research in progress on fragmented data integration and curation, in
compliance with in silico methods, is expected to enable method testing and an inter-comparison and
lead to method standardization.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/1/116/s1.
The equations of model validation and applicability domain are provided in supplementary material.

Author Contributions: Conceptualization, I.F. Methodology, I.F. Investigation, I.F. Writing—original draft
preparation, I.F. Writing—review and editing, F.M., M.M., A.A., and C.A.P. Visualization, I.F. and A.A. Supervision,
F.M., M.M., and C.A.P. Funding acquisition, I.F., F.M., and M.M. All authors have read and agreed to the published
version of the manuscript.

Funding: The European Union’s Horizon 2020 research and innovation program via RiskGONE Project under
grant agreement No 814425 funded this work. The Colt Foundation (project CF/01/17) financially supported Craig
A. Poland.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2079-4991/10/1/116/s1


Nanomaterials 2020, 10, 116 25 of 32

References

1. Chen, R.; Qiao, J.; Bai, R.; Zhao, Y.; Chen, C. Intelligent testing strategy and analytical techniques for the
safety assessment of nanomaterials. Anal. Bioanal. Chem. 2018, 410, 6051–6066. [CrossRef] [PubMed]

2. Schwarz-Plaschg, C.; Kallhoff, A.; Eisenberger, I. Making Nanomaterials Safer by Design. NanoEthics 2017,
11, 277–281. [CrossRef]

3. Kraegeloh, A.; Suarez-Merino, B.; Sluijters, T.; Micheletti, C. Implementation of Safe-by-Design for
Nanomaterial Development and Safe Innovation: Why We Need a Comprehensive Approach. Nanomaterials
2018, 8, 239. [CrossRef] [PubMed]

4. Puzyn, T.; Jeliazkova, N.; Sarimveis, H.; Marchese Robinson, R.L.; Lobaskin, V.; Rallo, R.; Richarz, A.-N.;
Gajewicz, A.; Papadopulos, M.G.; Hastings, J.; et al. Perspectives from the NanoSafety Modelling Cluster on
the validation criteria for (Q)SAR models used in nanotechnology. Food Chem. Toxicol. 2018, 112, 478–494.
[CrossRef] [PubMed]

5. Haase, A.; Klaessig, F. EU US Roadmap Nanoinformatics 2030; EU NanoSafety Cluster: Copenhagen, Denmark,
2018.

6. Burgdorf, T.; Piersma, A.H.; Landsiedel, R.; Clewell, R.; Kleinstreuer, N.; Oelgeschläger, M.; Desprez, B.;
Kienhuis, A.; Bos, P.; de Vries, R.; et al. Workshop on the validation and regulatory acceptance of innovative
3R approaches in regulatory toxicology—Evolution versus revolution. Toxicol. In Vitro 2019, 59, 1–11.
[CrossRef]

7. ECHA. Non-Animal Approaches—Current Status of Regulatory Applicability under the REACH, CLP and Biocidal
Products Regulations; ECHA: Helsinki, Finland, 2017; p. 163.

8. Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L.; Sandín-España, P. Considerations of
nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Sci.
Total Environ. 2018, 634, 1530–1539. [CrossRef]

9. Quik, J.T.K.; Bakker, M.; van de Meent, D.; Poikkimäki, M.; Dal Maso, M.; Peijnenburg, W. Directions in QPPR
development to complement the predictive models used in risk assessment of nanomaterials. NanoImpact
2018, 11, 58–66. [CrossRef]

10. Lamon, L.; Asturiol, D.; Richarz, A.; Joossens, E.; Graepel, R.; Aschberger, K.; Worth, A. Grouping of
nanomaterials to read-across hazard endpoints: From data collection to assessment of the grouping
hypothesis by application of chemoinformatic techniques. Part. Fibre Toxicol. 2018, 15, 37. [CrossRef]

11. Lamon, L.; Aschberger, K.; Asturiol, D.; Richarz, A.; Worth, A. Grouping of nanomaterials to read-across
hazard endpoints: A review. Nanotoxicology 2018. [CrossRef]

12. Giusti, A.; Atluri, R.; Tsekovska, R.; Gajewicz, A.; Apostolova, M.D.; Battistelli, C.L.; Bleeker, E.A.J.; Bossa, C.;
Bouillard, J.; Dusinska, M.; et al. Nanomaterial grouping: Existing approaches and future recommendations.
NanoImpact 2019, 16, 100182. [CrossRef]

13. OECD. OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR]
Models; OECD: Paris, France, 2014. [CrossRef]

14. Basei, G.; Hristozov, D.; Lamon, L.; Zabeo, A.; Jeliazkova, N.; Tsiliki, G.; Marcomini, A.; Torsello, A. Making
use of available and emerging data to predict the hazards of engineered nanomaterials by means of in silico
tools: A critical review. NanoImpact 2019, 13, 76–99. [CrossRef]

15. Worth, A.A.K.; Asturiol, B.D.; Bessems, J.; Gerloff, K.B.; Graepel, R.; Joossens, E.; Lamon, L.; Palosaari, T.;
Richarz, A. Evaluation of the Availability and Applicability of Computational Approaches in the Safety Assessment of
Nanomaterials; Final Report of the Nanocomput Project; JRC: Ispra, Italy, 2017.

16. Lamon, L.; Asturiol, D.; Vilchez, A.; Ruperez-Illescas, R.; Cabellos, J.; Richarz, A.; Worth, A. Computational
models for the assessment of manufactured nanomaterials: Development of model reporting standards and
mapping of the model landscape. Comput. Toxicol. 2019, 9, 143–151. [CrossRef] [PubMed]

17. Schneider, K.; Schwarz, M.; Burkholder, I.; Kopp-Schneider, A.; Edler, L.; Kinsner-Ovaskainen, A.; Hartung, T.;
Hoffmann, S. “ToxRTool”, a new tool to assess the reliability of toxicological data. Toxicol. Lett. 2009, 189,
138–144. [CrossRef] [PubMed]

18. Furxhi, I.; Murphy, F.; Mullins, M.; Arvanitis, A.; Poland, A.C. Nanotoxicology data for in silico tools. A
literature review. Nanotoxicology 2020, submitted.

19. OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] Models;
OECD: Paris, France, 2007; pp. 1–154.

http://dx.doi.org/10.1007/s00216-018-0940-y
http://www.ncbi.nlm.nih.gov/pubmed/29550875
http://dx.doi.org/10.1007/s11569-017-0307-4
http://dx.doi.org/10.3390/nano8040239
http://www.ncbi.nlm.nih.gov/pubmed/29661997
http://dx.doi.org/10.1016/j.fct.2017.09.037
http://www.ncbi.nlm.nih.gov/pubmed/28943385
http://dx.doi.org/10.1016/j.tiv.2019.03.039
http://dx.doi.org/10.1016/j.scitotenv.2018.04.033
http://dx.doi.org/10.1016/j.impact.2018.02.003
http://dx.doi.org/10.1186/s12989-018-0273-1
http://dx.doi.org/10.1080/17435390.2018.1506060
http://dx.doi.org/10.1016/j.impact.2019.100182
http://dx.doi.org/10.1787/9789264085442-en
http://dx.doi.org/10.1016/j.impact.2019.01.003
http://dx.doi.org/10.1016/j.comtox.2018.12.002
http://www.ncbi.nlm.nih.gov/pubmed/31008416
http://dx.doi.org/10.1016/j.toxlet.2009.05.013
http://www.ncbi.nlm.nih.gov/pubmed/19477248


Nanomaterials 2020, 10, 116 26 of 32

20. Li, M.; Zou, P.; Tyner, K.; Lee, S. Physiologically Based Pharmacokinetic (PBPK) Modeling of Pharmaceutical
Nanoparticles. AAPS J. 2017, 19, 26–42. [CrossRef]

21. Yuan, D.; He, H.; Wu, Y.; Fan, J.; Cao, Y. Physiologically Based Pharmacokinetic Modeling of Nanoparticles.
J. Pharm. Sci. 2019, 108, 58–72. [CrossRef]

22. Danauskas, S.M.; Jurs, P.C. Prediction of C60 Solubilities from Solvent Molecular Structures. J. Chem. Inf.
Comput. Sci. 2001, 41, 419–424. [CrossRef]

23. Pourbasheer, E.; Aalizadeh, R.; Ardabili, J.S.; Ganjali, M.R. QSPR study on solubility of some fullerenes
derivatives using the genetic algorithms—Multiple linear regression. J. Mol. Liq. 2015, 204, 162–169.
[CrossRef]

24. Bouwmeester, H.; Poortman, J.; Peters, R.J.; Wijma, E.; Kramer, E.; Makama, S.; Puspitaninganindita, K.;
Marvin, H.J.; Peijnenburg, A.A.; Hendriksen, P.J. Characterization of Translocation of Silver Nanoparticles
and Effects on Whole-Genome Gene Expression Using an In Vitro Intestinal Epithelium Coculture Model.
ACS Nano 2011, 5, 4091–4103. [CrossRef]

25. Basant, N.; Gupta, S. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints
of nano-metal oxides. Nanotoxicology 2017, 11, 339–350. [CrossRef]

26. Salahinejad, M.; Zolfonoun, E. QSAR studies of the dispersion of SWNTs in different organic solvents. J.
Nanopart. Res. 2013, 15, 2028. [CrossRef]

27. Petrova, T.; Rasulev, B.F.; Toropov, A.A.; Leszczynska, D.; Leszczynski, J. Improved model for fullerene C60
solubility in organic solvents based on quantum-chemical and topological descriptors. J. Nanopart. Res. 2011,
13, 3235–3247. [CrossRef]

28. Papa, E.; Doucet, J.P.; Doucet-Panaye, A. Linear and non-linear modelling of the cytotoxicity of TiO2 and ZnO
nanoparticles by empirical descriptors. SAR QSAR Environ. Res. 2015, 26, 647–665. [CrossRef] [PubMed]

29. Oksel, C.; Ma, C.Y.; Liu, J.J.; Wilkins, T.; Wang, X.Z. (Q)SAR modelling of nanomaterial toxicity: A critical
review. Particuology 2015, 21, 1–19. [CrossRef]

30. Oksel, C.; Winkler, D.A.; Ma, C.Y.; Wilkins, T.; Wang, X.Z. Accurate and interpretable nanoSAR models
from genetic programming-based decision tree construction approaches. Nanotoxicology 2016, 10, 1001–1012.
[CrossRef]

31. Mikolajczyk, A.; Gajewicz, A.; Mulkiewicz, E.; Rasulev, B.; Marchelek, M.; Diak, M.; Hirano, S.;
Zaleska-Medynska, A.; Puzyn, T. Nano-QSAR modeling for ecosafe design of heterogeneous TiO2-based
nano-photocatalysts. Environ. Sci. Nano 2018, 5, 1150–1160. [CrossRef]

32. Shao, C.-Y.; Chen, S.-Z.; Su, B.-H.; Tseng, Y.J.; Esposito, E.X.; Hopfinger, A.J. Dependence of QSAR Models
on the Selection of Trial Descriptor Sets: A Demonstration Using Nanotoxicity Endpoints of Decorated
Nanotubes. J. Chem. Inf. Model. 2013, 53, 142–158. [CrossRef]

33. Wen, D.; Shan, X.; He, G.; Chen, H. Prediction for cellular uptake of manufactured nanoparticles to pancreatic
cancer cells. Revue Roumaine Chimie 2015, 60, 367–370.

34. Gajewicz, A.; Schaeublin, N.; Rasulev, B.; Hussain, S.; Leszczynska, D.; Puzyn, T.; Leszczynski, J. Towards
understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR
studies. Nanotoxicology 2015, 9, 313–325. [CrossRef]

35. Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T.P.; Michalkova, A.; Hwang, H.-M.; Toropov, A.;
Leszczynska, D.; Leszczynski, J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.
Nat. Nanotechnol. 2011, 6, 175. [CrossRef]

36. Helma, C.; Rautenberg, M.; Gebele, D. Nano-Lazar: Read across Predictions for Nanoparticle Toxicities with
Calculated and Measured Properties. Front. Pharmacol. 2017, 8. [CrossRef]

37. Trinh, T.X.; Choi, J.S.; Jeon, H.; Byun, H.G.; Yoon, T.H.; Kim, J. Quasi-SMILES-Based Nano-Quantitative
Structure-Activity Relationship Model to Predict the Cytotoxicity of Multiwalled Carbon Nanotubes to
Human Lung Cells. Chem. Res. Toxicol. 2018, 31, 183–190. [CrossRef] [PubMed]

38. Bigdeli, A.; Hormozi-Nezhad, M.R.; Parastar, H. Using nano-QSAR to determine the most responsible
factor(s) in gold nanoparticle exocytosis. RSC Adv. 2015, 5, 57030–57037. [CrossRef]

39. Oksel, C.; Ma, C.Y.; Wang, X.Z. Structure-activity Relationship Models for Hazard Assessment and Risk
Management of Engineered Nanomaterials. Procedia Eng. 2015, 102, 1500–1510. [CrossRef]

