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Abstract: The tetracycline regulatory system has been widely used to control the transgene expression.
With this powerful tool, it might be possible to effectively control the functional activity of chimeric
antigen receptor (CAR) T cells and manage the severe side effects after infusion. In this study,
we developed novel inducible CD19CAR (iCAR19) T cells by incorporating a one-vector Tet-on
system into the CD19CAR construct. The iCAR19 T cells showed dox-dependent cell proliferation,
cytokine production, CAR expression, and strong CD19-specific cytotoxicity. After 48 h of dox
induction, the relative CAR expression of induced cells was five times greater than that of uninduced
cells. Twenty-four hours after dox removal, CAR expression significantly decreased by more than 60%.
In cytotoxicity assays, dox-treated cells induced significantly higher specific lysis against target cells.
These results suggested that the activity of iCAR19 T cells was successfully controlled by our Tet-on
system, offering an enhanced safety profile while maintaining a robust anti-tumor effect. Besides,
all manufacture processes of the lentiviral vectors and the T cells were conducted according to the
Good Manufacturing Practice (GMP) standards for subsequent clinical translation.
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1. Introduction

Chimeric antigen receptor T-cell therapy has shown great potential fighting against cancer,
which functions by re-directing T cells to the tumor-specific antigen through genetic modification.
Among different CAR T therapies, CAR T cells targeting the CD19 antigen has undergone extensive
research and demonstrated remarkable therapeutic effects in clinical treatment for relapsed or refractory
B-cell malignancies [1–3].

Despite the encouraging clinical success achieved in recent years, the potentially dangerous side
effects associated with CAR T therapies remain a major concern in its clinical application, such as
cytokine release syndrome (CRS), neurotoxicity, and low blood cell counts [4–6]. To minimize these
side effects, efforts have been made in searching for adjuvant drugs able to control severe CRS [1,7],
and novel CAR constructs incorporating suicide gene systems which induce CAR T-cell apoptosis
upon activation [8–10]. However, these approaches might have some limitations. While adjuvant
drugs increase the financial burden to families and societies, these chemicals could also induce a
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certain level of toxicity themselves. In terms of the suicide gene systems like the inducible caspase 9,
direct elimination of infused CAR T cells may result in an increased risk of disease recurrence.

To overcome these potential limitations, the tetracycline regulatory system might be an ideal
alternative since the transgene expression can be regulated by a very small dose of doxycycline (Dox)
without the need to kill the CAR T cells. In typical Tet-on systems, a reverse tetracycline-controlled
trans-activator (rtTA) can bind with the tetracycline-responsive element (TRE) promoter in the presence
of doxycycline and activates transcription [11,12].

In the present study, we introduced an all-in-one Tet-on system into the third-generation lentiviral
vector containing a CD19CAR construct, to explore the feasibility of regulating CD19CAR T-cell activity
by doxycycline. For higher induction efficiency and lower expression leakage, the rtTA2S-M2, which is
a mutant derived from rtTA, and the Tet-responsive promoter for albumin (TREalb) were used in
the Tet-on system, as described in our previous publication [13]. In addition, to produce GMP-grade
lentiviral vectors, all the manufacture processes and subsequent testing were carried out in our GMP
facility, and the quality control of the gene vectors was performed following the FDA guidance.

2. Results

2.1. Construction of Inducible Lentiviral Vectors

As shown in Figure 1A, the one-vector Tet-on sequence was composed of the rtTA2s-M2 cassette
and the TREalb cassette, oriented in the antisense direction, as described in Reference [13]. The iCAR19
construct consisted of the Tet-on sequence and the CD19CAR fragment. The CD19CAR consisted of
the CD19-specific single-chain variable fragment (scFv) derived from the murine FMC63 monoclonal
antibody, in frame to CD8 hinge and transmembrane domains, 4-1BB transactivation domain, and CD3
zeta signaling domain, as previously reported [14]. The iGFP construct consisting of the Tet-on
sequence and the GFP sequence was designed as a control. The two constructs were synthesized and
cloned into the pCDH-CMV-MCS-EF1α-copGFP lentiviral backbone between SnaBI and SalI sites,
respectively, to generate the transfer vectors. For restriction endonuclease analysis (Figure 1C−E),
SnaBI-SalI digestion was performed for pCDH-induce vector, and SalI digestion was performed for
iGFP and iCAR19 vectors. All vectors were correctly constructed.

