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Pelvic intensity-modulated radiation therapy (IMRT) combined with concurrent
chemotherapy is an effective treatment for cervical cancer; however, radiation
resistance impairs its clinical benefit. The vaginal microbiome plays an important but
poorly understood role in cancer radiochemotherapy. In this study, we investigated the
effects of treatment on the overall composition and alteration of the vaginal microbiome in
patients receiving pelvic IMRT with concurrent cisplatin-based chemotherapy. We
collected samples from twenty patients with cervical cancer and six healthy controls and
performed 16S rRNA sequencing. Vaginal microbial composition analysis revealed significant
differences between the two groups, but no significant differences between radiation
treatment time points. However, the relative abundances of Gammaproteobacteria,
Gemmatimonadetes, Gemmatimonadales, Pseudomonadales, Gemmatimonadaceae,
Rikenellaceae, Acinetobacter, Desulfovibrio, Prevotella 9, Rikenellaceae RC9 gut group,
Turicibacter, and the metagenome increased with time. The results encourage further
study into the effects of the vaginal microbiome on cervical cancer treatment strategies,
especially radiochemotherapy. Better understanding of these effects could inform new
therapeutic approaches to enhance the efficacy of radiochemotherapy.

Keywords: vaginal microbiome, cervical cancer, intensity-modulated radiation therapy, radiochemotherapy, 16S
rRNA sequencing
INTRODUCTION

Cervical cancer, the most common gynecological malignancy, occurs in the epithelial lining of the
cervix (1). For patients with locally advanced cervical cancer, radiotherapy combined with
chemotherapy has become the mainstream treatment, usually involving intensity-modulated
radiation therapy (IMRT) (2, 3). Although IMRT provides high dose conformity and spares
organs at risk, resistance to treatment is an obstacle for patients with cervical cancer (4). Therefore,
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strategies to enhance the effects of radiation and chemotherapy
are required to obtain better clinical outcomes.

The human microbiome is the collection of microorganisms
that inhabit the mucosal surfaces of the body, including the
vagina (5). In recent years, sequencing technology has made
great progress in cataloguing these populations, with 16S
ribosomal RNA (rRNA) sequencing most commonly used.
Changes in the vaginal microbiome (VM) are associated with
cervical cancer development (6–8), and evidence is rapidly
mounting that it can affect cancer treatment outcomes through
diverse mechanisms (9, 10). The VM can therefore be considered
a novel target to improve the treatment sensitivity of cervical
cancer. However, the role of the VM in patients with cervical
cancer who receive pelvic IMRT combined with chemotherapy is
not well understood. To assess the effects of pelvic
radiochemotherapy on the VM, we compared the VM profiles
of patients with cervical cancer and healthy controls, and then
tracked the changes to the VM in patients with cervical cancer
during pelvic IMRT combined with concurrent cisplatin-based
chemotherapy by bacterial 16S rRNA gene sequencing.
METHODS

Patients and Treatment
A prospective study was conducted by enrolling 20 patients with
cervical cancer who received radical radiochemotherapy at the
First Affiliated Hospital of Guangxi Medical University from
April 2016 to May 2017. The inclusion criteria were: 1) patients
were scheduled for pelvic IMRT at a dose delivered to a planning
clinical target volume (PCTV) of 50 Gy in combination with
concomitant cisplatin-based chemotherapy, 2) availability for
vaginal sampling using a sterile swab stick, and 3) willingness to
participate. The exclusion criteria were: 1) recent treatment with
antibiotics, steroids, or immune-suppressants, 2) distant
metastasis, and 3) previous pelvic radiotherapy for another
tumor or with palliative intent. In addition, six healthy
individuals were also enrolled from April 2016 to May 2017.
Their inclusion criteria were 1) no history of malignancy, 2) a
Karnofsky performance status ≥ 90, and 3) willingness to
undergo vaginal sampling using a sterile swab stick. Written
informed consent was obtained from all subjects, and the
research protocol was approved by the Ethical Review
Committee of the First Affiliated Hospital of Guangxi Medical
University. Information that can be used to identify individual
participants during or after the data collection is available and
can be accessed. We confirm that all methods were performed in
accordance with relevant guidelines and regulations.