40. Papa, E.; Doucet, J.P.; Sangion, A.; Doucet-Panaye, A. Investigation of the influence of protein corona
composition on gold nanoparticle bioactivity using machine learning approaches. SAR QSAR Environ. Res.
2016, 27, 521–538. [CrossRef] [PubMed]

http://dx.doi.org/10.1208/s12248-016-0010-3
http://dx.doi.org/10.1016/j.xphs.2018.10.037
http://dx.doi.org/10.1021/ci000140s
http://dx.doi.org/10.1016/j.molliq.2015.01.028
http://dx.doi.org/10.1021/nn2007145
http://dx.doi.org/10.1080/17435390.2017.1302612
http://dx.doi.org/10.1007/s11051-013-2028-0
http://dx.doi.org/10.1007/s11051-011-0238-x
http://dx.doi.org/10.1080/1062936X.2015.1080186
http://www.ncbi.nlm.nih.gov/pubmed/26330049
http://dx.doi.org/10.1016/j.partic.2014.12.001
http://dx.doi.org/10.3109/17435390.2016.1161857
http://dx.doi.org/10.1039/C8EN00085A
http://dx.doi.org/10.1021/ci3005308
http://dx.doi.org/10.3109/17435390.2014.930195
http://dx.doi.org/10.1038/nnano.2011.10
http://dx.doi.org/10.3389/fphar.2017.00377
http://dx.doi.org/10.1021/acs.chemrestox.7b00303
http://www.ncbi.nlm.nih.gov/pubmed/29439565
http://dx.doi.org/10.1039/C5RA06198A
http://dx.doi.org/10.1016/j.proeng.2015.01.284
http://dx.doi.org/10.1080/1062936X.2016.1197310
http://www.ncbi.nlm.nih.gov/pubmed/27329717


Nanomaterials 2020, 10, 116 27 of 32

41. Mu, Y.; Wu, F.; Zhao, Q.; Ji, R.; Qie, Y.; Zhou, Y.; Hu, Y.; Pang, C.; Hristozov, D.; Giesy, J.P.; et al. Predicting
toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Nanotoxicology 2016, 10, 1207–1214.
[CrossRef] [PubMed]

42. Ghaedi, M.; Ghaedi, A.M.; Hossainpour, M.; Ansari, A.; Habibi, M.H.; Asghari, A.R. Least square-support
vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on
activated carbon: Kinetic and isotherm study. J. Ind. Eng. Chem. 2014, 20, 1641–1649. [CrossRef]

43. Jha, S.K.; Yoon, T.H.; Pan, Z. Multivariate statistical analysis for selecting optimal descriptors in the toxicity
modeling of nanomaterials. Comput. Biol. Med. 2018, 99, 161–172. [PubMed]

44. Borders, T.L.; Fonseca, A.F.; Zhang, H.; Cho, K.; Rusinko, A. Developing Descriptors to Predict Mechanical
Properties of Nanotubes. J. Chem. Inf. Model. 2013, 53, 773–782. [CrossRef]

45. Bygd, H.C.; Forsmark, K.D.; Bratlie, K.M. Altering in vivo macrophage responses with modified polymer
properties. Biomaterials 2015, 56, 187–197. [CrossRef]

46. Kar, S.; Gajewicz, A.; Puzyn, T.; Roy, K. Nano-quantitative structure–activity relationship modeling using
easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles
in pancreatic cancer cells. Toxicol. In Vitro 2014, 28, 600–606. [CrossRef] [PubMed]

47. Walkey, C.D.; Olsen, J.B.; Song, F.; Liu, R.; Guo, H.; Olsen, D.W.H.; Cohen, Y.; Emili, A.; Chan, W.C.W. Protein
Corona Fingerprinting Predicts the Cellular Interaction of Gold and Silver Nanoparticles. ACS Nano 2014, 8,
2439–2455. [CrossRef] [PubMed]

48. Rofouei, M.K.; Salahinejad, M.; Ghasemi, J.B. An Alignment Independent 3D-QSAR Modeling of Dispersibility
of Single-walled Carbon Nanotubes in Different Organic Solvents. Fuller. Nanotub. Carbon Nanostruct. 2014,
22, 605–617. [CrossRef]

49. Rong, L.; Robert, R.; Muhammad, B.; Yoram, C. Quantitative Structure-Activity Relationships for Cellular
Uptake of Surface-Modified Nanoparticles. In Combinatorial Chemistry & High Throughput Screening; Bentham
Science: Bussum, The Netherlands, 2015; Volume 18, pp. 365–375.

50. Liu, R.; Jiang, W.; Walkey, C.D.; Chan, W.C.W.; Cohen, Y. Prediction of nanoparticles-cell association based
on corona proteins and physicochemical properties. Nanoscale 2015, 7, 9664–9675. [CrossRef]

51. Luan, F.; Kleandrova, V.V.; González-Díaz, H.; Ruso, J.M.; Melo, A.; Speck-Planche, A.; Cordeiro, M.N.D.S.
Computer-aided nanotoxicology: Assessing cytotoxicity of nanoparticles under diverse experimental
conditions by using a novel QSTR-perturbation approach. Nanoscale 2014, 6, 10623–10630. [CrossRef]

52. Speck-Planche, A.; Kleandrova, V.V.; Luan, F.; Cordeiro, M.N. Computational modeling in nanomedicine:
Prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship
perturbation model. Nanomedicine 2015, 10, 193–204. [CrossRef]

53. Kar, S.; Gajewicz, A.; Roy, K.; Leszczynski, J.; Puzyn, T. Extrapolating between toxicity endpoints of metal
oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with
Nano-QTTR. Ecotoxicol. Environ. Saf. 2016, 126, 238–244. [CrossRef]

54. Yousefinejad, S.; Honarasa, F.; Abbasitabar, F.; Arianezhad, Z. New LSER Model Based on Solvent Empirical
Parameters for the Prediction and Description of the Solubility of Buckminsterfullerene in Various Solvents.
J. Solut. Chem. 2013, 42, 1620–1632. [CrossRef]

55. Ghorbanzadeh, M.; Fatemi, M.H.; Karimpour, M. Modeling the Cellular Uptake of Magnetofluorescent
Nanoparticles in Pancreatic Cancer Cells: A Quantitative Structure Activity Relationship Study. Ind. Eng.
Chem. Res. 2012, 51, 10712–10718. [CrossRef]

56. Epa, V.C.; Burden, F.R.; Tassa, C.; Weissleder, R.; Shaw, S.; Winkler, D.A. Modeling Biological Activities of
Nanoparticles. Nano Lett. 2012, 12, 5808–5812. [CrossRef]

57. Le, T.C.; Yin, H.; Chen, R.; Chen, Y.; Zhao, L.; Casey, P.S.; Chen, C.; Winkler, D.A. An Experimental and
Computational Approach to the Development of ZnO Nanoparticles that are Safe by Design. Small 2016, 12,
3568–3577. [CrossRef] [PubMed]

58. Winkler, D.A.; Burden, F.R.; Yan, B.; Weissleder, R.; Tassa, C.; Shaw, S.; Epa, V.C. Modelling and predicting
the biological effects of nanomaterials. SAR QSAR Environ. Res. 2014, 25, 161–172. [CrossRef] [PubMed]

59. Bilal, M.; Oh, E.; Liu, R.; Breger, J.C.; Medintz, I.L.; Cohen, Y. Bayesian Network Resource for Meta-Analysis:
Cellular Toxicity of Quantum Dots. Small 2019. [CrossRef] [PubMed]

