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ABSTRACT
In the past decade important progress has been made in our understanding of 

the epigenetic regulatory machinery. It has become clear that genetic aberrations 
in multiple epigenetic modifier proteins are associated with various types of cancer. 
Moreover, targeting the epigenome has emerged as a novel tool to treat cancer 
patients. Recently, the first drugs have been reported that specifically target SETD2-
negative tumors. In this review we discuss the studies on the associated protein, 
Set domain containing 2 (SETD2), a histone modifier for which mutations have 
only recently been associated with cancer development. Our review starts with the 
structural characteristics of SETD2 and extends to its corresponding function by 
combining studies on SETD2 function in yeast, Drosophila, Caenorhabditis elegans, 
mice, and humans. SETD2 is now generally known as the single human gene 
responsible for trimethylation of lysine 36 of Histone H3 (H3K36). H3K36me3 readers 
that recruit protein complexes to carry out specific processes, including transcription 
elongation, RNA processing, and DNA repair, determine the impact of this histone 
modification. Finally, we describe the prevalence of SETD2-inactivating mutations in 
cancer, with the highest frequency in clear cell Renal Cell Cancer, and explore how 
SETD2-inactivation might contribute to tumor development. 

INTRODUCTION

In recent years, SETD2 has attracted a lot of 
interest as a gene whose inactivation is involved in 
tumor initiation and progression. However, Faber et al 
[1] had already identified a protein encoded by SETD2 
in 1998 using a two-hybrid-based approach to search for 
proteins that interact with Huntingtin, the protein known 
to be associated with Huntington’s disease (HD). They 
identified several candidates, three of which contained a 
WW domain. One of these three proteins was Huntingtin 
Yeast Partner B (HYPB). Around the same time Mao 
et al [2] and Zhang et al [3] identified and analyzed 
a large set of transcripts from human umbilical cord 
CD34+ hematopoietic stem/progenitor cells. One of 
these transcripts, HSPC069, had a sequence identical to 
HYPB and represented the same gene. A few years later, 
HSPC069 was shown to contain an AWS-SET-PostSET 

domain and to possess histone methyl transferase activity 
specific for lysine 36 of histone 3 (H3K36) [4]. In a study 
focusing on proteins that interact with a DNA-binding 
motif in the E1A promoter, a transcript identical to HYPB 
was identified and named HBP231 [5]. The associated 
gene is ubiquitously expressed in all tissues and cell lines 
tested, including many cancer-derived cell lines. 

Edmunds et al [6] introduced the gene symbol 
SETD2 in 2008, and made a more detailed analysis of 
the global and transcription-dependent distribution of 
tri-methylated histone H3 lysine 36 (H3K36me3) in 
mammalian cells. This was in line with the role of the 
Saccharomyces cerevisiae homologue of SETD2, ySET2, 
which had been identified in 2002 [7]. An important step 
in understanding the biology of ySET2 was its interaction 
with the serine2 phosphorylated C-terminal domain (CTD) 
of RNA polymerase II (RNA Pol II), linking ySET2 to the 
transcription elongation process [8]. A similar interaction 
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was later confirmed for mammalian SETD2 [4, 9]. It was, 
however, not just its role in regulating transcription that 
attracted the interest of researchers over the years. The 
presence of inactivating mutations in a range of tumor 
types, most notably in clear cell renal cell cancer (ccRCC), 
sparked an additional focus of research: exploring the role 
of SETD2 in cancer development. 

In this review the domains and functions of SETD2 
in normal biology will be discussed in more detail. In the 
final part of the review, we focus on how loss of SETD2 
function can contribute to cancer development. 

THE FUNCTIONAL DOMAINS OF SETD2

The human SETD2 gene is located at the 
cytogenetic band p21.31 of chromosome 3, a region 
frequently targeted by copy number loss in various tumors 
[10]. SETD2 encompasses a genomic region of 147Kb, 
and the 21 exons encode an 8,452nt transcript. The SETD2 
protein consists of 2,564 amino acids and has a molecular 
weight of 287.5 KD. Three conserved functional domains 
have been identified in the SETD2 protein: the triplicate 
AWS-SET-PostSET domains, a WW domain and a Set2 
Rpb1 interacting (SRI) domain.

AWS-SET-PostSET domain

The human SET domain is a motif of 130 amino 
acids that is evolutionarily conserved from mammals to 
yeast and even in some bacteria and viruses [11, 12]. The 
SET domain was identified by comparison of the protein 
sequence of the Drosophila position-effect variegation 
suppressor gene, Su(var)3-9, with the protein sequence 
of several other genes [13]. The acronym SET stands 
for “Suppressor of Variegation, Enhancer of zeste and 
Trithorax”, which are the three genes that led to the 
discovery of this domain. 

The SET domain is usually present as part of a 
multi-domain, flanked by an AWS (Associated with 
SET) and a PostSET domain. Generally, SET-domain-
containing proteins transfer one or several methyl groups 
from S-adenosyl-L-methionine to the amino group of a 
lysine or an arginine residue of histones or other proteins 
[14]. This transfer is dependent on the flanking AWS 
and PostSET regions, which contain several conserved 
cysteine residues. In contrast to other methyltransferases, 
SET-domain-containing methyltransferases have a β-sheet 
structure that facilitates multiple rounds of methylation 
without substrate disassociation [15].