Int. J. Mol. Sci. 2018, 19, x  2 of 12 

 

certain level of toxicity themselves. In terms of the suicide gene systems like the inducible caspase 9, 

direct elimination of infused CAR T cells may result in an increased risk of disease recurrence. 

To overcome these potential limitations, the tetracycline regulatory system might be an ideal 

alternative since the transgene expression can be regulated by a very small dose of doxycycline (Dox) 

without the need to kill the CAR T cells. In typical Tet-on systems, a reverse tetracycline-controlled 

trans-activator (rtTA) can bind with the tetracycline-responsive element (TRE) promoter in the presence 

of doxycycline and activates transcription [11,12]. 

In the present study, we introduced an all-in-one Tet-on system into the third-generation lentiviral 

vector containing a CD19CAR construct, to explore the feasibility of regulating CD19CAR T-cell activity 

by doxycycline. For higher induction efficiency and lower expression leakage, the rtTA2S-M2, which 

is a mutant derived from rtTA, and the Tet-responsive promoter for albumin (TREalb) were used in 

the Tet-on system, as described in our previous publication [13]. In addition, to produce GMP-grade 

lentiviral vectors, all the manufacture processes and subsequent testing were carried out in our GMP 

facility, and the quality control of the gene vectors was performed following the FDA guidance. 

2. Results 

2.1. Construction of Inducible Lentiviral Vectors 

As shown in Figure 1A, the one-vector Tet-on sequence was composed of the rtTA2s-M2 cassette 

and the TREalb cassette, oriented in the antisense direction, as described in Reference [13]. The 

iCAR19 construct consisted of the Tet-on sequence and the CD19CAR fragment. The CD19CAR 

consisted of the CD19-specific single-chain variable fragment (scFv) derived from the murine FMC63 

monoclonal antibody, in frame to CD8 hinge and transmembrane domains, 4-1BB transactivation 

domain, and CD3 zeta signaling domain, as previously reported [14]. The iGFP construct consisting 

of the Tet-on sequence and the GFP sequence was designed as a control. The two constructs were 

synthesized and cloned into the pCDH-CMV-MCS-EF1α-copGFP lentiviral backbone between SnaBI 

and SalI sites, respectively, to generate the transfer vectors. For restriction endonuclease analysis 

(Figure 1C−E), SnaBI-SalI digestion was performed for pCDH-induce vector, and SalI digestion was 

performed for iGFP and iCAR19 vectors. All vectors were correctly constructed. 

 

Figure 1. Vector construction and restriction endonuclease analysis. (A) The iCAR19 construct (upper) 

consisted of the Tet-on sequence and the CD19-CAR fragment. The iGFP construct (lower) consisted 

of the Tet-on sequence and the GFP sequence. (B) Constructs in (A) were respectively cloned into the 

pCDH-CMV-MCS-EF1α-copGFP lentiviral backbone between SnaBI and SalI sites. (C−E) the restriction 

endonuclease analysis results of pCDH-induce (C), iGFP (D), and iCAR19 (E) transfer vector plasmid. 

SnaBI-SalI digestion was used for pCDH-induce vector. SalI digestion was used for iGFP and iCAR19 

vectors. 

Figure 1. Vector construction and restriction endonuclease analysis. (A) The iCAR19 construct (upper)
consisted of the Tet-on sequence and the CD19-CAR fragment. The iGFP construct (lower) consisted
of the Tet-on sequence and the GFP sequence. (B) Constructs in (A) were respectively cloned into
the pCDH-CMV-MCS-EF1α-copGFP lentiviral backbone between SnaBI and SalI sites. (C–E) the
restriction endonuclease analysis results of pCDH-induce (C), iGFP (D), and iCAR19 (E) transfer vector
plasmid. SnaBI-SalI digestion was used for pCDH-induce vector. SalI digestion was used for iGFP and
iCAR19 vectors.