60. Choi, J.-S.; Ha, M.K.; Trinh, T.X.; Yoon, T.H.; Byun, H.-G. Towards a generalized toxicity prediction model
for oxide nanomaterials using integrated data from different sources. Sci. Rep. 2018, 8, 6110. [CrossRef]
[PubMed]

http://dx.doi.org/10.1080/17435390.2016.1202352
http://www.ncbi.nlm.nih.gov/pubmed/27309010
http://dx.doi.org/10.1016/j.jiec.2013.08.011
http://www.ncbi.nlm.nih.gov/pubmed/29933127
http://dx.doi.org/10.1021/ci300482n
http://dx.doi.org/10.1016/j.biomaterials.2015.03.042
http://dx.doi.org/10.1016/j.tiv.2013.12.018
http://www.ncbi.nlm.nih.gov/pubmed/24412539
http://dx.doi.org/10.1021/nn406018q
http://www.ncbi.nlm.nih.gov/pubmed/24517450
http://dx.doi.org/10.1080/1536383X.2012.702157
http://dx.doi.org/10.1039/C5NR01537E
http://dx.doi.org/10.1039/C4NR01285B
http://dx.doi.org/10.2217/nnm.14.96
http://dx.doi.org/10.1016/j.ecoenv.2015.12.033
http://dx.doi.org/10.1007/s10953-013-0062-2
http://dx.doi.org/10.1021/ie3006947
http://dx.doi.org/10.1021/nl303144k
http://dx.doi.org/10.1002/smll.201600597
http://www.ncbi.nlm.nih.gov/pubmed/27167706
http://dx.doi.org/10.1080/1062936X.2013.874367
http://www.ncbi.nlm.nih.gov/pubmed/24625316
http://dx.doi.org/10.1002/smll.201900510
http://www.ncbi.nlm.nih.gov/pubmed/31207082
http://dx.doi.org/10.1038/s41598-018-24483-z
http://www.ncbi.nlm.nih.gov/pubmed/29666463


Nanomaterials 2020, 10, 116 28 of 32

61. Varsou, D.-D.; Afantitis, A.; Tsoumanis, A.; Melagraki, G.; Sarimveis, H.; Valsami-Jones, E.; Lynch, I. A
safe-by-design tool for functionalised nanomaterials through the Enalos Nanoinformatics Cloud platform.
Nanoscale Adv. 2019, 1, 706–718. [CrossRef]

62. Melagraki, G.; Afantitis, A. Enalos InSilicoNano platform: An online decision support tool for the design
and virtual screening of nanoparticles. RSC Adv. 2014, 4, 50713–50725. [CrossRef]

63. Gernand, J.M.; Casman, E.A. A Meta-Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How
Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes. Risk Anal. 2014, 34, 583–597.
[CrossRef]

64. Ha, M.K.; Trinh, T.X.; Choi, J.S.; Maulina, D.; Byun, H.G.; Yoon, T.H. Toxicity Classification of Oxide
Nanomaterials: Effects of Data Gap Filling and PChem Score-based Screening Approaches. Sci. Rep. 2018, 8,
3141. [CrossRef]

65. Liu, X.; Tang, K.; Harper, S.; Harper, B.; Steevens, J.A.; Xu, R. Predictive modeling of nanomaterial exposure
effects in biological systems. Int. J. Nanomed. 2013, 8 (Suppl. S1), 31–43. [CrossRef]

66. Labouta, H.I.; Asgarian, N.; Rinker, K.; Cramb, D.T. Meta-Analysis of Nanoparticle Cytotoxicity via
Data-Mining the Literature. ACS Nano 2019, 13, 1583–1594. [CrossRef]

67. Trinh, T.X.; Ha, M.K.; Choi, J.S.; Byun, H.G.; Yoon, T.H. Curation of datasets, assessment of their quality and
completeness, and nanoSAR classification model development for metallic nanoparticles. Environ. Sci. Nano
2018, 5, 1902–1910. [CrossRef]

68. Gharagheizi, F.; Alamdari, R.F. A Molecular-Based Model for Prediction of Solubility of C60 Fullerene in
Various Solvents. Fuller. Nanotub. Carbon Nanostruct. 2008, 16, 40–57. [CrossRef]

69. Gajewicz, A.; Jagiello, K.; Cronin, M.T.D.; Leszczynski, J.; Puzyn, T. Addressing a bottle neck for regulation of
nanomaterials: Quantitative read-across (Nano-QRA) algorithm for cases when only limited data is available.
Environ. Sci. Nano 2017, 4, 346–358. [CrossRef]

70. George, S.; Xia, T.; Rallo, R.; Zhao, Y.; Ji, Z.; Lin, S.; Wang, X.; Zhang, H.; France, B.; Schoenfeld, D.; et al. Use
of a High-Throughput Screening Approach Coupled with In Vivo Zebrafish Embryo Screening To Develop
Hazard Ranking for Engineered Nanomaterials. ACS Nano 2011, 5, 1805–1817. [CrossRef]

71. Gerber, A.; Bundschuh, M.; Klingelhofer, D.; Groneberg, D.A. Gold nanoparticles: Recent aspects for human
toxicology. J. Occup. Med. Toxicol. 2013, 8, 32. [CrossRef]

72. Furxhi, I.; Murphy, F.; Mullins, M.; Poland, C.A. Machine learning prediction of nanoparticle in vitro toxicity:
A comparative study of classifiers and ensemble-classifiers using the Copeland Index. Toxicol. Lett. 2019,
312, 157–166. [CrossRef]

73. Horev-Azaria, L.; Kirkpatrick, C.J.; Korenstein, R.; Marche, P.N.; Maimon, O.; Ponti, J.; Romano, R.; Rossi, F.;
Golla-Schindler, U.; Sommer, D.; et al. Predictive Toxicology of Cobalt Nanoparticles and Ions: Comparative
In Vitro Study of Different Cellular Models Using Methods of Knowledge Discovery from Data. Toxicol. Sci.
2011, 122, 489–501. [CrossRef]

74. Furxhi, I.; Murphy, F.; Sheehan, B.; Mullins, M.; Mantecca, P. Predicting Nanomaterials toxicity pathways
based on genome-wide transcriptomics studies using Bayesian networks. In Proceedings of the 2018 IEEE
18th International Conference on Nanotechnology (IEEE-NANO), Cork, Ireland, 23–26 July 2018; pp. 1–4.