WW domain

The term “WW domain” was originally described in 
1995 by Sudol et al [16] and refers to the presence of two 
conserved tryptophan (W) residues spaced 20-22 amino 

acids apart. Binding assays showed that the WW domain 
preferentially binds to proline-rich segments, mediating 
protein-protein interactions to participate in a variety of 
molecular processes [17]. The WW domain recognizes 
motifs like Proline-Proline-x-Tyrosine (PPxY) [18], 
phospho-Serine-Proline (p-SP) or phospho-Threonine-
Proline (p-ST) [19], and mediates protein binding [20]. 
Aberrant expression of WW-domain-containing genes has 
been associated with different diseases such as HD [21], 
Alzheimer’s disease [22], and multiple cancer subtypes 
[23, 24]. The WW domain in the C-terminal region of 
SETD2 interacts with the Huntingtin protein via its 
proline-rich segment, regardless of the length of the HD-
associated polyglutamine track [1], and may also interact 
with TP53 [25]. Gao et al [26] performed a detailed 
nuclear magnetic resonance study on the interaction of 
SETD2 with Huntingtin. SETD2 contains a proline-rich 
stretch that precedes the WW domain. This proline-rich 
stretch functions as an intramolecular WW-interacting 
domain that can block the WW domain of SETD2 from 
interacting with the proline-rich stretch of Huntingtin, and 
most likely of other proteins as well.

SRI domain

By analyzing a series of SET2-deletion-mutants, 
Kizer et al [27] identified a novel domain that specifically 
interacted with the hyperphosphorylated C-terminal 
domain (CTD) of Rpb1, the largest subunit of RNA Pol 
II. This Set2 Rpb1 Interacting (SRI) domain is conserved 
from yeast to human [27]. In human, the primary 
C-terminal domain-docking site of RNA Pol II is located 
at the first and second helices of SETD2 [9]. This domain 
directs the activity of SETD2 towards actively transcribed 
genes. Yeast experiments by Li et al [8] revealed a high 
affinity of ySET2 to the Ser2-phosphorylated CTD of 
RNA Pol II that is present only when transcription is well 
under way. ySET2 binds to the Ser5-phosphorylated CTD 
with intermediate affinity, while it has no affinity to the 
unphosphorylated CTD [28]. This interaction is dependent 
on the activity of the RNA Pol II CTD kinase CTK1, the 
enzyme responsible for the phosphorylation of Ser2 [29]. 

FROM PROTEIN STRUCTURE TO 
BIOLOGICAL FUNCTION

The above-mentioned functional domains define 
the biological function of SETD2. By virtue of its AWS-
SET-PostSET domains, SETD2 mediates trimethylation 
of H3K36 [4]. In vitro, human SETD2 can carry out 
mono-, di-, and tri-methylation of H3K36 [30], but in 
vivo the scenario is different. While ySET2 catalyzes all 
methylation levels of H3K36 [7], SETD2 only modulates 
H3K36me3 in mammals. Knockdown of SETD2 
induces a complete absence of H3K36me3 without 
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disturbing the levels of H3K36me1 and H3K36me2 [6]. 
In human, trimethylation of H3K36 is carried out by a 
complex, of which SETD2 and Heterogeneous Nuclear 
Ribonucleoprotein L (hnRNPL) are the major subunits 
[31]. Based on these studies, it has become evident 
that SETD2 is solely responsible for this modification. 
Catalyzing H3K36 trimethylation is now regarded as 
the main function of SETD2. H3K36me3 is recognized 
by so-called readers, effector proteins that are recruited 
by specific histone modifications and determine the 
functional outcome of those modifications [32] (Table 
1). A schematic representation of how SETD2-mediated-
trimethylation of H3K36 is involved in various biological 
processes is shown in Figure 1.

The most prominent function of SETD2 is thus 
indirectly determined by the factors that target SETD2 to 
specific nucleosomes to be trimethylated on the one hand, 
and the so-called readers of this modification on the other. 
Vezzoli et al [33] showed that BRPF1 (Bromodomain 
And PHD Finger Containing 1) interacts with H3K36me3 
through its PWWP domain, a finding later corroborated 
by a study of Wu et al [34]. Subsequently, several other 
“readers” were identified that interact with H3K36me3 
by virtue of their PWWP domain [35, 36, 37]. More 
recently, additional proteins were identified that interact 
with H3K36me3 through their tudor domain [38] or 
chromodomain [39].

In addition to its role in histone modification, SETD2 
may also interact directly with other proteins, most likely 
through its WW domain. The BioGRID database (http://
thebiogrid.org) lists multiple proteins that directly interact 
with SETD2. Co-immunoprecipitation assays showed 
that the C-terminal domain of SETD2 interacts with the 
N-terminal domain of TP53 [25]. Binding of SETD2 to 
TP53 modulates the expression of a specific set of TP53 
downstream target genes, including the apoptosis related 
genes puma, noxa, and p53AIP1. However, because no 
follow-up studies have corroborated these findings, the 
importance of the SETD2-TP53 interaction remains to be 
established. Given the well-known role of TP53 in cancer 
development, exploring its interactions with SETD2 may 
be relevant to elucidating the role of SETD2 mutations in 
cancer. To date, most studies have focused on the SETD2-
dependent trimethylation of H3K36. 

