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The mucosal immune system is constantly exposed to antigen, whether it be food antigen,
commensal bacteria, or harmful antigen. It is essential that the mucosal immune system
can distinguish between harmful and non-harmful antigens, and initiate an active immune
response to clear the harmful antigens, while initiating a suppressive immune response
(tolerance) to non-harmful antigens. Oral tolerance is an immunologic hyporesponsiveness
to an orally administered antigen and is important in preventing unnecessary gastrointesti-
nal tract inflammation, which can result in a number of autoimmune and hypersensitivity
diseases. Probiotics (beneficial intestinal bacteria), T regulatory cells, and dendritic cells
(DCs) are all essential for generating tolerance. Antibiotics are commonly prescribed to
fight infections and often necessary for maintaining health, but they can disrupt the normal
intestinal probiotic populations. There is increasing epidemiologic evidence that suggests
that antibiotic usage correlates with the development of atopic or irritable bowel disorders,
which often result due to a breakdown in immune tolerance. This study investigated the
effect of the antibiotic erythromycin on oral tolerance induction to ovalbumin. The results
demonstrated that antibiotic treatment prior to exposure to fed antigen prevents tolerance
to that antigen, which may be associated with a reduction in intestinal Lactobacillus popula-
tions. Furthermore, antibiotic treatment resulted in a significant decrease in the tolerogenic
CD11c+/CD11b+/CD8α− mesenteric lymph node DCs independent of tolerizing treatment.
These results provide evidence that antibiotic treatment, potentially through its effects on
tolerogenic DCs and intestinal microflora, may contribute to autoimmune and atopic dis-
orders via a breakdown in tolerance and support prior epidemiologic studies correlating
increased antibiotic usage with the development of these disorders.
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INTRODUCTION
The mucosal immune system is the first line of defense for the
body to eliminate antigens. This system favors the induction of
a suppressive immune response, one that is tolerant to antigen
instead of mounting an active immune response against it, and
promotes the induction of oral tolerance (Brandtzaeg, 2009). The
phenomenon of antigenic tolerance in the intestine following anti-
gen feeding was first described by Chase (1946). This immunologic
hyporesponsiveness to antigen that is first encountered by oral
administration was later described as oral tolerance (Faria and
Weiner, 2005; Hanaway, 2006; Strobel and Mowat, 2006). This
results in a state of systemic unresponsiveness (or tolerance) to
subsequent challenge with the same antigen given in an immuno-
genic form. It has been demonstrated that oral tolerance cannot
be induced in mice lacking mesenteric lymph nodes (MLNs;
Kunkel et al., 2003; Chung et al., 2005). Further studies have shown
that tolerance is induced exclusively in the MLNs following the

Abbreviations: BLG, β-lactoglobulin; DC, dendritic cell; DTH, delayed-type
hypersensitivity; ELISA, enzyme-linked immunosorbent assay; GI, gastrointestinal;
MLN, mesenteric lymph node; MRS, de Man–Rogosa–Sharpe; OVA, ovalbu-
min; PBS, phosphate buffered saline; SEM, standard error of the mean; TGF-β,
transforming growth factor β; TNBS, trinitrobenzenesulfonic acid; Treg, T
regulatory cell.

migration of antigen-loaded tolerogenic dendritic cells (DCs) to
this site (Worbs et al., 2006). DCs have a crucial role in generating
tolerance due to their influence on T cell differentiation. Mucosal
DCs are the only DCs that preferentially induce the differentia-
tion of T cells into T regulatory cells (Tregs), and are required for
oral tolerance induction (Alpan et al., 2001; Roncarolo et al., 2001;
Tezuka and Ohteki, 2010).

