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ABSTRACT: A concise and convergent synthesis of the atorvastatin, the
best-selling cardiovascular drug of all time, is presented. Our approach is based
on an Ugi reaction, which shortens the current synthetic route and is
advantageous over the published syntheses.
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Multicomponent reactions (MCRs) are an advanced class
of organic reactions which, opposite to classical organic

reactions, allow for the easy, fast, and efficient generation of
chemical diversity in just one assembly step.1−3 These features
make them an attractive area in research and development.4

Surprisingly, the number of applications in drug discovery is
rather limited regarding the superb advantages of this
chemistry.5 An analysis of the currently marketed drugs,
however, shows that approximately 5% can be synthesized with
the use of MCR, even so they are synthesized by a classical
sequential pathway.6 Examples of drugs synthesized by MCR
clearly show the immense advantages of them in this context,
e.g., lidocaine,7 praziquantel,8,9 telaprevir,10 olanzapine,11

clopidogrel,12 lacosamide,13 carfentanil,14 ivosidenib,15 and
levetiracetam (Figure 1).16 Epelsiban17 and almorexant18 are
examples of compounds currently or recently in clinical trials
and actually synthesized by utilization of the MCR repertoire
(Figure 1).
Here we report an MCR-based synthesis of atorvastatin

(common trade name: Lipitor), one of the world’s best-selling
medication of all time. Only in 2005, Lipitor made $12 billion
in sales and was used by more than 45 million people
worldwide.19 It belongs to the drug class of statins, lipid-
lowering drugs for the prevention of events associated with
cardiovascular disease.20 It is an example of a competitive
HMG-CoA-reductase inhibitor, which consists of a pentasub-
stituted pyrrole core. The importance of atorvastatin until
today21−23 led to much interest in its synthesis. The main
retrosynthetic scheme of the atorvastatin synthesis as described
in literature focuses on the assembly of its five different
substituents on a pyrrole hub.24,25 By this way, which consists
also the industrial route,26 the pyrrole ring could be formed by
a Paal−Knorr cyclocondensation27,28 of the highly substituted
1,4-diketone 2 with primary amine 3 (Paal−Knorr route,
Scheme 1, blue color).21,22,26,29−34 In 2015, a total synthesis of
atorvastatin via a late-stage, regioselective 1,3-dipolar münch-
none cycloaddition35 of the amido acid 4 with the acetylene

derivative 5 (münchnone route, Scheme 1, red color) was
described.36 Although this synthesis provided a nice solution to
the problem of regioselectivity of the cycloaddition,30 the
synthesis of derivative 4 required five sequential steps which
contributed to eight steps for the total synthesis of atorvastatin.
Regarding the latter approach, we envisioned the synthesis of
the amido acid 4 in only two steps utilizing the Ugi four-
component reaction (U-4C, Scheme 2).
The initial derived MCR adduct can be considered as a

synthetic hub to a vast diversity of other scaffolds.2 Thus, the
1,4 amido acid motif could easily be derived from an Ugi
adduct with the cleavage of the isocyanide moiety (Scheme
2).37,38 Indeed, the reaction at rt of p-fluorobenzaldehyde 6,
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Figure 1. Examples of marketed drugs and drugs in clinical trials
which have been discovered using MCR chemistry; the amine,
aldehyde, isocyanide, and acid components are depicted with green,
red, blue, and magenta color, respectively.
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the suitably functionalized, commercially available amine
3,29,39−41 the convertible isocyanide 7,42−45 and isobutyric
acid 8 in 2,2,2-trifluoroethanol (TFE) afforded the Ugi adduct
(U-4C) 9 in 40% yield. The choice of the corresponding
isocyanide was the easiness of its cleavage at basic pH, keeping
intact the other functional groups. Thus, in a one-pot acid
deprotection and isocyanide cleavage, we obtained the valuable
intermediate 4 in a dr 5:4 in 87% yield. Then, we performed
the regioselective [3 + 2] cycloaddition36 of 4 with the N,3-
diphenylpropiolamide 5 and N,N′-diisopropylcarbodiimide
(DIPC) in THF, yielding the advanced intermediate 10 in
46% yield which can be readily converted by acidic
deprotection with 10-camphorsulfonic acid (CSA) to
atorvastatin 1 (Scheme 2).
The industrial atorvastatin synthesis via the Paal−Knorr

route is a synthesis consisting of six steps excluding the
synthesis of amine 3, which is commercially available (Table
1). MCR chemistry has also been employed in order to
improve and optimize this synthetic route. These modifications
include a one-pot Stetter/Paal−Knorr reaction sequence
catalyzed by NHC46 or a Hantzsch pyrrole synthesis (Table

1).47 Regarding the münchnone route, this is the first time to
the best of our knowledge, that MCR chemistry is utilized. On
the basis of MCR chemistry, we synthesized the intermediate 4
in only two steps, and with two additional steps, we
successfully obtained atorvastatin (Scheme 2). The Ugi
reaction was performed at 10 mmol scale, see Supporting
Information).
Our current approach effectively reduces the number of

steps toward atorvastatin to only four compared with the seven
reported in literature and establish this methodology equally or
even better than the Paal−Knorr route. We can classify the
recent syntheses of atorvastatin in four different routes (Table
1). Most of the published Paal−Knorr route syntheses include
different variations of the synthesis of the amine (entry 1) or
differentiation in the amine vector of the pyrrole core (entries
1−3). The required steps vary from six to 10. A Stetter/Paal−
Knorr reaction sequence (entry 4) and a Hantzsch pyrrole
synthesis (entry 5) were presented as alternatives with four and
five steps, respectively. Our synthetic strategy can be ranked
among the most competitive one with four steps (entry 7).48

Scheme 1. Main Retrosynthetic Scheme for the Synthesis of Atorvastatin (Paal−Knorr Route, Blue Color); A Novel Approach
to the Intermediate 4 Is Proposed by MCR (Münchnone Route, Red Color)

Scheme 2. MCR-Based Synthesis of 4 and the Subsequent Synthesis Towards Atorvastatin 1
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It is noteworthy that our current synthetic methodology of
utilizing an MCR adduct bears convertible isocyanides,
yielding the 1,4-amido acid motif. This strategy is beneficial
not only because we have a faster access to atorvastatin but
also by this way more derivatives are accessible. Thus, we can
readily synthesize substituted bioactive pyrroles with a great
diversity on substituents in 1-, 2-, and 5-positions, for example,
positron emission tomography (PET) labeled derivatives.36
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(6) Zarganes-Tzitzikas, T.; Dömling, A. Modern Multicomponent
Reactions for Better Drug Syntheses. Org. Chem. Front. 2014, 1, 834−
837.
(7) Ugi, I.; Steinbrückner, C. Über Ein Neues Kondensations-
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