Distribution of H3K36me3

Krogan et al [29] were the first to report a specific 
distribution of H3K36me3 over the yeast genome, 
with enrichment of H3K36me3 in actively transcribed 
coding regions. In C. elegans, actively transcribed 
genes also have much higher levels of H3K36me3 than 
transcriptionally repressed genes [40]. The same pattern 
is observed in higher eukaryotes, with high H3K36me3 

Table 1: Overview of currently known H3K36me3 readers and their interacting domains.

Gene symbol binding 
domain Function Ref.

BRPF1/2 PWWP Histone acetylation [33, 34]
DNMT3A/B PWWP DNA methylation [35]
GLYR1 PWWP Histone methylation [36]
HDGF PWWP DNA binding [77]
IWS1 PWWP Transcription elongation, splicing, mRNA export [78]
MORF4L1 Chromo Alternative splicing [39, 50, 79]
MSH6 PWWP DNA mismatch repair [36, 62]
MTF2 Tudor Histone methylation [38, 53]
MSL3 Chromo Histone acetylation [80]
MUM1 PWWP DNA damage repair [34, 81]
NSD1 PWWP Histone methylation [36, 89]
PHF1/19 Tudor Histone methylation [38, 53, 82]
PSIP1 PWWP Splicing and HR repair [65, 66]

SPT16H PWWP Facilitate transcription and repress cryptic 
transcription [52]

WHSC1/L1 PWWP Histone methylation [36, 51]
ZMYND11 PWWP Transcription elongation [83]

Note: BRPF1/2, Bromodomain And PHD Finger Containing 1 and 2; GLYR1, Glyoxylate Reductase 1 Homolog; HDGF, 
Hepatoma-Derived Growth Factor; MSH6, MutS Homolog 6; MTF2, Metal Response Element Binding Transcription Factor 
2; MSL3, Male-Specific Lethal 3 Homolog; MUM1, Melanoma Associated Antigen 1;NSD1, nuclear receptor binding SET 
domain protein 1; PHD1/19, PHD Finger Protein 1/19; WHSC1, Wolf-Hirschhorn Syndrome Candidate 1; WHSC1L1, Wolf-
Hirschhorn Syndrome Candidate 1-Like 1; ZMYND11, Zinc Finger MYND-Type Containing 11.
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levels downstream of the first exon of actively transcribed 
genes and across the whole gene body with a peak near 
the 3’ end [41, 42].

In both human and mouse, intron-containing genes 
showed relatively higher levels of H3K36me3 than intron-
less genes, irrespective of transcriptional activity [43]. 
Along the gene body, H3K36me3 enrichment also appears 
to be discrete, co-localizing to exons rather than introns, 
and with higher levels of H3K36me3 at constitutively 
included exons as compared to alternatively spliced exons 
[40]. The distribution pattern of H3K36me3 indicates a 
role for SETD2 in modulating splicing events by marking 
exonic and intronic regions.

It should be noted that H3K36me3 is not confined 
to actively transcribed genes. A study by Chantalat et al 
[44] showed a high level of H3K36me3 at the silenced 
Snurf-Snrpn region in mice, a well-known facultative 
heterochromatin domain. Pericentromeric regions, 
which consist mainly of constitutive heterochromatin, 
are also enriched for H3K36me3 [44]. In these regions 
the H3K36me3 mark is apparently not correlated with 
transcriptional events. In the remainder of this review we 
will discuss how the loss of or decrease in H3K36me3 
caused by functional loss of SETD2 could contribute to 
cancer development.

H3K36ME3-MEDIATED BIOLOGICAL 
FUNCTIONS

H3K36me3 participates in transcription 
elongation and splicing selection

Deletion of the SRI domain of SETD2 not only 
abolishes its interaction with RNA Pol II but also leads 
to a defect in trimethylation of H3K36, suggesting that 
H3K36 trimethylation and transcription elongation are 
coupled processes [27, 28]. Splicing and transcription 
are also coupled processes regulated by many factors, 
including chromatin remodeling complexes [45], RNA 
Pol II elongation rate [46], RNA binding elements [47] 
and histone modifications [48]. Direct evidence to support 
participation of SETD2 in splicing came from studies 
on alternative splicing of the human fibroblast growth 
factor receptor 2 (FGFR2) gene [49]. FGFR2 is spliced 
into two mutually exclusive and tissue-specific isoforms: 
FGFR2-IIIb (exon IIIb is included) and FGFR2-IIIc 
(exon IIIc is included). Alternative splicing is modulated 
by polypyrimidine tract binding protein 1 (PTBP1, also 
known as PTB). PTBP1 is recruited by histone tail-binding 
protein Mortality Factor 4 like 1 (MORF4L1, also known 