All patients underwent a contrast-enhanced CT scan in the
supine position with an immobilization device. The images
datasets were imported to the treatment planning system
(TPS). The gross tumor volume (GTV) and clinical target
volume (CTV) was determined by CT and MRI. The CTV of
the tumor bed (CTV-T) included the range of 10 mm from GTV
as well as the entire uterus, cervix, parametria, and at least 3 cm
proximal of the vagina. The nodal CTV (CTV-N) was delineated
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to include bilateral iliac, obturator, and presacral lymphatic
drainage region with an expansion of the blood vessels by
7 mm. The planning clinical target volume (PCTV) was
generated by a uniform expansion of 10 mm from CTV-T and
7 mm from CTV-N. The PCTV was prescribed such that > 95%
was received at ≥ 50 Gy in 25 fractions, five times weekly for 5
weeks. The pelvic IMRT plan was generated using seven-field
beam. In addition, all patients received weekly brachytherapy at a
dose of 30 to 35 Gy following the pelvic IMRT. The constraints
for organs at risk (OARs) were defined according to the
institutional guidelines. Concurrent cisplatin-based
chemotherapy was adopted in conjunction with IMRT as part
of the treatment protocol. The concurrent chemotherapy
regimen comprised the administration of cisplatin alone (80–
100 mg/m2) every 3 weeks for two cycles.

Sampling and DNA Extraction
A sterile swab stick was used to obtain a specimen from the
cervical lesion using aseptic technique. When possible, four
sequential samples were collected based on radiation treatment
time points: before starting pelvic radiotherapy (the first time
point sample, T1), after the fifth radiotherapy session (the second
time point sample, T2), after the 15th radiotherapy session (the
third time point sample, T3), and after the 25th radiotherapy
session (the fourth time point sample, T4). T1 samples were
obtained 1 week before starting radiotherapy. The swab tops
were placed in 2-ml sterile DNAase/RNase-free cryovials
containing phosphate-buffered saline (400 ml), and stored at
−80°C until further processing. A cell lysis procedure including
enzymatic lysis and bead beating was used prior to DNA
extraction using a QIAamp DNA Mini Kit (Qiagen, Hilden,
Germany) and ampl ificat ion by polymerase chain
reaction (PCR).

Library Preparation and Sequencing
In total, 71 vaginal swabs with sufficiently high-quality DNA were
collected. The V3-V4 hypervariable regions of the 16S rRNA gene
were amplified with the primers 338F (5′-ACTCCTACGG
GAGGCAGCA-3′) and 806R (5′-GGACTACHVGGGT
WTCTAAT-3′) on a 2720 Thermal Cycler (Applied Biosystems,
USA) (11, 12). PCR was conducted using the following program:
2 min at 98°C, then 20 cycles of 30 s at 98°C, 30 s at 50°C, and
1 min at 72°C, followed by a final incubation at 72°C for 5 min.
Reactions were performed in triplicate. The reaction mix (50 ml
total) consisted of 2×TransStart FastPfu Fly PCR SuperMix (25 ml),
each primer (1 ml of 10 mM), nuclease-free water (20 ml), and
template DNA (10 ng). The resultant PCR products were purified
using VAHTS DNA Clean Beads. Secondary PCR was performed
under different conditions using special index primers. The PCR
program was: 30 s at 98°C, then 10 cycles of 10 s at 98°C, 30 s at
65°C, and 30 s at 72°C, then a final 5 min incubation at 72°C. PCR
reactions were performed in triplicate. The reaction mix (50 ml
total) consisted of Phusion DNA Polymerase (25 ml), i5/i7 index
primers (1 ml of 2.5 mM), UltraPure water (13 ml), and purified PCR
product (10 ml). Reactions were analyzed on 1.8% agarose gels to
ensure successful amplification. Unsuccessful reactions were
repeated after a 10× dilution of the initial template
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concentration, and removed from the experiment if unsuccessful
again. PCR products were extracted from the agarose gels, further
purified using an AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, USA), and eluted with Tris-HCl. ImageJ (National
Institutes of Health, Bethesda, MD, USA) was used to quantify the
electrophoresis results. The library was pooled at equimolar
concentrations and resolved on a 1.8% agarose gel, and the 600
bp band was extracted. The purified library was paired-end
sequenced (2 × 250) on an Illumina HiSeq platform (Illumina,
San Diego, CA, USA) according to the manufacturer’s instructions.