Int. J. Mol. Sci. 2018, 19, 3455 3 of 12

2.2. Quality Testing

To ensure the quality of the iCAR19 lentiviral vector, a series of quality testing experiments
were conducted (Table 1). For sterility, no bacteria, fungi or mycoplasma was detected in the
vector stock. The infectious titer was determined as 1.5 × 107 TU/mL by qPCR. For RCR test,
no replication-competent lentivirus was detected in the cell culture supernatants after serial passages.
The endotoxin presented in the stock was below 0.03125 EU/mL. The pH value of the stock was 7.25.
In conclusion, the quality of our lentiviral vector complied with all criteria of the standard.

Table 1. iCAR19 lentiviral vector quality testing result.

Test Method Requirement Report

Bacteria Blood agar plates No growth No growth
Fungi Sabouraud glucose agar plates No growth No growth

Mycoplasma PCR detection kit Negative Negative
Titration Real-time PCR Report TU/mL 1.5 × 107 TU/mL
RCR test p24 ELISA kit Negative Negative

Endotoxin Chromogenic LAL assay kit <10 EU/mL <0.03125 EU/mL
pH pH meter 6.9–7.8 7.25

2.3. Dox-Induced GFP Expression in HEK293T Cells

HEK293T cells were transduced with the iGFP lentiviral vector to test the efficacy of our Tet-on
system. Non-transduced cells were used as control. After 24 h of culture, 4 µg/mL doxycycline was
added for the Dox (+) group. All three groups were maintained in culture for another 48 h, and GFP
expression was examined 24 h and 48 h following doxycycline addition. As shown in Figure 2A,B,
after 24 h of induction, some of the cells in the Dox (+) group already showed a low level of GFP
expression, while almost no GFP expression was observed in the non-transduced and the Dox (−)
groups. After 48 h of induction (Figure 2C,D), most of the cells in the Dox (+) group showed high level
of GFP expression, whereas only a small number of cells in the Dox (−) group expressed GFP marker
with a relatively low intensity. These results suggested that our one-vector Tet-on system effectively
regulated the expression of the gene of interest.

2.4. Dox-Dependent CAR Expression in CAR T Cells

To test whether the CAR expression can be regulated by dox administration and discontinuation,
iCAR19 T cells were treated with or without 4 µg/mL doxycycline for 48 h. Subsequently,
the dox-treated cells were washed and cultured without dox for another 24 h. The CAR expression
in different groups was then compared on mRNA level by qPCR analysis (Figure 3). We observed
a significant upregulation of CAR expression after dox induction. It was shown that the relative
CAR expression of the induced group (25.9 ± 0.5) was significantly higher than the uninduced group
(5.5 ± 0.3) when normalized to the non-transduced group. After removal of dox for 24 h, the CAR
expression of dox-treated cells was significantly downregulated for more than 60% (8.3 ± 0.9). Besides,
expression leakage of iCAR19 T cells was observed in the uninduced state by comparing the uninduced
group with the control group.
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Figure 2. Dox-induced GFP expression in HEK293T cells. Dox (−), transduced PBMCs without Dox
treatment. Dox (+), transduced PBMCs treated with Dox for 48 h. 24 h after induction (A,B), the Dox (+)
group showed low level of GFP expression, and no GFP expression was observed in the non-transduced
and Dox-groups. After 48 h of induction (C,D), most of the cells in the Dox (+) group showed high level
of GFP expression, while only a small number of cells in the Dox (−) group showed GFP expression.
Presented is the representative data. Scale bars indicate 50 µm.
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Figure 3. Quantitative real-time PCR analysis for dox-dependent CAR expression after 48 h of induction.
NT, non-transduced PBMCs. Dox (−), transduced PBMCs without dox treatment. Dox (+), transduced
PBMCs treated with dox for 48 h. Dox (+) (−), dox discontinuation of Dox (+) cells for 24 h. The CAR
expression of Dox (+) was significantly higher than Dox (−) and Dox (+) (−). (Mean and SD, n = 3;
*** p < 0.001).