Figure 1: Schematic representation of SETD2-mediated trimethylation of H3K36 and an overview of the H3K36me3 
readers that define its role in various biological processes. During the first round of transcription, the transcription elongation 
factor and histone chaperone SPT6-IWS1 are recruited to Ser2P CTD tail of RNA Pol II. This results in the recruitment of the SETD2-
hnRNPL complex that trimethylates H3K36. This mark is preserved on the histones in the following rounds of transcription and serves 
as a signal beacon to recruit H3K36me3 readers (shown in grey boxes). Facilitates Chromatin Transcription (FACT) complex, Histone 
deacetylase (HDAC) complex, PU.1 (also known as Spi-1 proto-oncogene, SPI1)/ DNA (cytosine-5-)-methyltransferase (DNMTs) 
complex and Polycomb Repressive Complex 2 (PCR2) complex are recruited for chromatin structure remodeling to facilitate transcription 
elongation and to prevent cryptic transcription initiation. The spliceosome is recruited through MORF4L1 for splicing selection; PSIP1/
CtIP complex is recruited through PSIP1 for homologous recombination (HR) repair of double strand breaks (DSBs) and hMutα complex 
is recruited through MSH6 for DNA mismatch repair.
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as Eaf3 and MRG15), which recognizes H3K36me3 
through its chromo domain [39, 50]. Overexpression 
of ySET2 leads to a global increase of H3K36me3 and 
a decreased inclusion of exon IIIb, whereas siRNA-
mediated knockdown of human SETD2 resulted in 
inclusion of the PTB1-repressed exon IIIb [49].

This “chromatin affects splicing” model does 
not, however, explain by what mechanism chromatin 
is modified to direct splicing. Subsequently a “splicing 
affects chromatin” model was proposed [43]. Inhibiting 
splicing, either by knockdown of splicing factor Sin3A-
associated protein (SAP130) or D-ribofuranosyl-
benzimidazole (DRB) treatment, leads to a decreased 
recruitment of SETD2 and reduced H3K36me3 levels [43]. 
Thus, the splicing machinery itself may play a role in the 
recruitment of SETD2 by RNA Pol II and the subsequent 
trimethylation of H3K36. DRB-treatment of HeLa cells 
reduced the H3K36me3 levels on internal exons to a level 
that remained higher than the level in intergenic regions, 
even though both regions have a comparable RNA Pol II 
occupancy. This indicates that, although splicing is not 
required for trimethylation, it does modulate H3K36me3 
levels [43]. Kim et al [51] showed that introducing 
mutations that prevent splicing, or interfere with the 
splicing machinery using splicing inhibitor spliceostatinA 
(SSA), led to a redistribution of H3K36me3 with a shift 
towards the 3’ region, again indicating a direct causal 
relationship between splicing and H3K36me3. 

H3K36me3 prevents spurious transcription

Modification of nucleosomes plays an important 
role in protecting genomic DNA and regulating its 
accessibility. A compact nucleosome structure of the 
gene body is needed to prevent spurious transcription 
initiation from cryptic promoters. Removal of this barrier 
during transcription elongation upon passage of RNA pol 
II results in a more accessible chromatin. Reconstitution 
of completely evicted nucleosomes with acetylated 
nucleosomes from the soluble pool after passage of 
RNA pol II could result in a more accessible chromatin 
structure of transcribed genes. This would allow intergenic 
transcription initiation from cryptic promoter sequences. 
Trimethylation of H3K36 during transcription elongation 
by RNA pol II-bound SETD2 is thought to prevent 
spurious transcription from cryptic promoters. H3K36me3 
recruits Facilitates Chromatin Transcription complex 
(FACT) [52] and Polycomb repressive complex 2 (PRC2) 
[38, 53] to restore the repressed chromatin structure after 
elongation. The FACT complex disassembles the H2A-
H2B dimer from the nucleosomes. After passage of RNA 
Pol II, the same complex promotes the replacement of the 
H2A-H2B dimers. This allows the transcription elongation 
complex to pass without the need to remove histone H4 
and H3 [54]. Thus, the H3K36 trimethylated nucleosomes 
are kept on their position. The IWS1:SPT6:CTD complex 

is needed for the recruitment of SETD2 to RNA Pol II for 
trimethylation of H3K36 [55]. SPT6 was already known to 
enhance the elongation rate by displacing the nucleosomes 
in front of RNA pol II [56]. However, several studies 
have indicated that SPT6 also enhances the elongation 
rate in the absence of nucleosomes [57-59]. Experiments 
in S. cerevisiae have shown that inactivation of SPT6 
or the FACT subunit Suppressor Of Ty 16 Homolog 
(SPT16H, also known as SPT16) resulted in intragenic 
transcription initiation events from cryptic promoters 
[52, 60, 61]. Taken together, the prevention of spurious 
intragenic transcription initiation is an important function 
of H3K36me3 and thus, indirectly, of SETD2.