Bioinformatic Analysis
FLASH (1.2.11) was used to merge paired end reads with a
minimum overlap of 10 bp (13). Primer and barcode sequences
were trimmed using cutadapt (v1.18) (14); and chimeric
sequences were detected and removed with VSEARCH
(v2.13.6) (15). The trimmed data were processed to form
OTUs at 97% identity using VSEARCH, and a representative
OTU was selected from each cluster (15, 16). Using the Silva_132
16S rRNA database as a reference, Ribosomal Database Project
classifiers were used to assign taxonomic ranks to each OTU
using Qiime (v1.9.1) (16, 17). The alpha-diversity and beta-
diversity indices were calculated based on the rarefied OTU
counts. Alpha-diversity was performed in Mothur (v1.38.1) (18,
19), and represents an analysis of the diversity in a single sample,
reflected by parameters including the Sobs, Chao1, Ace,
Shannon, and Simpson indices. The Wilcoxon rank-sum test
was used to compare alpha-diversity indices. Beta-diversity is a
measure of the microbiota structure between groups. Both
weighted and unweighted UniFrac distance matrices were
plotted in the PCA, and ANOSIMs were performed using the
R package “ade4” (20). For taxa with a prevalence > 10%,
differential abundance analysis was performed using the
Wilcoxon rank-sum test at the phylum, class, order, family,
and genus levels. For multiple comparisons of bacterial counts,
the false discovery rate was calculated using the Benjamini-
Hochberg method (21). Microorganism features used to
distinguish gut microbiotas specific to cervical cancer were
identified using the linear discriminant analysis effect size
method, with an alpha cutoff of 0.05 and an effect size cutoff of
2.0 (22). Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States was used to predict the
abundances of functional categories in Kyoto Encyclopedia of
Genes and Genomes (KEGG) orthologs (23). Graphing of KEGG
pathways at levels 2 (41 pathways) and 3 (328 pathways) was
performed with STAMP, and p values were calculated using
White’s non-parametric t-test (24).

Statistics
R software (ver. 3.5.1, the R Project for Statistical Computing)
was used for statistical analysis. In descriptive analyses, the
mean ± standard deviation (s.d.) was used for normally
distributed continuous variables and the median ± interquartile
range (IQR) was used for continuous variables with skewed
distributions. Comparisons of the relative abundance of detected
genera between groups were conducted using the Wilcoxon
rank-sum test. The Sobs, ACE, Simpson, Shannon, and Chao1
Frontiers in Oncology | www.frontiersin.org 3
indices were compared using Student’s t-test. P<0.05 was
considered statistically significant.
RESULTS

Patient Characteristics
We analyzed 71 vaginal swab samples from 20 patients with
cervical cancer and six healthy controls. Table 1 shows the
clinical characteristics of the patients with cervical cancer.
Their median age was 54 years (range: 44–73). All patients
received pelvic IMRT plus brachytherapy combined with
cisplatin-based chemotherapy. Each radiation plan met the
prescribed dose requirements, and the mean dose of the
planning clinical target volume (PCTV) was calculated as 54
Gy. All 20 patients provided samples at T1, and 15/20 permitted
the collection of samples at all four timepoints (T1–T4).