2.5. Cell Proliferation and Cytokine Secretion

Rapid expansion upon antigen stimulation is important for the anti-tumor activity of CAR T
cells. To assess the ability of cell proliferation, iCAR19 T cells were activated with CD3/CD28 beads,
transduced, and co-cultured with irradiated CD19+ LCLs in the IL-2 supplemented medium with
or without doxycycline. Non-transduced PBMCs were used as control. During three weeks of
coculture, viable cells were counted at weekly intervals. All groups demonstrated robust proliferation
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capability with more than 50-fold increase of total cell numbers (Figure 4A). Specifically, the fold
expansion of induced cells was significantly higher than the control at all time points. There was
significant difference in cell expansion between the induced and the uninduced group after day 15.
No statistically significant difference was observed between the control and the uninduced group until
day 22. We also examined the effect of dox administration on cytokine production of iCAR19 T cells.
After 24 h of coculture with irradiated target cells, both induced and uninduced iCAR19 T cells yielded
significant increase in IL-2 and IFNγ secretion in comparison to non-transduced cells (Figure 4B,C).
Consistently, dox-induced iCAR19 T cells showed significantly higher cytokine production compared
to the uninduced cells. These results suggest that cell proliferation and cytokine production of iCAR19
T cells were effectively regulated by the Tet-on system.
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Figure 4. iCAR19 T-cell proliferation and cytokine secretion after CD19 stimulation were regulated
by doxycycline administration. NT, non-transduced PBMCs. Dox (−), transduced PBMCs without
Dox treatment. Dox (+), transduced PBMCs treated with Dox treatment. (A) Cell proliferation kinetics
during 3 weeks of coculture with irradiated CD19+ LCLs. Cells were activated with CD3/CD28
beads, transduced and expanded in the IL-2 supplemented medium. (Mean and SD, n = 3; * p < 0.05;
** p < 0.01). (B,C) cytokine levels in supernatants after 24 h of coculture with irradiated Raji cells.
Dox-treated groups showed significantly higher cell proliferation and cytokine induction. (Mean and
SD, n = 3; ** p < 0.01).

2.6. Cytotoxicity Assays

The CD19-specific cytotoxicity of iCAR19 T cells was evaluated by the bioluminescent-based
cytotoxicity assay using tumor cell lines expressing luciferase (Figure 5A,B). The uninduced and
induced iCAR19 T cells were incubated with Raji or K562 cells at an E:T ratio of 5:1, and the
non-transduced PBMCs served as control. After 16 h of co-incubation, Dox (+) cells induced
significantly higher cytotoxic activity (84% of lysis) than Dox (−) cells (34% of lysis) against Raji cells,
indicating a dox-dependent activity. Notably, the difference of cytotoxic activity to Raji cells between
Dox (−) cells and non-transduced cells (16% of lysis) was also statistically significant, which indicated
that a moderate level of functional leakage existed in this inducible system. This result was consistent
with the previous fluorescence images and qPCR data (Figures 2 and 3). While iCAR19 T cells exhibited
strong cytotoxicity against Raji cells, they showed much lower cytotoxicity against CD19-negative
K562 cells (less than 20% of lysis) with no statistical significance between each group, suggesting their
CD19-specific cytotoxicity.
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Additionally, flow cytometry-based cytotoxicity assay (Figure 5C) was performed against Daudi
and Jurkat cells. The uninduced and induced iCAR19 T cells were co-cultured with CFSE-labeled
target cells overnight at an E:T ratio of 5:1. The percentage of viable target cells were determined by
flow cytometry. The percentage of Daudi cells largely decreased after co-culture with Dox (+) cells
(3.9 ± 0.4, n = 3), whereas only a slight decline was observed for Dox (−) cells (11.4 ± 0.6, n = 3).
The percentages of survival Daudi cells were statistically significant between each group (p < 0.05).
Minimal cytotoxicity was observed against CD19− Jurkat cells, and no statistical significance was
found between groups. These results confirmed the expected cytolytic activity of the iCAR19 T cells.
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Figure 5. CAR T cells mediated dox-dependent and CD19-specific cytotoxicity. NT, non-transduced
PBMCs. Dox (−), transduced PBMCs without Dox treatment. Dox (+), transduced PBMCs treated with
Dox for 48 h. (A,B) bioluminescent-based cytotoxicity assays against K562 and Raji cell lines (Mean and
SD, n = 3; * p < 0.05; *** p < 0.001; ns, not statistically significant). (C) Flow cytometry-based cytotoxicity
assays against Daudi and Jurkat cell lines. Data are representative of three independent experiments.