H3K36me3 maintains genomic integrity and 
stability

The enriched level of H3K36me3 in transcribed 
regions not only serves to restore chromatin structure after 
transcription but also functions in maintaining genomic 
integrity. H3K36me3 is a crucial factor in the repair of 
DNA damage in transcribed regions by modulating 
two different pathways: (i) the DNA Mismatch Repair 
(MMR) pathway responsible for the repair of nucleotide 
mismatches and small insertion/deletion loops of simple 
repeat sequences and (ii) the homologous recombination 
(HR) repair of DNA double strand breaks (DSBs). 

DNA MMR is a mechanism for correcting base-base 
mismatches and insertion/deletion loops produced during 
replication. The most abundant machinery responsible 
for DNA MMR is the hMutSα (MSH2-MSH6) complex. 
Li et al showed that the binding of hMutSα to chromatin 
is H3K36me3-dependent as its subunit MSH6 reads the 
H3K36me3 signal by virtue of its PWWP domain [62]. 
Depletion of SETD2 abolished the localization of hMutSα, 
which led to a DNA-MMR-deficient mutator phenotype. 
The DNA MMR defect in SETD2-deficient UOK143 cells 
could be restored by enforced expression of ySET2. This 
demonstrates the crucial role of H3K36me3 in recruiting 
the DNA MMR repairing machinery. 

DNA MMR predominantly occurs during the 
S-phase of the cell cycle, whereas HR repair preferentially 
takes place in the late S/G2 phase. H3K36me3 consistently 
peaks in the late G1/early S phase and disappears in the 
late S/G2 phase [63] (reviewed by Li et al [64]). This is 
additional proof that H3K36me3-modification enables a 
safe transition from the G1 to the S phase by recruiting 
repairing machineries to correct the errors produced 
during replication. When H3K36me3 is abolished due to 
SETD2 inactivation, the repair machinery cannot localize 
to damaged sites, resulting in an accumulation of errors 
and genomic instability, a hallmark of tumorigenesis. 

H3K36me3 also serves as a signal to recruit 
proteins to DNA double strand breaks (DSBs) to initiate 
repair. An accurate repair of DSBs relies on HR. The 
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PWWP domain of PC4 And SFRS1 Interacting Protein 1 
(PSIP1, also known as Lens Epithelium-Derived Growth 
Factor, LEDGF) is the basis of this HR process, and 
H3K36me3 plays a key role through the recruitment of 
PSIP1 [65-67]. This is consistent with the finding that 
SETD2 is required for ATM-activation upon DSBs [68] 
and the notion that SETD2-deficient cells fail to activate 
a proper DNA damage response, including activation of 
TP53 [68]. SETD2 inactivation abolishes H3K36me3 
and consequently the binding of PSIP1 to the damage 
sites. To compensate for the HR deficiency, cells have 
to use alternative mechanisms to repair the DSBs, such 
as nonhomologous end-joining and/or microhomology-
mediated end-joining [68]. These approaches are error 

prone and may lead to deletions [69]. Although the 
HR repair machinery in SETD2-inactivated cells is 
still competent [67, 68], these cells are not capable of 
recruiting the DNA repair components to the damaged 
sites due to loss of the H3K36me3 signal.

H3K36me3 and DNA methylation

Several publications have indicated that actively 
transcribed genes are extensively methylated at the gene 
body [70-73]. This has raised the question of whether 
H3K36 trimethylation is associated with gene body DNA 
methylation. Hahn et al [74] carried out a detailed study 

Table 2: Overview of SETD2 mutation frequencies in a selection of tumors based on the COSMIC database (Feb 
2016)*.

Tissue/tumour subtype
Percentage of samples with 
mutation cases 

testedtruncating missense
Kidney 4.19 3.10 2197
ccRCC 5.43 4.14 1473
Lung 1.26 1.42 1826
Adenocarcinoma 3.51 3.51 550
Skin 1.08 2.65 1017
Liver 0.74 1.55 1611
Hepatocellular carcinoma 0.78 1.12 893
Soft tissue 0.70 4.67 428
Biliary tract 0.66 0.66 152
Adenocarcinoma 0.67 0.67 150
Endometrium 0.63 3.49 631
Endometrioid carcinoma 0.74 4.08 539
Large intestine 0.59 3.05 1345
Adenocarcinoma 0.62 3.10 1298
Breast 0.58 0.94 1378
Central nervous system 0.47 0.38 2128
Pancreas 0.46 0.33 1521
Ductal carcinoma 0.40 0.57 1240
Stomach 0.34 2.04 587
Urinary tract 0.30 0.90 666
Haematopoietic and lymphoid 0.24 0.87 2519
Acute lymphoblastic B cell leukaemia 1.54 2.32 258
Acute lymphoblastic T cell leukaemia 0.97 0.97 207
Diffuse large B cell lymphoma 0.00 3.20 250
Ovary 0.24 0.59 843
Serous carcinoma 0.31 0.78 641
Bone 0.20 0.60 496
Prostate 0.10 0.88 1019
Adenocarcinoma 0.12 0.48 827