VM Diversity Estimations in Patients With
Cervical Cancer and Healthy Controls
After quality control processes and the removal of chimeric
sequences, we obtained 2,983 operational taxonomic units
(OTUs) in total. Table S1 summarizes the numbers of unique
sequences and OTUs in each normalized sample. Of these, 612
OTUs (20.5%) were detected in healthy controls, 2,500 (83.8%)
were detected in patients with cervical cancer, and 483 OTUs
(16.2%) were detected in both groups (Figure 1A). Abundance
comparisons of individual OTUs through principal component
analysis (PCA) revealed differences in the VM composition of
TABLE 1 | Clinical characteristics of the patients with cervical cancer (n = 20).

Patient characteristic Number (%)

Age (years)
≤ 54 10 (50.0%)
>54 10 (50.0%)

FIGOa classification
I B2 1 (5.0%)
II A2 3 (15.0%)
II B 8 (40.0%)
III B 4 (20.0%)
IV A 3 (15.0%)
V B 1 (5.0%)

Histology
Squamous cell carcinoma 19 (95.0%)
Adenocarcinoma 1 (5.0%)

HPVb status
Negative 2 (10.0%)
HPV 16 9 (45.0%)
HPV 18 6 (30.0%)
HPV 52 1 (5.0%)
HPV 58 1 (5.0%)
HPV 59 1 (5.0%)

Treatment
Pelvic IMRTc+BTd+CTe 20 (100.0%)
Patients with four sequential samples (T1–T4) 15 (75.0%)
February 2021 | Volume 11 | A
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healthy controls and patients with cervical cancer (Figure 1B).
Furthermore, species diversity and richness were also higher in
cervical cancer samples than in control samples. The Chao, Ace,
Shannon, and Simpson indices (p = 0.016, = 0.002, <0.001,
Frontiers in Oncology | www.frontiersin.org 4
<0.003, and <0.006, respectively) are shown in Figure 1C and
Table 2. Beta diversity analysis revealed statistically significant
differences between the two groups (p = 0.005; weighted UniFrac
and analysis of similarity (ANOSIM); Figure 1D).
A

B

DC

FIGURE 1 | (A) Venn diagram for the integration between healthy controls and cervix cancer patients OTUs. (B) Principal component analysis (PCA) of vaginal
microbiome of 20 patients and 6 healthy controls. (C) The comparison between patients and healthy controls by alpha diversity analysis. (D) The comparison
between patients and healthy controls by beta diversity analysis. H, Healthy controls; T1, the first time point sample of patients.
TABLE 2 | The comparison between patients with cervical cancer and healthy controls by alpha diversity analysis.

Alpha diversity Mean (H) s.d. (H) Mean (T1) s.d. (T1) P value

Sobs 186.83 54.44 387.05 224.61 0.016
Chao 204.84 53.14 460.55 236.70 0.002
Ace 199.61 52.64 492.35 253.55 0.0001
Shannon 1.23 0.93 3.06 1.14 0.003
Simpson 0.56 0.28 0.19 0.19 0.006
Februa
ry 2021 | Volume 11 | Article
T1, the first time point sample of patients; H, healthy controls; s.d., standard deviation.
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VM Diversity Estimations in Patients With
Cervical Cancer During Treatment
To explore the effects of radiation on the VM during the treatment
process, we first analyzed VM richness and diversity at four time
points (T1–T4). In total, 6,109OTUswere obtained, and1,382were
common among all timepoints. Then, the bacterial compositions at
each timepoint were compared using overlap analysis (Figure 2A)
and 3D-PCA (Figure 2B). Interestingly, in comparisons of T1 vs
T2, T3 vs T2, T4 vs T3 and T4 vs T1, the timepoints were not
spatially distinct, nor were they significantly different in VM
richness and diversity according to alpha (Figures 3A–D) and
beta diversity analyses (data not shown).