Tregs are CD4+/CD25+ T cells that express Foxp3 and suppress
immune responses toward self-antigens, allergens, food antigens,
and other non-harmful antigens (Sakaguchi et al., 1995; Fontenot
et al., 2003; Hori et al., 2003; Chahine and Bahna, 2010). Depleting
the CD4+/CD25+ Treg population results in a variety of immuno-
logical autoimmune diseases and also excessive humoral and cellu-
lar immune responses to non-self-antigens (Sakaguchi et al., 1995;
Ohkura and Sakaguchi, 2010). Antigen encountered in mucosal
tissues is acquired by mucosal DCs which then traffic to the MLNs
where they present the antigen to T cells, stimulating Treg dif-
ferentiation and subsequently inducing tolerance to that antigen.
Several different subsets of tolerogenic DCs have been identified
in the MLNs, all of which express the surface protein CD11c but
vary in their expression of other surface proteins (Milling et al.,
2010). DCs expressing CD11c+/CD11b+/CD8α− preferentially
secrete the anti-inflammatory cytokine IL-10 and induce Th2 cells
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(Niess and Reinecker, 2006; Tezuka and Ohteki, 2010; Scott et al.,
2011). CD11c+ DCs that express CD103+ have been shown to
travel to the MLNs and produce retinoic acid to induce FoxP3+
Tregs. The combination of mucosal lymphoid structures, special-
ized mechanisms, and unique cellular components are critical for
the induction of tolerance.

Probiotics are viable bacteria that are non-pathogenic, resis-
tant to gastric acid and bile destruction, attach to intestinal
epithelial tissue, and can colonize the gastrointestinal (GI) tract
(Hanaway, 2006). These indigenous intestinal bacteria begin to
colonize the mucous membranes and skin epithelia shortly after
birth and provide many benefits to the host; they synthesize and
excrete vitamins, compete with pathogenic bacteria for intesti-
nal attachment sites and nutrients, and produce toxins that kill
foreign organisms (Levy, 2000; Macpherson and Harris, 2004).
Probiotics also metabolize complex carbohydrates, aide in diges-
tion, and improve intestinal function by repairing tight junctions,
enhancing mucin production, and suppressing intestinal inflam-
mation (Strobel and Mowat, 2006). The two model probiotic
genera are Lactobacillus and Bifidobacterium (Ivanov and Littman,
2011). Studies have demonstrated a role for Lactobacillus and Bifi-
dobacterium species in suppressing inflammation and enhancing
Foxp3+ Treg differentiation in both human and murine mod-
els (Di Giacinto et al., 2005; Pronio et al., 2008; Livingston et al.,
2010). L. paracasei, specifically, has been shown to inhibit the
production of Th1 and Th2 cytokines and induce a popula-
tion of CD4+ T cells that secrete high levels of transforming
growth factor β (TGF-β) and IL-10 (von der Weid et al., 2001).
Importantly, probiotics may mediate these effects through their
interactions with DCs, as demonstrated by the potent induction
of IL-10 secretion by intestinal and blood DCs by Lactobacillus
and Bifidobacterium species in the probiotic formulation VSL#3
(Hart et al., 2004) and the ability of L. reuteri and L. casei to
prime DCs that induce Treg differentiation (Smits et al., 2005).
Furthermore, protection again 2,4,6-trinitrobenzenesulfonic acid
(TNBS)-induced colitis was conferred by probiotic-treated
DCs via a mechanism that required IL-10 and Treg cells
(Foligne et al., 2007).

Disruption of the intestinal microflora, particularly depletion
of probiotic species, can lead to a variety of consequences such
as diarrhea or yeast infections that are common side-effects of
antibiotic treatment (Noverr and Huffnagle, 2005). The effect of
antibiotic treatment on intestinal microflora extends far past ces-
sation of treatment. Short-term administration of antibiotics that
are present in high levels when they reach the intestine can cause
alterations in the probiotic populations for up to 2 years. Even
when pre-treatment bacterial numbers are reached, the composi-
tion of the bacteria is permanently altered (Littman and Pamer,
2011). Importantly, there are epidemiologic studies that suggest
antibiotic usage may be linked to more serious health conditions
such as allergy and asthma (Droste et al., 2000; Russell et al., 2012)
and irritable bowel disorders such as Crohn’s disease (Card et al.,
2004). Furthermore, industrialized nations, which have substan-
tial antibiotic use, have a high incidence of allergic disease, while
developing countries with low antibiotic usage have a low inci-
dence of allergic disease (Burney et al., 1994; Asher et al., 1995;
Beasley et al., 2000).