75. Marvin, H.J.P.; Bouzembrak, Y.; Janssen, E.M.; van der Zande, M.; Murphy, F.; Sheehan, B.; Mullins, M.;
Bouwmeester, H. Application of Bayesian networks for hazard ranking of nanomaterials to support human
health risk assessment. Nanotoxicology 2017, 11, 123–133. [CrossRef]

76. Fourches, D.; Pu, D.; Tassa, C.; Weissleder, R.; Shaw, S.Y.; Mumper, R.J.; Tropsha, A. Quantitative
Nanostructure−Activity Relationship Modeling. ACS Nano 2010, 4, 5703–5712. [CrossRef]

77. Furxhi, I.; Murphy, F.; Poland, C.A.; Sheehan, B.; Mullins, M.; Mantecca, P. Application of Bayesian networks
in determining nanoparticle-induced cellular outcomes using transcriptomics. Nanotoxicology 2019, 13,
827–848. [CrossRef]

78. Jean, J.; Kar, S.; Leszczynski, J. QSAR modeling of adipose/blood partition coefficients of Alcohols, PCBs,
PBDEs, PCDDs and PAHs: A data gap filling approach. Environ. Int. 2018, 121, 1193–1203. [CrossRef]

79. Gajewicz, A. What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR
models? An alternative read-across based approach for filling data gaps. Nanoscale 2017, 9, 8435–8448.
[CrossRef]

80. Ban, Z.; Zhou, Q.; Sun, A.; Mu, L.; Hu, X. Screening Priority Factors Determining and Predicting the
Reproductive Toxicity of Various Nanoparticles. Environ. Sci. Technol. 2018, 52, 9666–9676. [CrossRef]

http://dx.doi.org/10.1039/C8NA00142A
http://dx.doi.org/10.1039/C4RA07756C
http://dx.doi.org/10.1111/risa.12109
http://dx.doi.org/10.1038/s41598-018-21431-9
http://dx.doi.org/10.2147/IJN.S40742
http://dx.doi.org/10.1021/acsnano.8b07562
http://dx.doi.org/10.1039/C8EN00061A
http://dx.doi.org/10.1080/15363830701779315
http://dx.doi.org/10.1039/C6EN00399K
http://dx.doi.org/10.1021/nn102734s
http://dx.doi.org/10.1186/1745-6673-8-32
http://dx.doi.org/10.1016/j.toxlet.2019.05.016
http://dx.doi.org/10.1093/toxsci/kfr124
http://dx.doi.org/10.1080/17435390.2016.1278481
http://dx.doi.org/10.1021/nn1013484
http://dx.doi.org/10.1080/17435390.2019.1595206
http://dx.doi.org/10.1016/j.envint.2018.10.037
http://dx.doi.org/10.1039/C7NR02211E
http://dx.doi.org/10.1021/acs.est.8b02757


Nanomaterials 2020, 10, 116 29 of 32

81. Pradeep, P.; Carlson, L.M.; Judson, R.; Lehmann, G.M.; Patlewicz, G. Integrating data gap filling techniques:
A case study predicting TEFs for neurotoxicity TEQs to facilitate the hazard assessment of polychlorinated
biphenyls. Regul. Toxicol. Pharmacol. 2019, 101, 12–23. [CrossRef]

82. Choi, J.-S.; Trinh, T.X.; Yoon, T.-H.; Kim, J.; Byun, H.-G. Quasi-QSAR for predicting the cell viability of
human lung and skin cells exposed to different metal oxide nanomaterials. Chemosphere 2019, 217, 243–249.
[CrossRef]

83. Toropova, A.P.; Toropov, A.A.; Benfenati, E. A quasi-QSPR modelling for the photocatalytic decolourization
rate constants and cellular viability (CV%) of nanoparticles by CORAL. SAR QSAR Environ. Res. 2015, 26,
29–40. [CrossRef]

84. Pan, Y.; Li, T.; Cheng, J.; Telesca, D.; Zink, J.I.; Jiang, J. Nano-QSAR modeling for predicting the cytotoxicity
of metal oxide nanoparticles using novel descriptors. RSC Adv. 2016, 6, 25766–25775. [CrossRef]

85. Sizochenko, N.; Kuz’min, V.; Ognichenko, L.; Leszczynski, J. Introduction of simplex-informational descriptors
for QSPR analysis of fullerene derivatives. J. Math. Chem. 2016, 54, 698–706. [CrossRef]

86. Cassano, A.; Robinson, R.L.M.; Palczewska, A.; Puzyn, T.; Gajewicz, A.; Tran, L.; Manganelli, S.; Cronin, M.T.D.
Comparing the CORAL and Random Forest Approaches for Modelling the In Vitro Cytotoxicity of Silica
Nanomaterials. Altern. Lab. Anim. 2016, 44, 533–556. [CrossRef]

87. Sizochenko, N.; Rasulev, B.; Gajewicz, A.; Kuz’min, V.; Puzyn, T.; Leszczynski, J. From basic physics to
mechanisms of toxicity: The “liquid drop” approach applied to develop predictive classification models for
toxicity of metal oxide nanoparticles. Nanoscale 2014, 6, 13986–13993. [CrossRef]

88. Baharifar, H.; Amani, A. Cytotoxicity of chitosan/streptokinase nanoparticles as a function of size: An
artificial neural networks study. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 171–180. [CrossRef] [PubMed]

89. Toropov, A.A.; Toropova, A.P.; Puzyn, T.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. QSAR
as a random event: Modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere 2013, 92, 31–37.
[CrossRef] [PubMed]

90. Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.; Natarajan, R. QSPR Modeling for Solubility of Fullerene
(C60) in Organic Solvents. J. Chem. Inf. Comput. Sci. 2001, 41, 1067–1074. [CrossRef] [PubMed]

91. Yilmaz, H.; Rasulev, B.; Leszczynski, J. Modeling the Dispersibility of Single Walled Carbon Nanotubes
in Organic Solvents by Quantitative Structure-Activity Relationship Approach. Nanomaterials 2015, 5, 778.
[CrossRef]

92. Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. CORAL: QSPR models
for solubility of [C60] and [C70] fullerene derivatives. Mol. Divers. 2011, 15, 249–256. [CrossRef]

93. Toropov, A.A.; Rasulev, B.F.; Leszczynska, D.; Leszczynski, J. Multiplicative SMILES-based optimal
descriptors: QSPR modeling of fullerene C60 solubility in organic solvents. Chem. Phys. Lett. 2008,
457, 332–336. [CrossRef]

94. Mikolajczyk, A.; Gajewicz, A.; Rasulev, B.; Schaeublin, N.; Maurer-Gardner, E.; Hussain, S.; Leszczynski, J.;
Puzyn, T. Zeta Potential for Metal Oxide Nanoparticles: A Predictive Model Developed by a
Nano-Quantitative Structure–Property Relationship Approach. Chem. Mater. 2015, 27, 2400–2407. [CrossRef]

95. Brownlee, J. A Tour of Machine Learning Algorithms. Available online: http://machinelearningmastery.com/

a-tour-of-machine-learning-algorithms/ (accessed on 11 September 2019).
96. Jones, D.E.; Ghandehari, H.; Facelli, J.C. Predicting cytotoxicity of PAMAM dendrimers using molecular

descriptors. Beilstein J. Nanotechnol. 2015, 6, 1886–1896. [CrossRef]
97. Melagraki, G.; Afantitis, A. A Risk Assessment Tool for the Virtual Screening of Metal Oxide Nanoparticles

through Enalos InSilicoNano Platform. Curr. Top. Med. Chem. 2015, 15, 1827–1836. [CrossRef]
98. Fourches, D.; Pu, D.; Li, L.; Zhou, H.; Mu, Q.; Su, G.; Yan, B.; Tropsha, A. Computer-aided design of carbon

nanotubes with the desired bioactivity and safety profiles. Nanotoxicology 2016, 10, 374–383. [CrossRef]
99. Oh, E.; Liu, R.; Nel, A.; Gemill, K.B.; Bilal, M.; Cohen, Y.; Medintz, I.L. Meta-analysis of cellular toxicity for

cadmium-containing quantum dots. Nat. Nanotechnol. 2016, 11, 479. [CrossRef]
100. Zhang, H.; Ji, Z.; Xia, T.; Meng, H.; Low-Kam, C.; Liu, R.; Pokhrel, S.; Lin, S.; Wang, X.; Liao, Y.-P.; et al. Use

of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute
Pulmonary Inflammation. ACS Nano 2012, 6, 4349–4368. [CrossRef]