Impact of Radiation Therapy on the VM
Composition of Patients With Cervical
Cancer
Annotation analysis revealed the distribution of the microbiota
at the phylum, class, order, family, genus, and species levels over
time (Figures 4A–F). Figure 5 shows changes in the relative
abundances of major phylum-level taxa during radiation
therapy. The relative abundances of Gammaproteobacteria,
Gemmatimonadetes, Gemmatimonadales, Pseudomonadales,
Gemmatimonadaceae, Rikenel laceae , Acinetobacter ,
Desulfovibrio, Prevotella 9, the Rikenellaceae RC9 gut group,
Turicibacter, and the metagenome increased with radiation time.
DISCUSSION

Cervical cancer often results from persistent infection with
human papillomavirus (HPV), which induces cervical epithelial
Frontiers in Oncology | www.frontiersin.org 5
cells to become cancerous (25). However, the process of cervical
carcinogenesis can be affected by the VM (8), and increasing
evidence indicates that VM changes play important roles in the
process (26, 27). Conversely, cervical cancer disrupts the ratio
between commensal and pathogenic microbiome species,
resulting in microenvironmental changes (28). However,
studies investigating the role of the VM in patients with
cervical cancer who receive pelvic radiochemotherapy are
scarce. The aim of our study was to examine associations
between the use of pelvic radiochemotherapy and VM changes.

Currently, radiochemotherapy is a common treatment
strategy for cervical cancer. The National Comprehensive
Cancer Network guidelines (V1.2020) for cervical cancer
recommend a dose of 45–50 Gy in standard fractionation with
IMRT (29). In this study, all patients were prescribed a PCTV of
50 Gy. However, due to limitations in the radiation technique,
the dose distribution in the target area is not absolutely uniform.
To ensure quality radiation therapy, the patient received at least
50 Gy in 25 fractions, meaning that > 50 Gy was present in the
PCTV. Dose data were recorded using a Varian Eclipse V8.0
treatment planning system. IMRT protects organs at risk better
than two-dimensional radiation techniques; therefore, our
results are based on pelvic IMRT combined with cisplatin-
based concurrent chemotherapy.

In our study, there were more OTUs in patients with cervical
cancer than in healthy controls, and the abundances of
individual OTUs were significantly different between the two
groups. When compared at different radiation treatment time
points, there are no significant differences found in VM richness
and diversity by alpha and beta diversity analysis. Nevertheless,
changes in the relative abundances of several taxa were observed
A

B

FIGURE 2 | (A) Venn diagram for the integration among the four time points of patient samples. (B) 3D scatter plot of PCA results for comparison among four time
points of patient samples (T1 vs T2, T3 vs T2, T4 vs T3, and T4 vs T1). T1, the first time point sample; T2, the second time point sample; T3, the third time point
sample; T4, the fourth time point sample.
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FIGURE 4 | Distribution of bacterial phyla (A), classes (B), orders (C), families (D), genera (E), and species (F) obtained by next-generation sequencing of samples
from 15 patients at four time points.
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during radiation therapy. The dose distribution of radiation is closely
associated to the volume and the location of tumor, which might
affect distribution of vaginal microbiome during the radiation
treatment. The research endpoint may be insufficient to prove the
vaginalmicrobiomeas akeyclinical index for cervical cancerpatients,
so a larger cohort is needed to determine the correlation betweenVM
and cervical cancer patients in future study.

It is well established that VM imbalance is strongly correlated
with cervical cancer. Vaginal dysbiosis (characterized by a non-
Lactobacillus-dominant composition) and inflammation have
been associated with HPV persistence and progression to
cervical cancer (30). Compared to patients diagnosed with low
− and high-grade squamous intraepithelial lesions, increased
levels of Lactobacillus crispatus, Lactobacillus iners, and
Lactobacillus taiwanensis were observed in the vaginal swabs of
healthy women, while Gardnerella vaginalis and Lactobacillus
Frontiers in Oncology | www.frontiersin.org 8
acidophilus were absent. The bacterial dysbiosis observed in these
patients, which featured a predominance of G. vaginalis and a
concomitant paucity of L. crispatus, L. iners, and L. taiwanensis,
may be associated with the development of HPV-dependent
cervical cancer (31). However, whether pelvic IMRT affects the
vaginal microbiome remains unknown.