While there are increasing numbers of clinical and
epidemiologic studies on the benefits of probiotics and their influ-
ence on mucosal integrity and immune processes, there is little
research providing information about the effect of antibiotic treat-
ment on probiotic populations and the subsequent consequence
on specific immune responses. It is possible that the develop-
ment of atopic disorders and irritable bowel disorders following
antibiotic treatment results from a breakdown in tolerance, which
may occur due to the depletion of probiotic species. The goal
of this study was to examine the effect of antibiotic treatment
on oral tolerance induction to ovalbumin (OVA). Our results
demonstrate that a 7-day course of the broad-spectrum antibi-
otic erythromycin, immediately followed with a single tolerizing
dose of OVA, is sufficient to impair tolerance induction to OVA.
Concomitantly, Treg and tolerogenic DC populations in the MLNs
were examined to identify alterations that may correlate with the
hindrance in tolerance.

MATERIALS AND METHODS
MICE
Balb/c mice between the ages of 8 and 12 weeks, bred from mating
pairs purchased from The Jackson Laboratory (Bar Harbor, ME,
USA), were used for each study. Mice were housed individually
in cages and separated into four treatment groups, with no fewer
than three mice per group and with equal numbers of each sex
between groups. Methods involving mice were approved by the
Ball State University Animal Care and Use Committee.

EXPERIMENTAL OVERVIEW
For each experiment, there were four treatment groups (n = 3–4/
group for each experiment): NT, OT, NTAb, and OTAb (NT, non-
tolerized, non-antibiotic-treated; OT,orally tolerized to OVA,non-
antibiotic-treated; NTAb, non-tolerized, antibiotic-treated; OTAb,
orally tolerized to OVA, antibiotic-treated). On each of days 1–5,
all mice were administered a probiotic solution to establish an
intestinal probiotic flora. Mice were allowed to rest for 2 days, and
then on day 8 fecal matter was collected from all mice, plated,
and feces cultured to determine intestinal microbial numbers pre-
antibiotic treatment. On days 8–13, the antibiotic erythromycin
was consecutively administered to NTAb and OTAb mice with
water given to NT and OT mice. On day 14, a high-dose of OVA was
added to the water (OT) or antibiotic solution (OTAb) of the OT
and OTAb mice to induce tolerance. On day 15, all treatments were
discontinued and fecal matter was collected from all mice, plated,
and feces cultured to determine intestinal microbial numbers post-
antibiotic treatment. On day 19, five days after OVA treatment, all
mice were immunized with OVA, and they were again immunized
on day 26. On day 33, all mice were sacrificed and their serum and
MLNs isolated.

FECAL MATTER PLATING AND CULTURING
Fecal matter was collected and plated before and after antibiotic
treatments. 0.07 g of feces was collected from each mouse and
placed into 700 μL of 0.9% sterile saline solution and homog-
enized. The particulate matter was removed, and 50 μL of the
remaining liquid was plated on de Man–Rogosa–Sharpe (MRS,
Sigma, St. Louis, MO, USA) plates, which select for Lactobacilli.
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Plates were incubated at 37◦C and 10% CO2 for 24 h to facilitate
growth of the facultative anaerobes, Lactobacilli. After 24 h,
colonies on each plate were counted to assess the effect of the
antibiotic treatment on the Lactobacilli probiotic populations.

PROBIOTIC, ANTIBIOTIC, AND OVALBUMIN TREATMENTS
To ensure an established probiotic population in the GI tract of all
mice prior to the start of the experiment, the probiotic capsules
Acidophilus with Pectin (The Vitamin Shoppe) were dissolved in
3 mL of 10% sugar water per capsule. About 300 μL of the pro-
biotic solution was administered via syringe feeding (placing tip
of a syringe with no needle into the mouth of the mouse and
administering the solution drop-wise into the mouse’s mouth) to
each mouse for five consecutive days. For all other treatments,
mice were fed via intragastric gavage using ball-tipped feeding
needles (SouthPointe Surgical Supply, Coral Springs, FL, USA).
Mice received 5 mg erythromycin (Sigma) in 200 μL water total
volume (antibiotic-treated groups) or water alone (control) daily
for seven consecutive days. On day 7, 20 mg of OVA (Sigma)
was added to the 200 μL antibiotic or water solution and admin-
istered only to the treatment groups that were to be tolerized
to OVA.