3. Discussion

In this study, we incorporated a Tet-on system into the CD19CAR construct to generate
the inducible CD19CAR T cells and examined the feasibility of regulating the CAR expression
using doxycycline. In the preliminary test, an inducible GFP vector was developed and exhibited
dox-induced GFP expression in 293T cells. In subsequent experiments, the iCAR19 T cells showed
dox-dependent cell proliferation, cytokine production, CAR expression, and strong CD19-specific
cytotoxicity, suggesting that the activity of iCAR19 T cells was successfully controlled by the Tet-on
system. Besides, for rapid clinical translation, the produced lentiviral vectors and CAR T cells were
GMP-grade, since all manufacture processes were conducted according to the GMP standards.

The striking clinical success of the CAR T-cell therapy in hematologic malignancies and the FDA
approval of two CD19CAR T-cell products has attracted huge academic and commercial interest in
this promising technology. At the same time, the severe side effects associated with this therapy have
also raised wide concern for its safe use [15,16]. Different approaches have been investigated to control
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the functional activity of CAR T cells. In a few most recent studies, it was reported that tetracycline
regulatory systems incorporated in retroviral vectors could effectively control CAR expression and
CAR T-cell function in a dox-dose dependent manner without compromising the original anti-tumor
efficacy [17,18], consistent with our findings here. Our work here further extended the application of
the Tet-inducible system to the third-generation lentiviral vector, which has demonstrated satisfactory
safety profile and wide applicability. Compared to the suicide gene systems [19], the inducible gene
system offers the possibility to shut down the cytolytic activity of CAR T cells without losing their
viability. While research is being conducted to target more diseases like solid tumors using various
types of tumor-associated antigens and immune cells [20], this inducible gene system can also be
adopted in these new therapies to improve their safety.

Also, we observed a moderate level of basal activation of this Tet-on system, which caused
undesired CAR expression and functional leakage of CAR T cells in the uninduced state. The expression
leakage was also reported in a previous study utilizing a similar one-vector Tet-on system [18], while no
leakage was observed when using a two-vector system [15]. Clearly, different vector designs would
influence the basal activation level; however, the exact molecular mechanism has yet to be clarified.
From a safety perspective, one-vector system has a better safety profile because it can minimize the
risk of oncogene activation due to the integration of vector into the host genome [21].

One limitation in this study is that no selection marker was incorporated in our vector design,
thus the transduced CAR T cells were not selected. This is because we intended to minimize the
genetic modification to the T cells for easier clinical translation. In addition, selection processes such as
FACS could induce great damage and unpredictable changes to T cells. However, the transduction
efficiency in our study was found to be suboptimal (~25%). Hence, the anti-tumor activity of our
inducible CAR T cells could be greatly enhanced by increasing the purity. Possible solutions to achieve
higher transduction efficiency may involve reducing vector size [22] and utilizing better transduction
techniques like microfluidic systems [23]. Apart from this, in vivo anti-tumor experiments were not
conducted due to limited time and resources. To reduce basal activation and improve transduction
efficiency, different vector design of tetracycline regulatory systems and lentiviral transduction
techniques will be compared and optimized. Furthermore, in vivo experiments will be conducted to
further examine the efficacy of the inducible system.

Another potential problem with this inducible system is the possible adverse effects associated
with the inducer and the immune response in clinical use. Prolonged exposure to doxycycline
as inducer may cause systemic toxicity as well as increased risk of generating antibiotic-resistant
microorganisms in the patients [24]. To increase safety, the minimum dose of doxycycline required to
induce sufficient transgene expression and therapeutic efficacy needs to be determined and applied
in future in vivo experiments. In addition, development of alternatives to doxycycline that have no
antibiotic properties such as the doxycycline metabolite or the tetracycline agonist could be an ideal
solution [25]. In addition to the inducer, the potential immunogenicity of the various prokaryotic and
viral components in the rtTA fusion protein also raised safety concerns [26]. In a previous clinical study,
HSV-TK-modified T cells provoked robust and durable CD8+ and CD4+ T-cell immune responses
towards HSV-TK, resulting in the disappearance of the transferred cells [27]. Since the VP16 domain of
the rtTA2S-M2 trans-activator is also derived from the herpes simplex virus and most people have
been in contact with this virus, this Tet-inducible system may also elicit immune response against the
engineered T cells after infusion [28–30]. However, the immunogenicity of the Tet-inducible system
may also be influenced by targeted cell types, as immune responses were not detected when they were
used in rat brains and dog eyes [31,32]. Hence, further studies need to be conducted to characterize
and minimize the potential immunogenicity of the Tet-inducible system on different in vivo models.