* Tumor subtypes with a sample size less than 100 cases have been excluded.
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of the association of a number of epigenetic markers in 
human bronchial epithelial cells and colorectal cancer cell 
line HCT116, focusing on chromosome 19 genes. Of the 
expressed genes, 74% had a high level of both gene body 
DNA methylation and H3K36me3. DNA methylation and 
H3K36me3 have been linked in both yeast and mouse 
[75]. In addition, a group of genes, mostly Zinc Finger 
genes, were identified in which H3K36me3 occurred in 
combination with the repressive intragenic H3K9me3 
mark [75]. On average these genes were expressed at a 
low level and had a relatively low number of intragenic 
CpG dinucleotides that were largely unmethylated. By 
analyzing cells that were either made defective in H3K36 
trimethylation or in CpG methylation, Hahn et al [74] 
further showed that the levels of these two epigenetic 
markers are established independently. However, Dhalayan 
et al demonstrated a high affinity of DNA (cytosine-5)-
methyltransferase 3A (DNMT3A) to H3K36me3 in vitro 
[35]. DNMT3A is targeted to H3K36me3-containing 
nucleosomes, e.g. in heterochromatic regions as well as 
gene bodies, by virtue of its PWWP domain. DNMT3A/B 
interacts with PU.1 to form a complex for de novo 
site-specific methylation [76]. This indicates that the 
H3K36me3 mark could recruit DNMT3A/B to establish 
DNA methylation. 

SETD2 knock-out mouse

In mice, SETD2-/- knockout is embryonic lethal 
in E10.5 to E11.5 due to defects in angiogenesis in the 
yolk sac and placenta [84]. Expression profiling of 
SETD2-/- and wild-type yolk sacs revealed significantly 
altered expression levels of genes involved in vascular 
remodeling. Both SETD2-/- embryonic bodies derived 
from embryonic stem cells and from cultured human 
endothelial cells treated with siRNAs-directed against 
SETD2 showed defects in cell migration and invasion 
[84, 85]. Thus, SETD2 appears to be crucial for a proper 
embryonic development although many cancer cells 
appear to function well without SETD2. In the literature, 
no clues can be found of heterozygous SETD2 knockout 
mice being predisposed to any kind of disease or cancer.

SETD2 IN DISEASE

Luscan et al [86] identified a missense and a 
nonsense SETD2 mutation in 2 out of 11 patients with 
Sotos syndrome, an overgrowth syndrome first described 
by Sotos et al [87]. It is unknown if these mutations were 
present in the germline and there is no direct functional 
evidence that links these mutations to SOTOS. However, 
it is remarkable that the gene most frequently mutated 
in SOTOS is the PWWP-domain-containing Nuclear 
Receptor Binding SET Domain Protein 1 (NSD1, also 
known as KMT3B) gene [88] responsible for mono- and 

di-methylation of H3K36 [30, 89]. We are not aware of 
any reports that link SETD2 germline mutations to an 
inherited syndrome in humans. 

SETD2 IN CANCER

The first report on SETD2 mutations in cancer dates 
from 2010 when Dalgliesh et al identified inactivation 
mutations in ccRCC [90]. At the same time, using a 
“Gene Identification by Nonsense-mediated mRNA 
decay Inhibition (GINI)” strategy, our group identified 
inactivating SETD2 mutations in 5 out of 10 ccRCC-
derived cell lines [91]. All cell lines showed copy number 
loss for most of the short arm of chromosome 3, indicating 
complete functional loss of SETD2 in these cell lines. 
Subsequent targeted sequencing of the SETD2 coding 
regions revealed SETD2 mutations in 2 out of 10 primary 
ccRCC tumors [92]. This bi-allelic inactivation of SETD2 
was the first clue that the gene might be a tumor suppressor 
gene. Two large cohort studies revealed an overall 
frequency of SETD2 mutations of approximately 11% in 
ccRCC [93, 94]. The fraction of truncating mutations in 
ccRCC was more than 50% in the study of Hakimi et al 
[95] and 57% in COSMIC, which is significantly higher 
than the fraction of truncating mutations in non-ccRCC 
tumors (32%, COSMIC). Still, whole-exome sequencing 
studies did reveal somatic SETD2 mutations in various 
types of cancer (Table 2), and this can be seen as an 
indication that SETD2 inactivation plays a role in the 
development of other tumors, albeit with low frequencies 
in most of them (COSMIC [96], Tumorportal [97] and 
cBIOPortal [98, 99], accessed in January 2016). It should 
be noted that in many studies it is not clear if the mutation 
resulted in a bi-allelic inactivation of SETD2. Moreover, 
the majority of somatic SETD2 mutations were missense 
mutations for which the functional consequences are often 
unclear (Table 2). This is illustrated by the study of Zhu 
et al [100] of 241 cases of leukemia (134x acute myeloid 
leukemia (AML) and 107x acute lymphcytic leukemia 
(ALL)) in which only 8 of the 19 somatic SETD2 
mutations identified in 15 patients were truncating. Bi-
allelic mutations were detected in only 4 patients. It cannot 
be excluded that in ALL, and possibly in other tumors as 
well, SETD2 haploinsufficiency does lead to a disease 
phenotype. SETD2 mutations appeared to be most frequent 
in leukemias that carried a MLL gene rearrangement [100]. 