IMMUNIZATIONS
Five days after ceasing control and experimental feeding treat-
ments, all mice were immunized intraperitoneally with 0.1 mg of
OVA (Sigma) prepared in phosphate buffered saline (PBS) with
equal parts alum (Thermo Scientific) to stimulate an immune
response. The final injection volume was 200 μL. One week after
the initial immunization, all mice were again immunized with
0.1 mg of OVA.

ENZYME-LINKED IMMUNOSORBENT ASSAY
One week following the second immunization, all mice were
sacrificed by CO2 asphyxiation. Blood was collected by cardiac
puncture and blood serum was isolated. Levels of OVA-specific
IgG present in the serum were detected using an indirect enzyme-
linked immunosorbent assay (ELISA). Plates were coated with
400 μg/100 μL/well OVA (Sigma) in coating buffer (Bethyl Lab-
oratories, Montgomery, TX, USA) for 2 h at room temperature
(RT). Plates were washed three times in wash buffer (Bethyl Labo-
ratories) between every step. Plates were then blocked for 30 min
with blocking solution (Bethyl Laboratories). Serum from each
mouse was diluted 1:100, 1:5000, 1:2500, and 1:12,500 for the
IgG ELISA, and 1:10, 1:100, and 1:1000 for the IgE ELISA. Sam-
ples were then added to the plate, and incubated for 2 h at
RT. Rat anti-mouse IgG-AP or rat anti-mouse IgE-AP, human
adsorbed (Southern Biotech, Birmingham, AL, USA) was diluted
1:1000 and used for detection of the appropriate antibodies.
Samples were analyzed in duplicate using a microplate reader
(Model 680, Bio-Rad).

TISSUE HARVESTING AND CELLULAR ISOLATION
Following cardiac puncture, MLNs were harvested from each
mouse and homogenized in RPMI-1640 (Sigma) supple-
mented with 10% heat-inactivated FBS (Atlanta Biologicals),
penicillin–streptomycin, sodium pyruvate, non-essential amino

acids, L-glutamine, HEPES, and 5 × 10−5 M 2-mercaptoethanol
(all from Sigma Chemical). The resulting cell suspensions were
washed in RPMI-1640 complete medium, and then red blood cell
lysis was performed for 5 min, followed by two washes in RPMI-
1640. Cells were then immediately re-suspended in FACS buffer
(1× PBS with 2% BSA and 0.1% NaN3) and immediately stained
for flow cytometric analysis.

FLOW CYTOMETRY
Multi-color flow cytometric analysis was performed to identify
populations of DCs and Tregs in the MLNs. To enumerate DC
populations, cells isolated from MLNs were resuspended in FACS
buffer. Cells were then blocked with 15 μg rat serum in 5 μL FACS
buffer for 5 min at 4◦C. All staining was done for 10–15 min at 4◦C
followed by two washes with FACS buffer, and then fixed in PBS
with 2% BSA, 0.1% NaN3 and 0.5% formaldehyde (fix buffer).
Samples were incubated with antibodies (specific for the cell sur-
face proteins described in each experiment) conjugated to FITC,
PE, or CyChrome (eBioscience, BioLegend, or BD Bioscience as
antibody specificity and desired fluorochrome conjugates were
available). To enumerate Tregs, cells isolated from MLNs were
stained using a Treg identification kit (eBioscience) according to
the manufacturer’s instructions. Cells were analyzed on an Accuri
C6 flow cytometer using CFlow Plus software (Accuri, Ann Arbor,
MI, USA).

STATISTICAL ANALYSES
All statistical analyses were performed using Sigma Plot (Sys-
tat Software, San Jose, CA, USA). Results are represented as
mean ± SEM. To determine significant decreases in intestinal bac-
teria following antibiotic treatment, a Student’s paired t-test was
performed on pre- and post-treatment colony counts. To deter-
mine statistically significant differences in levels of OVA-specific
antibodies, data from the ELISAs were analyzed by one-way
ANOVA followed by Student–Newman–Keuls post hoc analysis.
To determine statistically significant differences in percentages of
DCs and Tregs present in MLNs, the data from flow cytometric
analyses were analyzed by one-way ANOVA followed by Student–
Newman–Keuls post hoc analysis or Kruskal–Wallis ANOVA on
ranks. Differences between groups were considered statistically
significant at p ≤ 0.05.