In conclusion, GMP-grade inducible CD19CAR T cells were developed in this work. By utilizing
a Tet-on system, the activity of the CAR T cells can be controlled in a dox-dependent manner.
The incorporation of tetracycline regulatory system into the CAR constructs may be a promising
strategy to enhance the safety of CAR T cells.
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4. Materials and Methods

4.1. Cell Lines

All tumor cell lines were obtained from the American Type Culture Collection and cultured
in RPMI-1640 medium containing 10% fetal bovine serum (FBS), 0.8 mmol/L L-glutamine, and 1%
penicillin–streptomycin. HEK293T cell line (Procell, Hong Kong, China) was cultured in standard
DMEM supplemented with 10% FBS, 1% penicillin–streptomycin and 2 mM glutamine.

4.2. Vector Constructs

The schematic representation of the lentiviral vectors designed in this study was shown in Figure 1.
The Tet-on sequence with SnaBI restriction site on the 5′ end and SalI restriction site on the 3′ end
was synthesized on pUC57 vector (Sangon Biotech, Shanghai, China). Then the Tet-on sequence
was amplified and cloned into SnaBI-SalI digested pCDH-CMV-MCS-EF1α-copGFP vector (System
Biosciences, Palo Alto, CA, USA) to create the pCDH-induce vector. To generate the inducible GFP
(iGFP) control vector, GFP sequence was amplified from pCDH-CMV-MCS-EF1α-CopGFP vector with
primers carrying SalI digest sites, then cloned into SalI digested pCDH-induce vector. To generate
iCAR19 transfer vector, the CD19CAR fragment was synthesized with SalI sites at both ends (Sangon
Biotech) and ligated into the SalI digested pCDH-induce vector.

4.3. Lentiviral Vector Production

Lentiviral vectors were produced by transfection of HEK293T cells as described in Reference [13].
Briefly, HEK293T cells (7 × 106/plate) were growing in 15-cm dishes for 24 h prior to transfection in
DMEM with 10% FBS. The culture medium was exchanged 2 h before transfection (DMEM with 2%
FBS). The calcium phosphate precipitation method was used for transient transfection of HEK293T cells.
A total of 40 µg of plasmid DNA was used for the transfection of one culture dish, including 12 µg of
the envelope plasmid (pMD2.G) encoding VSV-G, 5 µg of the packaging plasmid (pMDLg/pRRE), 3 µg
of the plasmid producing Rev regulatory protein (pRSV-Rev), and 20 µg of the transfer vector (iCAR19
and iGFP). After post-transfection culture, all the lentiviral vectors were collected, concentrated, and
stored at −80 ◦C until use.

4.4. Lentiviral Vector Quality Testing

4.4.1. Microbiological Tests

Microbiological tests were performed for bacteria, fungi, and mycoplasma using Blood Agar
plates, Sabouraud Glucose Agar plates, and LookOut® Mycoplasma PCR Detection Kit, respectively,
according to the manufacturers’ protocol (All from Sigma-Aldrich, St. Louis, MI, USA).

4.4.2. Titration

The transducing unit titer (TU/mL) was determined by quantitative PCR (qPCR) as described in
Reference [33], with primers targeting the lentivirus WPRE sequence. Human β-actin was used as the
reference gene.

4.4.3. Replication-Competent Recombinant Lentivirus

The lentiviral vector stocks were tested for the presence of replication-competent retrovirus by
detecting the HIV-1 p24 antigen in the culture medium obtained from vector-transduced cells following
several passages in culture, using the Lenti-X™ p24 Rapid Titer Kit (Takara, Kusatsu, Japan) according
to the manufacturer’s protocol.
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4.4.4. Endotoxin

The endotoxin present in the lentiviral vector stocks was tested using ToxinSensor™ Chromogenic
LAL Endotoxin Assay Kit (GenScript, Piscataway, NJ, USA) according to the manufacturer’s protocol.