In ccRCC, SETD2 is ranked in the top-5 most 
commonly mutated genes (COSMIC, rank 4), indicating 
its specific role in this tumor type. In Tumorportal, SETD2 
mutations are indicated as “highly significant” in ccRCC 
and glioblastoma multiform and indicated as “near 
significant” in bladder cancer. In all cancers combined, 
there is a slight clustering of SETD2 missense mutations 
in an approximately 200 amino acid segment (p.M1468 up 
to p.Q1668) that overlaps with the SET domain (Figure 2). 
The same region is relatively devoid of missense variants 
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in the normal population (ExAC database, http://exac.
broadinstitute.org, accessed January 2016, and Figure 2), 
indicating that missense mutations in this domain might 
be more often damaging. SETD2 nonsense mutations 
leading to loss-of-function can be located throughout the 
entire gene (Figure 2). Further studies on the potential 
functional consequences of SETD2 missense mutations 
are required to establish their role in tumor development 
and/or progression. 

Pena-Llopis et al [101] collected data on 924 
primary ccRCC of which 300 cases had a PBRM1 
mutation and 66 cases had a SETD2 mutation, while 33 
cases had a mutation in both genes. This number was 
shown to be significantly higher than the expected number 
of cases with mutations in both genes (n = 21, Fisher exact 
test, p = 0.003). This suggests that mutations of PBMR1 
and SETD2 may have a synergistic effect in ccRCC, 
possibly by disrupting different pathways. Moreover, 
the Cancer Genome Atlas database (TCGA) reveals co-
mutation of PBRM1 and SETD2 in multiple tumors despite 
the low mutation frequency of both genes in these cancers. 
Thus, having both SETD2 and PBRM1 mutations might 
strengthen their oncogenic potential, and the underlying 

mechanism deserves exploration. Sato et al [94] found 
that SETD2 mutations predominantly occurred in tumors 
with pre-existing VHL mutations, again indicating a role 
in tumor progression. However, in other studies SETD2 
mutations were also identified in ccRCC cases with wild 
type VHL [95, 102].

The high frequency of inactivating SETD2 mutations 
in ccRCC points to a tumor-suppressor-like function 
of this gene. Additional proof for a tumor suppressor 
role of SETD2 came from Sleeping Beauty transposon 
experiments. This approach is based on the assumption 
that commonly observed transposon insertion sites 
can harbor tumor-driver genes. These studies revealed 
transposon integration sites in SETD2 in various tumors 
such as leukemia’s [103] and colorectal cancer [104], 
albeit at a low frequency. 

Correlation with clinical data

Al Sarakbi et al [105] found a negative association 
of SETD2 expression levels with increasing tumor stage 
in breast cancers. In gliomas, SETD2 mutations were 

Figure 2: Schematic representation of SETD2 with the location of functional domains and nonsynonymous mutations 
and variants. The location of nonsynonymous mutations was obtained from ExAC (Germline variants in ~120000 alleles; January 2016) 
and COSMIC (somatic variants in 23,249 cases; January 2016). Intronic regions and 3’- and 5’-untranslated regions are not shown. Red, 
position of inactivating variants; Blue, position of missense variants. For the COSMIC data, the height of the bar is relative to the number 
of mutations. For the ExAC data, the height of the bars indicate 1, 2-5, 6-10, or >10 variants per triplet.
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predominantly seen in high-grade (16 out of 178 cases) 
but not in low-grade cases (0 out of 45 cases) [106]. 
ccRCC patients with somatic SETD2 mutations had a 
higher relapse rate compared to cases with wild-type 
SETD2, but no effect was observed on overall survival. In 
a study including 185 ccRCC patients, SETD2 mutations 
were significantly associated with advanced tumor 
stage (P = 0.02) [95]. In the TCGA, SETD2 mutations 
were found to be associated with worse cancer-specific 
survival (P = 0.036; HR 1.68; 95% CI 1.04-2.73), and 
the presence of SETD2 mutations was a predictor of 
ccRCC recurrence in an univariant analysis (P = 0.002; 
HR 2.5; 95% CI 1.38-4.5) [107]. Further evidence 
supporting a role of SETD2 inactivation in progression 
of tumors comes from a recent study performed by Ho 
et al [108]. Using immuno-histochemical approaches, Ho 
et al (108) observed a decrease in H3K36me3 levels in 
metastatic ccRCC as compared to primary ccRCC. Either 
acquired SETD2 mutations or alternate mechanisms may 
be the cause of this, suggesting that a decreased level 
of H3K36me3 is correlated with progression. They also 
noted that loss of one allele of SETD2, a common event 
due to the widespread copy number loss of the short arm 
of chromosome 3 in ccRCC, did not result in a reduced 
level of H3K36me3. Thus, SETD2 haploinsufficiency does 
not cause a H3K36me3-related phenotype in ccRCC. In 
addition, intra-tumor heterogeneity studies have indicated 
that SETD2-inactivation may be a late event in cancer 
development. Gerlinger et al [109] carried out a genomic 
analysis of multiple regions of four primary ccRCC tumors 
and detected intratumor heterogeneity in every case. Using 
whole exome sequencing and H3K36me3-staining of 
tissue sections, they identified different SETD2 mutations 
in different regions of the same primary tumor in three 
cases. This suggested that loss of SETD2 can be a late 

event that provides a selective advantage to tumor cells 
[109]. Lentiviral-mediated knockdown of SETD2 in pre-
leukemic cells carrying a MLL fusion-gene increased both 
the colony-forming capacity and the growth rate of these 
cells [100]. This indicates that loss of functional SETD2 
facilitates initiation as well as progression of leukemias. 
Thus, it appears that SETD2-inactivation may function 
not only in driving the development of tumors, but also in 
promoting progression of the disease.