RESULTS
The goal of this study was to demonstrate the effect of antibi-
otic usage on oral tolerance induction and tolerogenic immune
populations in the MLNs using OVA as the antigenic stimulus.

ANTIBIOTIC TREATMENT HINDERS ORAL TOLERANCE INDUCTION
Antibiotic treatment has been implicated in the development of
various autoimmune diseases in humans such as allergy, asthma
(Wickens et al., 1999; Droste et al., 2000; Marra et al., 2009; Rus-
sell et al., 2012), and Crohn’s disease (Card et al., 2004). Given the
importance of generating tolerant immune responses to prevent
the initiation of autoimmune responses and subsequent disease,
we investigated the effect of antibiotic treatment on oral toler-
ance induction. Following antibiotic treatment (NTAb and OTAb),
administration of a single dose of OVA (OT and OTAb), and
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immunization with OVA (all mice), blood serum was isolated
to determine levels of OVA-specific IgG. Levels of OVA-specific
IgG were reduced in the tolerized (OT) group compared to the
non-tolerized (NT) group, demonstrating that the tolerizing pro-
cedure was effective (Figure 1A). However, in the OTAb group
OVA-specific IgG was markedly elevated from the tolerized con-
trol, and very similar to the IgG levels observed in the NT control
group (Figure 1A). OTAb levels of OVA-IgG that are comparable
to the NT group demonstrate an inability to suppress an anti-
body response to OVA, suggesting that tolerance to OVA was not
achieved in the antibiotic-treated group.

It has previously been demonstrated that germ-free mice pro-
duce IgE, generating allergic reactions to orally fed antigens, but
replacement of individual intestinal microbial species restores oral
tolerance (Tanaka and Ishikawa, 2004). Furthermore, a similar
investigation into the effects of antibiotic treatment on tolerance
examined levels of IgE and found no effect of antibiotic treatment

FIGURE 1 | Levels of OVA-specific IgG are altered in response to oral

administration of OVA following erythromycin treatment. Mice were
divided into four treatment groups (n = 3–4/group). Mice were
administered water (NT and OT) or 5 mg of the antibiotic erythromycin
(NTAb and OTAb) for 6 days, followed by 20 mg of OVA (OT, OTAb) or water
(NT, NTAb) on day 7. At 5 and 12 days post-OVA treatment, all mice were
immunized with 0.1 mg of OVA. Seven days after the second immunization,
blood serum was isolated and serum levels of OVA-specific IgG (A) and
OVA-specific IgE (B) were determined by ELISA (NT compared to OT
*p ≤ 0.05, OT compared to OTAb **p ≤ 0.05 as determined by one-way
ANOVA followed by Student–Newman–Keuls post hoc analysis). Data
presented are of a representative experiment of three total experiments.

on whey protein-specific IgE. Blood serum from the four treatment
groups was isolated as described above. Levels of OVA-specific IgE
were not detected above background levels in any of the treatment
groups (Figure 1B), demonstrating that an IgE response was not
generated to OVA in our model system.

ANTIBIOTIC TREATMENT REDUCES THE INTESTINAL
LACTOBACILLUS POPULATION
One major complication of antibiotic treatment is its alteration of
intestinal microbial communities (Hoban, 2003). Altered intesti-
nal microflora have been found to have a role in irritable bowel
disorders (Frank et al., 2007) and atopic diseases (Wickens et al.,
1999; Droste et al., 2000; Bjorksten et al., 2001). Lactobacillus is a
model probiotic genera (Ivanov and Littman, 2011) and can be
specifically selected for with MRS agar plates. To identify alter-
ations to the probiotic population following antibiotic treatment,
the intestinal Lactobacillus population was enumerated before and
after a 7-day treatment with the broad-spectrum antibiotic ery-
thromycin to determine the effect of the antibiotic treatment on
the intestinal probiotic population of mice. Erythromycin was
chosen because of its ability to reduce enteric bacteria popula-
tions, including Lactobacillus (Finegold, 1970; Andremont et al.,
1983). Fecal samples collected pre- and post-treatment demon-
strated that erythromycin reduced the populations of Lactobacilli
in the GI tract (Figure 2).