A previous study compared differences in the proportions of
bacteria isolated before and after radiotherapy using aerobic culture.
The results showed no significant changes in the positive cultures of
pathogens; however, the normal flora significantly increased after
external beam irradiation (32). However, methods based on
next-generation sequencing (NGS) were not used in this study.
Using 16S rRNA sequencing, we observed no significant changes
in overall diversity before, during, and after radiotherapy,
consistent with the above study. However, the relative
abundances of several taxa, including Gammaproteobacteria,
FIGURE 5 | Relative abundances of the top 12 most abundant genera at each time point. Each bar represents the mean abundance ± the standard error of the
mean. *P<0.05.
February 2021 | Volume 11 | Article 615439
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Pseudomonadales, Gemmatimonadaceae, and Prevotella 9,
increased significantly with irradiation time.

The tumor microenvironment can have great impact on
radioresistance and tumor recurrence (33). The microbiome can
also affect cancer by triggering DNA damage, modulating
inflammation, and generating metabolites (10). Several previous
studies have shown that patients receiving radiotherapy display
obvious changes in themicrobiomesof the irradiatedareas aswell as
changes in the microenvironment, indicating that the microbiome
may serve as an aberrant proinflammatory factor. A study byWang
et al. showed that Gammaproteobacteria, Pseudomonadales, and
Prevotella 9, which showed increased abundance with radiation
time in this study, were more abundant in the fecal microbiome
after pelvic radiation, and were strongly associated with diagnoses
of radiation enteritis. In vitro experiments indicated that radiation-
induced microbiome dysbiosis results in epithelial cell damage,
promoting inflammatory responses in the local mucosa by
activating nuclear factor kB (NFkB) signaling and cytokine
secretion (34). Radiation can reduce resistance to commonly used
antibiotics, and vancomycin pretreatment can enhance the
antitumor effects of radiation in vivo by increasing antigen
presentation and cytotoxic T cell infiltration into the tumor,
through modulation of the gut microbiota (32, 35). It has been
suggested that microbiome superantigens might promote
radiotherapy-induced inflammation by activating T cells and
attenuating epithelial cell recovery (36). Increasing evidence
indicates that inflammatory signaling pathways such as the toll-
like receptor/myeloid differentiation primary response 88,
proinflammatory cytokine, NFkB, and cyclooxygenase-2
pathways are bridging factors between the microbiome and
cancer (37). The detection of Gemmatimonadaceae DNA in the
blood has been associated with tumor progression in patients
treated with nivolumab (38). While some studies have found no
benefit to probiotic use (39), a meta-analysis demonstrated a
beneficial effect of probiotics in reducing the incidence of diarrhea
(40). Furthermore, one study reported that the anaerobic bacteria
Clostridiumnovyi-NT,which ismissing itsmajor toxin gene, is able
to selectivelydestroy thehypoxic regionsof tumors and improve the
efficacy of radiation in mouse tumor models (41).

In conclusion, we conducted a bioinformatic analysis of the VM
in patients with cervical cancer receiving pelvic radiochemotherapy
and healthy controls by 16S rRNA sequencing.Wefirstly examined
microbiome differences between the cervical cancer patients and
health controls, and then investigated the impact of pelvic
radiochemotherapy on the VM in patients with cervical cancer.
Our data indicated some changes in the relative abundances of the
microbiome, which might have critical effects on the efficacy of
radiochemotherapy. Future studies will be required to understand
the relationship between the VM and radiochemotherapy in
cervical cancer.
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