101. Chen, G.; Peijnenburg, W.J.G.M.; Kovalishyn, V.; Vijver, M.G. Development of nanostructure–activity
relationships assisting the nanomaterial hazard categorization for risk assessment and regulatory
decision-making. RSC Adv. 2016, 6, 52227–52235. [CrossRef]

http://dx.doi.org/10.1016/j.yrtph.2018.10.013
http://dx.doi.org/10.1016/j.chemosphere.2018.11.014
http://dx.doi.org/10.1080/1062936X.2014.984327
http://dx.doi.org/10.1039/C6RA01298A
http://dx.doi.org/10.1007/s10910-015-0581-8
http://dx.doi.org/10.1177/026119291604400603
http://dx.doi.org/10.1039/C4NR03487B
http://dx.doi.org/10.1016/j.nano.2015.09.002
http://www.ncbi.nlm.nih.gov/pubmed/26409193
http://dx.doi.org/10.1016/j.chemosphere.2013.03.012
http://www.ncbi.nlm.nih.gov/pubmed/23566368
http://dx.doi.org/10.1021/ci010003a
http://www.ncbi.nlm.nih.gov/pubmed/11500126
http://dx.doi.org/10.3390/nano5020778
http://dx.doi.org/10.1007/s11030-010-9245-6
http://dx.doi.org/10.1016/j.cplett.2008.04.013
http://dx.doi.org/10.1021/cm504406a
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
http://dx.doi.org/10.3762/bjnano.6.192
http://dx.doi.org/10.2174/1568026615666150506144536
http://dx.doi.org/10.3109/17435390.2015.1073397
http://dx.doi.org/10.1038/nnano.2015.338
http://dx.doi.org/10.1021/nn3010087
http://dx.doi.org/10.1039/C6RA06159A


Nanomaterials 2020, 10, 116 30 of 32

102. Kovalishyn, V.; Abramenko, N.; Kopernyk, I.; Charochkina, L.; Metelytsia, L.; Tetko, I.V.; Peijnenburg, W.;
Kustov, L. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM
platform. Food Chem. Toxicol. 2018, 112, 507–517. [CrossRef]

103. González-Durruthy, M.; Alberici, L.C.; Curti, C.; Naal, Z.; Atique-Sawazaki, D.T.; Vázquez-Naya, J.M.;
González-Díaz, H.; Munteanu, C.R. Experimental–Computational Study of Carbon Nanotube Effects on
Mitochondrial Respiration: In Silico Nano-QSPR Machine Learning Models Based on New Raman Spectra
Transform with Markov–Shannon Entropy Invariants. J. Chem. Inf. Model. 2017, 57, 1029–1044. [CrossRef]

104. Sizochenko, N.; Rasulev, B.; Gajewicz, A.; Mokshyna, E.; Kuz’min, V.E.; Leszczynski, J.; Puzyn, T. Causal
inference methods to assist in mechanistic interpretation of classification nano-SAR models. RSC Adv. 2015,
5, 77739–77745. [CrossRef]

105. Gajewicz, A.; Puzyn, T.; Odziomek, K.; Urbaszek, P.; Haase, A.; Riebeling, C.; Luch, A.; Irfan, M.A.;
Landsiedel, R.; van der Zande, M.; et al. Decision tree models to classify nanomaterials according to the
DF4nanoGrouping scheme. Nanotoxicology 2018, 12, 1–17. [CrossRef]

106. Pathakoti, K.; Huang, M.-J.; Watts, J.D.; He, X.; Hwang, H.-M. Using experimental data of Escherichia coli
to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. J.
Photochem. Photobiol. B Biol. 2014, 130, 234–240. [CrossRef]

107. De, P.; Kar, S.; Roy, K.; Leszczynski, J. Second generation periodic table-based descriptors to encode toxicity
of metal oxide nanoparticles to multiple species: QSTR modeling for exploration of toxicity mechanisms.
Environ. Sci. Nano 2018, 5, 2742–2760. [CrossRef]

108. Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Gini, G.; Puzyn, T.; Leszczynska, D.; Leszczynski, J. Novel
application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia
coli. Chemosphere 2012, 89, 1098–1102. [CrossRef]

109. Toropov, A.A.; Toropova, A.P. Optimal descriptor as a translator of eclectic data into endpoint prediction:
Mutagenicity of fullerene as a mathematical function of conditions. Chemosphere 2014, 104, 262–264. [CrossRef]

110. Toropova, A.P.; Toropov, A.A.; Rallo, R.; Leszczynska, D.; Leszczynski, J. Optimal descriptor as a translator
of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions.
Ecotoxicol. Environ. Saf. 2015, 112, 39–45. [CrossRef]

111. Liu, R.; Rallo, R.; George, S.; Ji, Z.; Nair, S.; Nel, A.E.; Cohen, Y. Classification NanoSAR Development for
Cytotoxicity of Metal Oxide Nanoparticles. Small 2011, 7, 1118–1126. [CrossRef]

112. Toropova, A.P.; Toropov, A.A.; Manganelli, S.; Leone, C.; Baderna, D.; Benfenati, E.; Fanelli, R. Quasi-SMILES
as a tool to utilize eclectic data for predicting the behavior of nanomaterials. NanoImpact 2016, 1, 60–64.
[CrossRef]

113. Sayes, C.; Ivanov, I. Comparative Study of Predictive Computational Models for Nanoparticle-Induced
Cytotoxicity. Risk Anal. 2010, 30, 1723–1734. [CrossRef]

114. Toropova, A.P.; Toropov, A.A. Optimal descriptor as a translator of eclectic information into the prediction of
membrane damage by means of various TiO2 nanoparticles. Chemosphere 2013, 93, 2650–2655. [CrossRef]

115. Rispoli, F.; Angelov, A.; Badia, D.; Kumar, A.; Seal, S.; Shah, V. Understanding the toxicity of aggregated zero
valent copper nanoparticles against Escherichia coli. J. Hazard. Mater. 2010, 180, 212–216. [CrossRef]

116. Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Korenstein, R.; Leszczynska, D.; Leszczynski, J. Optimal
nano-descriptors as translators of eclectic data into prediction of the cell membrane damage by means of
nano metal-oxides. Environ. Sci. Pollut. Res. Int. 2015, 22, 745–757. [CrossRef]

117. Silva, T.; Pokhrel, L.R.; Dubey, B.; Tolaymat, T.M.; Maier, K.J.; Liu, X. Particle size, surface charge and
concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between
general linear model-predicted and observed toxicity. Sci. Total Environ. 2014, 468–469, 968–976. [CrossRef]