TOLERANCE INDUCTION FOLLOWING ANTIBIOTIC TREATMENT ALTERS
POPULATIONS OF CD11c+/CD11b+/CD8α− TOLEROGENIC DCs IN THE
MLNs, BUT NOT OTHER TOLEROGENIC DC SUBSETS
To explore the mechanisms behind this hindrance of toler-
ance induction, subsets of tolerogenic DCs were examined.

FIGURE 2 | Erythromycin reduces the Lactobacillus probiotic

population in the intestines of mice. Mice were administered 5 mg
erythromycin (NTAb and OTAb) or water (NT and OT) once a day for seven
consecutive days via intragastric gavage. Fecal samples were collected
from each mouse pre- (gray bar) and post-treatment (black bar). Samples
were plated on MRS agar plates, and Lactobacilli colonies were
enumerated following a 24-h incubation at 37◦C and 10% CO2 (500
colonies per plate was the maximum number of colonies counted).
*p ≤ 0.05 by paired t -test. Data presented are of a representative
experiment of three total experiments.
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While tolerogenic DC subsets differ between various blood and
lymphoid tissues, the tolerogenic subsets found in the MLNs
are CD11c+/CD11b+/CD8α− DCs, CD11c+/CD103+ DCs, and
CD11c+/MHC Class II+/CD103+ DCs (Niess and Reinecker,
2006; Tezuka and Ohteki, 2010; Scott et al., 2011). Examination
of CD11c+/CD11b+/CD8α− DCs 2 weeks after tolerance was
induced revealed no significant increase of this population in the
MLNs of tolerized mice compared to non-tolerized mice, how-
ever, both tolerized and non-tolerized antibiotic-treated groups
had a significant decrease in the CD11c+/CD11b+/CD8α− pop-
ulation as compared to the OT group (Figure 3), demonstrating
that antibiotic treatment alone may be altering populations of
tolerizing DCs in the MLNs.

To further investigate the effect of tolerance and antibiotic
treatment on other DC populations in the MLNs, populations
of CD11c+/CD103+ DCs and CD11c+/MHC Class II+/CD103+
DCs were examined. There were no significant differences between
treatment groups for CD11c+/CD103+ DCs (Figure 4A) or
CD11c+/MHC Class II+/CD103+ DCs (Figure 4B). To identify
any alterations that may occur shortly after tolerance induction,
all three MLN DC subset populations were enumerated 24 h after
oral administration of OVA. No significant differences between
treatment groups was observed in any of the DC populations
at this time point (data not shown). Taken together, these data
suggest that there is no direct association between the inabil-
ity to induce tolerance after reduction in intestinal Lactobacilli
and tolerogenic DC populations in the MLNs, although antibiotic
treatment alone may be sufficient to decrease some tolerogenic
DC populations.

FIGURE 3 | Antibiotic treatment alters populations of CD11c+/

CD11b+/CD8α− DC populations in the MLN. Erythromycin (5 mg) was
administered daily to NTAb and OTAb mice and water given to NT and OT
mice. On day 7, 20 mg of OVA was administered in water (OT) or antibiotic
solution (OTAb) to induce tolerance. MLNs were harvested on day 33
(following treatment plan described in Section “Materials and Methods”)
and cell suspensions were stained with antibodies for the described surface
proteins. Populations were enumerated using an Accuri C6 flow cytometer.
Data were normalized to the NT group, pooled from three experiments,
and analyzed by one-way ANOVA followed by Student–Newman–Keuls post
hoc analysis for significance (*p ≤ 0.05 compared to OT).

FIGURE 4 | Antibiotic treatment does not alter populations of CD11c+/

CD103+ or CD11c+/MHC Class II+/CD103+ DC populations in the

MLNs. Erythromycin (5 mg) was administered daily to NTAb and OTAb
mice and water given to NT and OT mice. On day 7, 20 mg of OVA was
administered in water (OT) or antibiotic solution (OTAb) to induce tolerance.
MLNs were harvested on day 33 (following treatment plan described in
Section “Materials and Methods”) and cell suspensions were stained with
antibodies for the described surface proteins. CD11c+/CD103+ (A) or
CD11c+/MHC Class II+/CD103+ (B) DC populations were enumerated
using an Accuri C6 flow cytometer. Data were normalized to the NT group,
pooled from two experiments, and analyzed by Kruskal–Wallis ANOVA on
ranks for significance.