4.4.5. pH

The pH value of the lentiviral vector stocks was measured and recorded, with a benchtop electronic
pH meter (Omega, Biel/Bienne, Switzerland).

4.5. HEK293T Cell Transduction

To test our Tet-on system, the iGFP lentiviral vector was used to transduce the 293T cells.
Non-transduced cells were used as the control. Cells in 24-well plates with 50–60% confluence
were transduced with lentiviral vector at a multiplicity of infection (MOI) of 3 in a total volume of 300
µL of DMEM (10% FBS) supplemented with 8 µg/mL Polybrene. After 24 h, the cells were washed,
and fresh medium supplemented with 4 µg/mL doxycycline was added for the induction group. All
groups were maintained in culture for another 48 h and observed under fluorescence microscopy
(Nikon, Tokyo, Japan) for the expression of GFP marker.

4.6. PBMC Transduction

Human peripheral blood mononuclear cells (PBMCs) were transduced with iCAR19 lentiviral
vector to produce the iCAR19 T cells. Whole blood was collected from healthy volunteers at Shanghai
East Hospital with donors’ written consent. The PBMCs were separated from whole blood, activated
with CD3 and CD28 magnetic beads, and cultivated in serum-free medium supplemented with
50 IU/mL interleukin-2 (IL-2). Cells were transduced on day 5 with iCAR19 lentiviral vector at MOI of
3 in the presence of 8 µg/mL polybrene. The non-transduced PBMCs were used as the control. After
24 h, 4 µg/mL doxycycline was added to the culture medium for the induction groups. Cells were
harvested after 48 h of induction for subsequent analysis. For the dox discontinuation group, cells
were washed and cultured in fresh medium without dox for another 24 h.

4.7. Quantitative Real-Time PCR

To analyze the CAR expression level, total RNA from different groups was extracted and reverse
transcribed into cDNA. Chimeric antigen receptor expression in mRNA level was evaluated in a
StepOnePlus™ Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) using primers
targeting CD19 sequence. β-actin mRNA was used as the reference gene. The 2−∆∆Ct method was
used to analyze the relative fold change of gene expression. Each sample was tested in triplicates
within one real-time PCR run.

4.8. Cell Proliferation and Cytokine Secretion Assays

For proliferation analysis, 1× 106 iCAR19 T cells with or without dox supplementation (4 µg/mL)
were co-cultured with irradiated CD19+ LCLs as stimulators at a T cell/LCL ratio of 1:10 in the presence
of 50 IU/mL IL-2. The numbers of viable cells were counted at weekly intervals by hematocytometer.
For cytokine secretion analysis, iCAR19 T cells were stimulated with irradiated Raji cells at a 5:1
ratio (105 tumor cells) with or without dox supplementation. Supernatants were collected 24 h after
stimulation, and concentrations of interleukin-2 (IL-2) and interferon-gamma (IFNγ) were measured
by ELISA.

4.9. Cytotoxicity Assays

The bioluminescent-based cytotoxicity assay was performed as described in Reference [15].
After 48 h of induction, iCAR19 T cells were incubated with Raji and K562 cells stably transduced
with lentiviral vector encoding firefly luciferase (Lentigen Technology, Gaithersburg, MD, USA) at
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an E:T ratio of 5:1. After incubation for 16 h, luciferase signal produced by surviving target cells was
determined by adding SteadyGlo reagent (Promega); % lysis cells = (1 − (signal in treated wells/signal
in untreated wells)) × 100%.

Additionally, flow cytometry-based cytotoxicity assay was performed. Raji cells were labeled by
carboxyfluorescein succinimidyl ester (CFSE; Thermo Fisher Scientific, Waltham, MA, USA) before
coculture with iCAR19 T cells at an effector: target cell ratio (E:T ratio) of 5:1 overnight. The percentage
of viable target cells were determined by flow cytometry (AriaII; BD Biosciences, San Jose, CA, USA).

4.10. Statistical Analysis

All statistical analysis was performed using GraphPad Prism 7 software with p < 0.05 considered
to be statistically significant. Difference between groups was evaluated by Student’s t-test or one-way
ANOVA analysis followed by multiple comparisons of individual groups, where appropriate.
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