118. Yanamala, N.; Orandle, M.S.; Kodali, V.K.; Bishop, L.; Zeidler-Erdely, P.C.; Roberts, J.R.; Castranova, V.;
Erdely, A. Sparse Supervised Classification Methods Predict and Characterize Nanomaterial Exposures:
Independent Markers of MWCNT Exposures. Toxicol. Pathol. 2018, 46, 14–27. [CrossRef]

119. Harper, B.; Thomas, D.; Chikkagoudar, S.; Baker, N.; Tang, K.; Heredia-Langner, A.; Lins, R.; Harper, S.
Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic
zebrafish (EZ) metric of toxicity. J. Nanopart. Res. 2015, 17, 250. [CrossRef]

120. Kaweeteerawat, C.; Ivask, A.; Liu, R.; Zhang, H.; Chang, C.H.; Low-Kam, C.; Fischer, H.; Ji, Z.; Pokhrel, S.;
Cohen, Y.; et al. Toxicity of Metal Oxide Nanoparticles in Escherichia coli Correlates with Conduction Band
and Hydration Energies. Environ. Sci. Technol. 2015, 49, 1105–1112. [CrossRef]

http://dx.doi.org/10.1016/j.fct.2017.08.008
http://dx.doi.org/10.1021/acs.jcim.6b00458
http://dx.doi.org/10.1039/C5RA11399G
http://dx.doi.org/10.1080/17435390.2017.1415388
http://dx.doi.org/10.1016/j.jphotobiol.2013.11.023
http://dx.doi.org/10.1039/C8EN00809D
http://dx.doi.org/10.1016/j.chemosphere.2012.05.077
http://dx.doi.org/10.1016/j.chemosphere.2013.10.079
http://dx.doi.org/10.1016/j.ecoenv.2014.10.003
http://dx.doi.org/10.1002/smll.201002366
http://dx.doi.org/10.1016/j.impact.2016.04.003
http://dx.doi.org/10.1111/j.1539-6924.2010.01438.x
http://dx.doi.org/10.1016/j.chemosphere.2013.09.089
http://dx.doi.org/10.1016/j.jhazmat.2010.04.016
http://dx.doi.org/10.1007/s11356-014-3566-4
http://dx.doi.org/10.1016/j.scitotenv.2013.09.006
http://dx.doi.org/10.1177/0192623317730575
http://dx.doi.org/10.1007/s11051-015-3051-0
http://dx.doi.org/10.1021/es504259s


Nanomaterials 2020, 10, 116 31 of 32

121. Chau, Y.T.; Yap, C.W. Quantitative Nanostructure–Activity Relationship modelling of nanoparticles. RSC
Adv. 2012, 2, 8489–8496. [CrossRef]

122. Concu, R.; Kleandrova, V.V.; Speck-Planche, A.; Cordeiro, M.N.D.S. Probing the toxicity of nanoparticles: A
unified in silico machine learning model based on perturbation theory. Nanotoxicology 2017, 11, 891–906.
[CrossRef]

123. Sizochenko, N.; Mikolajczyk, A.; Jagiello, K.; Puzyn, T.; Leszczynski, J.; Rasulev, B. How the toxicity of
nanomaterials towards different species could be simultaneously evaluated: A novel multi-nano-read-across
approach. Nanoscale 2018, 10, 582–591. [CrossRef]

124. Kleandrova, V.V.; Luan, F.; González-Díaz, H.; Ruso, J.M.; Speck-Planche, A.; Cordeiro, M.N.D.S.
Computational Tool for Risk Assessment of Nanomaterials: Novel QSTR-Perturbation Model for
Simultaneous Prediction of Ecotoxicity and Cytotoxicity of Uncoated and Coated Nanoparticles under
Multiple Experimental Conditions. Environ. Sci. Technol. 2014, 48, 14686–14694. [CrossRef]

125. Kleandrova, V.V.; Luan, F.; González-Díaz, H.; Ruso, J.M.; Melo, A.; Speck-Planche, A.; Cordeiro, M.N.D.S.
Computational ecotoxicology: Simultaneous prediction of ecotoxic effects of nanoparticles under different
experimental conditions. Environ. Int. 2014, 73, 288–294. [CrossRef]

126. Singh, K.P.; Gupta, S. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC
Adv. 2014, 4, 13215–13230. [CrossRef]

127. Murphy, F.; Sheehan, B.; Mullins, M.; Bouwmeester, H.; Marvin, H.J.P.; Bouzembrak, Y.; Costa, A.L.; Das, R.;
Stone, V.; Tofail, S.A.M. A Tractable Method for Measuring Nanomaterial Risk Using Bayesian Networks.
Nanoscale Res. Lett. 2016, 11, 503. [CrossRef]

128. Sheehan, B.; Murphy, F.; Mullins, M.; Furxhi, I.; Costa, A.L.; Simeone, F.C.; Mantecca, P. Hazard Screening
Methods for Nanomaterials: A Comparative Study. Int. J. Mol. Sci. 2018, 19, 649. [CrossRef]

129. Durdagi, S.; Mavromoustakos, T.; Chronakis, N.; Papadopoulos, M.G. Computational design of novel
fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene
inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
Bioorg. Med. Chem. 2008, 16, 9957–9974. [CrossRef]

130. Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Leszczynska, D.; Leszczynski, J. Additive InChI-based optimal
descriptors: QSPR modeling of fullerene C60 solubility in organic solvents. J. Math. Chem. 2009, 46,
1232–1251. [CrossRef]

131. Roy, K.; Mitra, I.; Kar, S.; Ojha, P.K.; Das, R.N.; Kabir, H. Comparative Studies on Some Metrics for External
Validation of QSPR Models. J. Chem. Inf. Model. 2012, 52, 396–408. [CrossRef]

132. Roy, K.; Ambure, P.; Kar, S. How Precise Are Our Quantitative Structure–Activity Relationship Derived
Predictions for New Query Chemicals? ACS Omega 2018, 3, 11392–11406. [CrossRef]

133. Tamvakis, A.; Anagnostopoulos, C.-N.; Tsirtsis, G.; Niros, A.D.; Spatharis, S. Optimized Classification
Predictions with a New Index Combining Machine Learning Algorithms. Int. J. Artif. Intell. Tools 2018, 27,
1850012. [CrossRef]

134. Tsiliki, G.; Munteanu, C.R.; Seoane, J.A.; Fernandez-Lozano, C.; Sarimveis, H.; Willighagen, E.L. RRegrs:
An R package for computer-aided model selection with multiple regression models. J. Cheminf. 2015, 7, 46.
[CrossRef]

135. Tetko, I.V.; Sushko, I.; Pandey, A.K.; Zhu, H.; Tropsha, A.; Papa, E.; Öberg, T.; Todeschini, R.; Fourches, D.;
Varnek, A. Critical Assessment of QSAR Models of Environmental Toxicity against Tetrahymena pyriformis:
Focusing on Applicability Domain and Overfitting by Variable Selection. J. Chem. Inf. Model. 2008, 48,
1733–1746. [CrossRef]