TOLERANCE INDUCTION FOLLOWING ANTIBIOTIC TREATMENT DOES
NOT ALTER POPULATIONS OF Tregs IN THE MLNs
Because DCs in the MLNs have a primary role in naïve
T cell differentiation, specifically Treg differentiation, CD3+/
CD4+/CD25+/FoxP3+ Treg populations in the MLNs were enu-
merated. There were no differences observed in the MLN Treg
populations between the different treatment groups 14 days
(Figure 5) or 24 h (data not shown) after tolerance induction,
suggesting there is no direct link between alterations in total Treg
populations and the hindrance of tolerance following antibiotic
treatment.

DISCUSSION
Given the emerging evidence highlighting the importance of pro-
biotics and the normal intestinal flora in health and disease,
this study sought to examine alterations in immune mechanisms
brought about by antibiotic treatment. The data presented in
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FIGURE 5 | Antibiotic treatment prior to oral administration of OVA

does not alter CD3+/CD4+/CD25+/FoxP3+ Treg populations in MLN.

Mice were administered water (NT and OT) or 5 mg of the antibiotic
erythromycin (NTAb and OTAb) for 6 days, followed by 20 mg of OVA (OT,
OTAb) or water (NT, NTAb) on day 7. MLNs were harvested on day 33
(following treatment plan described in Section “Materials and Methods”),
cell suspensions were stained with antibodies for the described surface
proteins, and intracellular staining was performed for the transcription
factor FoxP3. Populations were enumerated using an Accuri C6 flow
cytometer. Data were normalized to the NT group, pooled from three
experiments, and analyzed by one-way ANOVA for significance.

this study demonstrate that treatment with erythromycin prior
to the oral introduction of antigen hinders the induction of
oral tolerance, such that mice tolerized to antigen after antibi-
otic treatment have an immune response that is comparable
to non-tolerized controls, and this may be associated with the
alteration in normal intestinal flora due to antibiotic treatment,
as intestinal populations of Lactobacilli were reduced following
erythromycin treatment. Furthermore, this study examined pop-
ulations of DCs and Tregs in the MLNs to identify changes in
those cellular populations that may correlate with the inability
to induce tolerance in the antibiotic-treated mice. Although no
significant alterations in DC or Treg populations were identi-
fied following antibiotic and tolerance treatments, there was a
decrease in tolerogenic CD11c+/CD11b+/CD8α− MLN DCs in
both the tolerized and non-tolerized antibiotic-treated mice, indi-
cating that antibiotic treatment alone may be sufficient to alter
intestinal mucosal DC populations. These are novel studies that
provide evidence of antibiotic effects that exceed “common” side-
effects and can contribute to the breakdown of normal tolerant
immune responses.

The effects of antibiotic treatment on oral tolerance have been
examined previously. Pecquet et al. (2004) examined the effect
of antibiotic treatment on tolerance induction by assessing lev-
els of β-lactoglobulin (BLG)-specific serum IgE in mice tolerized
to whey protein during antibiotic treatment with norfloxacin or
gentamicin plus vancomycin. They demonstrated that at the early
stages of oral tolerance induction, depleting the gut microbiota
with antibiotics weakened the maintenance of oral tolerance to
BLG. While tolerance was achieved in antibiotic-treated mice,
the more the gut microbiota were altered by antibiotic treat-
ment, the less the tolerant state persisted over time (30–60 days).

Findings from our study compliment that of Pecquet et al. by
examining other aspects of the humoral response, such as the
IgG response. Importantly, our findings demonstrate the abil-
ity of erythromycin to abrogate tolerance induction, which is in
contrast to the prior findings that tolerance could be induced
and antibiotic treatment only prevented maintenance of a tol-
erant state. Furthermore, the results from our study revealed
no differences in IgE levels between treatment groups, which
is likely a result of the different model systems such that OVA
may not elicit the atopic, IgE-producing response that whey pro-
tein does. Importantly, both our study and that of Pecquet et al.
demonstrate a reduction in intestinal microflora that correlates
with alterations in either the induction or maintenance of a
tolerant state.

