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A B S T R A C T

Oxidative protein folding in the endoplasmic reticulum (ER) is a significant source of hydrogen peroxide (H2O2).
For correct protein folding the redox state of the ER must be efficiently regulated. As such, several mechanisms
with varying degrees of overlap manage the redox state of the ER. H2O2 also functions as a second messenger
playing a role in most aspects of cellular physiology and pathology, requiring tight control of the concentration
and flux of H2O2. Bestetti et al. have demonstrated a role for Aquaporin 11 in transport of H2O2 out of the ER.

The role of Hydrogen peroxide (H2O2) as a messenger molecule has
progressively become more studied over the past two decades. The
ability of H2O2 to regulate the spatial and temporal organization of
cellular events, such as differentiation and development, as well as
responses to environmental stimuli, necessitates a detailed under-
standing of its regulation and trafficking. The various roles of H2O2 are
possible through tight spatial and temporal regulation of its subcellular
concentration. One well studied mechanism by which cells are able to
create localized high concentrations of H2O2 is through Nadph oxidase
isoforms that have been shown to colocalize to specific cellular ma-
chinery [1,2]. Another important source of H2O2 occurs during the
folding of proteins in the endoplasmic reticulum (ER). This process
involves protein disulfide isomerase (PDI) working in concert with ER
oxidoreductin 1 (Ero 1) to catalyze the formation of disulfide bonds.
Molecular oxygen is the ultimate electron acceptor in this process and
yields one H2O2 molecule for every disulfide bond formed [3]. In highly
active cells there are rapid increases in H2O2 within the ER; if un-
controlled this increased ROS load would lead to ER stress activating
the unfolded protein response (UPR), leading to apoptosis. To prevent
ROS overload the ER needs a robust antioxidant mechanism. The most
abundant reducing agent in the cell is reduced glutathione (GSH),
however, while the ratio of reduced to oxidized (GSSG) glutathione is in
excess of 100:1 in the cytosol [4], such a highly reducing environment
would be unfavorable for disulfide bond formation. Indeed, the ER
maintains a GSH:GSSG ratio closer to 3:1 [5].

Bestetti et al.. in this current issue of Redox Biology demonstrate
that aquaporins play a major role in transporting H2O2 out of the ER
[6]. Aquaporins (AQP) are transmembrane channels that were origin-
ally described as being either predominantly water permeable or gly-
cerol and water permeable [7]. Since those studies several small un-
charged solutes have been described as substrates for AQPs including

nitric oxide [8], carbon dioxide [9], ammonia [10,11], and H2O2. In
mammals AQP1 [12], AQP3 [13,14], AQP8 [15,16], and AQP9 [17]
have been demonstrated to facilitate H2O2 transport across membranes.
These aquaporins modulate cell signaling cascades by creating localized
increases in H2O2. H2O2 in turn inhibits phosphatases thereby ampli-
fying kinase mediated signaling [15]. Indeed, silencing of AQP8 blunts
the epidermal growth factor induced influx of H2O2 as well as the ac-
cumulation of tyrosine-phosphorylated proteins. AQP8 silencing de-
creases H2O2 transit into the ER in digitonin permeabilized cells [15].
This transit was measured using the florescent H2O2 sensor HyPer with
an ER targeting domain; however, the localization of AQP8 was not
interrogated in this system. AQP8 null mice develop normally and are
phenotypically normal except for enlarged testicles [18]. In contrast to
this, AQP11 mice die before weaning due to advance polycystic kidney
disease, characterized by increased ER stress inducing apoptosis and
vacuolization [19–21]. Bestetti et al. interrogate the role of AQP11 in
ER H2O2 transit [6]. They demonstrate that AQP11 colocalizes to the
ER, interestingly, they also report some degree of colocalization to the
mitochondrial-associated membrane (MAM) which are signaling hubs
with essential functions in regulating signal transduction. By adding
tags on either terminus of recombinant AQP11 they were able to ele-
gantly demonstrate the conformation of APQ11 within the ER mem-
brane; by utilizing HyPer localized to cytosol, mitochondria, or the ER
(graphical abstract) they demonstrate the specificity of AQP11 to ER
H2O2 transport. They further demonstrate AQP8 primarily localizes to
the plasma membrane suggesting that although it may contribute to ER
H2O2 transport it is likely this effect occurs while in transit to the
plasma membrane.

Unfortunately, redox sensitive dyes are plagued with various ca-
veats and pH sensitivity is the one caveat to consider when using HyPer.
Weller et al., in 2014 went so far as to suggest that any use of HyPer
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should be performed in the presence of a pH indicator such as SypHer
[22]. However, Bestetti et al. have performed extra experiments that
suggest the movement of H2O2 through AQP11 is a real observation.
The ER is a pH neutral location, although accumulation of H2O2 could
decrease the pH. In this manuscript, however, exogenous H2O2 was
shown to increase HyPer signal, DTT (reducing conditions) influenced
HyPer signal, and cells with low basal HyPer signal were used, allowing
a more robust ability to measure smaller swings in H2O2 accumulation
[6].

Taken together these data demonstrate a central role of AQP11
mediated H2O2 transit into and out of the ER and suggest a mechanism
to prevent H2O2 toxicity during protein folding. The potential that
AQP11 associates with the MAM and can allow movement of H2O2 is
another exciting aspect of this manuscript suggesting a role for this
channel in several pathologies. Dysfunctional MAMs have been im-
plicated in diseases ranging from neurodegenerative diseases [23],
aging [24], neoplasia [25], to heart failure [26].
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