136. Netzeva, T.I.; Worth, A.; Aldenberg, T.; Benigni, R.; Cronin, M.T.; Gramatica, P.; Jaworska, J.S.; Kahn, S.;
Klopman, G.; Marchant, C.A.; et al. Current status of methods for defining the applicability domain of
(quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52.
Altern. Lab. Anim. ATLA 2005, 33, 155–173. [CrossRef]

137. Liu, R.; Zhang, H.Y.; Ji, Z.X.; Rallo, R.; Xia, T.; Chang, C.H.; Nel, A.; Cohen, Y. Development of structure–activity
relationship for metal oxide nanoparticles. Nanoscale 2013, 5, 5644–5653. [CrossRef]

138. Xia, X.R.; Monteiro-Riviere, N.A.; Mathur, S.; Song, X.; Xiao, L.; Oldenberg, S.J.; Fadeel, B.; Riviere, J.E.
Mapping the Surface Adsorption Forces of Nanomaterials in Biological Systems. ACS Nano 2011, 5, 9074–9081.
[CrossRef]

http://dx.doi.org/10.1039/c2ra21489j
http://dx.doi.org/10.1080/17435390.2017.1379567
http://dx.doi.org/10.1039/C7NR05618D
http://dx.doi.org/10.1021/es503861x
http://dx.doi.org/10.1016/j.envint.2014.08.009
http://dx.doi.org/10.1039/C4RA01274G
http://dx.doi.org/10.1186/s11671-016-1724-y
http://dx.doi.org/10.3390/ijms19030649
http://dx.doi.org/10.1016/j.bmc.2008.10.039
http://dx.doi.org/10.1007/s10910-008-9514-0
http://dx.doi.org/10.1021/ci200520g
http://dx.doi.org/10.1021/acsomega.8b01647
http://dx.doi.org/10.1142/S0218213018500124
http://dx.doi.org/10.1186/s13321-015-0094-2
http://dx.doi.org/10.1021/ci800151m
http://dx.doi.org/10.1177/026119290503300209
http://dx.doi.org/10.1039/c3nr01533e
http://dx.doi.org/10.1021/nn203303c


Nanomaterials 2020, 10, 116 32 of 32

139. Fumera, G.; Roli, F.; Giacinto, G. Reject Option with Multiple Thresholds. Pattern Recognit. 2000, 33,
2099–2101. [CrossRef]

140. Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of QSAR models.
Chemom. Intell. Lab. Syst. 2015, 145, 22–29. [CrossRef]

141. Toropov, A.A.; Toropova, A.P. Quasi-SMILES and nano-QFAR: United model for mutagenicity of fullerene
and MWCNT under different conditions. Chemosphere 2015, 139, 18–22. [CrossRef]

142. Choi, H.; Kang, H.; Chung, K.-C.; Park, H. Development and application of a comprehensive machine
learning program for predicting molecular biochemical and pharmacological properties. Phys. Chem. Chem.
Phys. 2019, 21, 5189–5199. [CrossRef]

143. Mercader, A.G.; Duchowicz, P.R. Enhanced replacement method integration with genetic algorithms
populations in QSAR and QSPR theories. Chemom. Intell. Lab. Syst. 2015, 149, 117–122. [CrossRef]

144. Wani, M.Y.; Hashim, M.A.; Nabi, F.; Malik, M.A. Nanotoxicity: Dimensional and Morphological Concerns.
Adv. Phys. Chem. 2011. [CrossRef]

145. Zhu, L.; Gao, S.; Pan, S.J.; Li, H.; Deng, D.; Shahabi, C. The pareto principle is everywhere: Finding
informative sentences for opinion summarization through leader detection. In Recommendation and Search
in Social Networks; Ulusoy, Ö., Tansel, A.U., Arkun, E., Eds.; Springer International Publishing: Cham,
Switzerland, 2015; pp. 165–187.

146. Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification
performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [CrossRef]

147. Boughorbel, S.; Jarray, F.; El-Anbari, M. Optimal classifier for imbalanced data using Matthews Correlation
Coefficient metric. PLoS ONE 2017, 12, e0177678. [CrossRef]

148. Shi, L.; Campbell, G.; Jones, W.D.; Campagne, F.; Wen, Z.; Walker, S.J.; Su, Z.; Chu, T.M.; Goodsaid, F.M.;
Pusztai, L.; et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development
and validation of microarray-based predictive models. Nat. Biotechnol. 2010, 28, 827–838.

149. Rodríguez-Fdez, I.; Canosa, A.; Mucientes, M.; Bugarín, A. S STAC: A web platform for the comparison
of algorithms using statistical tests. In Proceedings of the 2015 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5 August 2015; pp. 1–8.

150. Cronin, M.T.D.; Richarz, A.-N.; Schultz, T.W. Identification and description of the uncertainty, variability,
bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction. Regul.
Toxicol. Pharmacol. 2019, 106, 90–104. [CrossRef]

151. Baldassi, C.; Borgs, C.; Chayes, J.T.; Ingrosso, A.; Lucibello, C.; Saglietti, L.; Zecchina, R. Unreasonable
effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic
schemes. Proc. Natl. Acad. Sci. USA 2016, 113, E7655–E7662. [CrossRef] [PubMed]

152. Karcher, S.; Willighagen, E.L.; Rumble, J.; Ehrhart, F.; Evelo, C.T.; Fritts, M.; Gaheen, S.; Harper, S.L.;
Hoover, M.D.; Jeliazkova, N.; et al. Integration among databases and data sets to support productive
nanotechnology: Challenges and recommendations. NanoImpact 2018, 9, 85–101. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0031-3203(00)00059-5
http://dx.doi.org/10.1016/j.chemolab.2015.04.013
http://dx.doi.org/10.1016/j.chemosphere.2015.05.042
http://dx.doi.org/10.1039/C8CP07002D
http://dx.doi.org/10.1016/j.chemolab.2015.10.007
http://dx.doi.org/10.1155/2011/450912
http://dx.doi.org/10.1016/j.patcog.2019.02.023
http://dx.doi.org/10.1371/journal.pone.0177678
http://dx.doi.org/10.1016/j.yrtph.2019.04.007
http://dx.doi.org/10.1073/pnas.1608103113
http://www.ncbi.nlm.nih.gov/pubmed/27856745
http://dx.doi.org/10.1016/j.impact.2017.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30246165
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Search Design 
	Eligibility and Exclusion Criteria 
	Analysis 

	Results 
	Dataset Formation 
	Data Pre-Processing 
	Feature Reduction 
	Feature Selection 
	Pre-Processing Techniques 
	Normalization and Discretization 
	Class Balancing 
	Missing Values 
	Molecular Structures’ Codification 
	Data Splitting 

	Model Implementation 
	Model Validation and Applicability Domain 
	Goodness-of-Fit 
	Robustness 
	Chance Testing 
	Predictability 
	Ranking of Classifiers 
	Applicability Domain (AD) 


	Discussion 
	The Framework 
	The Algorithms 
	Challenges and Perspectives 

	Conclusions 
	References