The role of probiotics in oral tolerance induction has been
debated, and this study provides further information for this
debate. Furrie et al. (1995) fed germ-free mice with OVA and
analyzed OVA-specific IgG levels and systemic delayed-type hyper-
sensitivity (DTH) responses to conclude that the absence of
intestinal microbiota has no effect on oral tolerance induction to
OVA. In contrast, a study by Prioult et al. (2003) demonstrated that
in germ-free mice, oral tolerance to BLG cannot be achieved; how-
ever, reconstitution of gut flora with only one microbial species is
sufficient to permit oral tolerance induction and subsequent sup-
pression of humoral and cellular responses, providing evidence
that probiotics modulate oral tolerance responses in mice. Our
studies support the prior findings on the importance of probiotics
in oral tolerance induction.

This study sought to identify alterations in an immunologic
mechanism(s) that correlates with a hindrance in oral toler-
ance induction. No changes in the MLN Treg populations were
observed between treatment groups (Figure 5), indicating that
there is no correlation between alterations in the Treg populace and
the hindrance of tolerance in the antibiotic-treated group. How-
ever, there are two limitations to our study that may contribute
to this finding. First, total Treg populations, and not OVA-specific
populations, were examined. It is possible that alterations in the
OVA-specific Treg population exist while total Treg populations
remain unchanged. Additionally, it is possible that the method
of oral tolerance induction in our study design contributed to
a lack of observable change in Treg populations. Our study uti-
lized the high-dose method for tolerance induction. While this
was the best method of inducing tolerance in our model, it can
be argued that this mechanism for initiating oral tolerance leads
to the deletion of autoreactive cells and of Tregs. It has previ-
ously been demonstrated that the feeding dosage of antigen has
a profound effect on the mechanism by which oral tolerance is
achieved. While animals fed with a low-dose (1 mg) of anti-
gen over several days induced tolerance via active suppression
of immune cells and increased secretion of the TGF-β, animals
fed with a one-time high-dose (20 mg) of antigen induced tol-
erance by anergy and an increased secretion of the cytokine IL-4
(Friedman and Weiner, 1994). As a result, high-dose tolerance
induction affects antibody responses, while low-dose induction
affects regulatory cell-mediated responses (Mowat et al., 1983). In
our model system, if the high-dose mechanism of tolerance has
more effect on antibody responses and promotes anergy instead
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of initiating the induction of Tregs, this may explain the absence
of differences in Treg populations in our treatment groups even
though antibody responses to OVA were altered.

Interestingly, antibiotic treatment in both the non-tolerized
and oral-tolerized treatment groups resulted in a decrease in
CD11c+/CD11b+/CD8α− MLN DCs (Figure 3), suggesting that
the antibiotic treatment itself, excluding the tolerizing antigen,
has an effect on this tolerogenic DC subset. It is possible that
this is due to alterations in the intestinal epithelium as a result
of the antibiotic treatment. Disruption of the intestinal probiotic
population can result in intestinal alterations and inflammation
(Levy, 2000). It is possible that in inflamed intestinal tissue (due to
antibiotic treatment), antigen-loaded tolerogenic DCs that would
normally be transported to the MLNs may instead enter the blood
stream and traffic to tissues other than the MLNs, inducing an
active, rather than tolerant, immune response to antigen such as
we observe in our antibiotic treated groups (Figure 1).

In conclusion, this was a novel study that demonstrated a
break in tolerance resulting from a 7-day course of erythromycin

that was associated with a decrease in a subset of tolerogenic
DCs potentially and may involve alterations in the normal
intestinal microflora. Our findings, coupled with the find-
ing that antibiotic treatment-induced alterations of intestinal
microflora extend past antibiotic treatment and permanently alter
the composition of the microflora (Littman and Pamer, 2011),
support previous epidemiologic studies that suggest antibiotic
usage may be linked to more serious health conditions includ-
ing atopic disorders such as allergy and asthma (Wickens et al.,
1999; Droste et al., 2000; Russell et al., 2012) and irritable bowel
disorders (Card et al., 2004) and provide a basis for further
investigation into the effects of antibiotic treatment on immune
responses.
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