SETD2 functional studies in cancer

Alternative splicing is considered as a major impetus 
driving proteome diversity and promoting progression of 
cancer [110]. SETD2-mutated ccRCC tumors showed an 
altered chromatin accessibility in the H3K36me3 marked 
regions, which led to widespread defects in transcript 
processing, including intron retention, exon utilization 
and different transcriptional start and stop site usage, 
especially in highly expressed genes [111]. A specific set 
of transcripts showed an increased retention of introns in 
H3K36me3-deficient tumors, and several of the affected 
genes, including PTEN, TP53, ATR, RAD50, POLN, 
XRCC1, CCNB1, and CCND3, are important in tumor 
development. Since intron retention could lead to loss 
of function of the protein product, SETD2-inactivation 
will probably also have an impact on the functionality of 
these genes. Additionally, in the study of Ho et al [108], 
decreased levels of H3K36me3 in ccRCC, most likely due 
to SETD2-inactivating mutations, resulted in alternative 
exon usage for a selection of genes [108]. Li et al [112] 
carried out a detailed study on the splicing of CDH1 in 
gastric cancer cell lines in comparison to the human gastric 
mucosal epithelial cell line GES-1. In all samples, the wild 

Figure 3: Regulation of SETD2 expression. The long non-coding RNA HOTAIR regulates SETD2 expression at the transcriptional 
level by competitively blocking loading of CREB-P300-RNA Pol II complex to the SETD2 promoter. MicroRNA-106-5p (miR-106-5p) 
regulates SETD2 expression at the translational level by binding to the 3’-UTR of the SETD2 mRNA transcript.
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type product and a transcript that lacks part of exon 8 were 
identified. A higher level of H3K36me3 appeared to favor 
the use of the splice donor site within exon 8. Attempts to 
influence the ratio between the two transcript variants were 
most successful using siRNA directed against SETD2 and, 
to a lesser extent, using an HDAC inhibitor. 

HR repair and DNA MMR defects have been 
observed in SETD2-inactivated tumor cell lines, although 
the repair machineries themselves are not abolished in 
these cells [62, 67]. The SETD2-deficient ccRCC-derived 
cell line UOK143 showed insufficient MutSα-mediated 
DNA MMR in S phase. In contrast, in the SETD2-
proficient ccRCC cell line UOK12, abundant MSH6 foci 
were formed during S phase and most of those loci co-
localized with the H3K36me3 signal. SETD2-inactivated 
ccRCC cell lines RCC-MF and RCC-FG2 showed defects 
in DSB repair [68]. These studies indicated that SETD2 
is important to maintain the genomic integrity in ccRCC. 

Additional factors modulating H3K36me3 levels

When examining several databases, it becomes clear 
that SETD2 is ubiquitously expressed in most if not all 
tissues. This is not surprising given its function as the 
sole gene responsible for the trimethylation of H3K36. 
However, two factors have been identified in cancer-
related studies that can modulate the level of SETD2 in 
cancer cells, and may also do so in non-cancerous cells 
(Figure 3). A recent study on liver cancer demonstrated a 
negative correlation between expression of SETD2 and the 
HOX transcript antisense RNA (HOTAIR) [116]. HOTAIR 
expression has been associated with several cancers 
and is shown to be an oncogenic long noncoding RNA 
[117]. HOTAIR suppressed the transcription of SETD2, 
and reduced the level of H3K36me3. Thus, HOTAIR 
overexpression is linked to various cellular processes 
mediated by H3K36me3 readers. 

Xiang et al [118] showed that miR-106b-5p could 
bind to, and inhibit translation of, the SETD2 mRNA 
transcript in ccRCC. SETD2 levels increased by inhibiting 
miR-106b-5p and this resulted in suppression of cell 
proliferation and a G0/G1 cell cycle arrest. 

A number of genes other than SETD2 can influence 
H3K36me3 levels. KDM4A, -B and -C are known to 
demethylate H3k36me3 [113]. Overexpression of these 
genes, which is a relative common event in various types 
of cancer [114], may thus interfere with all processes 
that involve H3K36me3 readers. As an example, it was 
recently shown that an enhanced expression of KDM4A-C 
promotes genomic instability [115]. By demethylating 
H3K36me3 the recruitment of MSH6 is prevented.

EMERGING THERAPEUTIC 
OPPORTUNITIES

Now that it is evident that SETD2-inactivation 
can be an important factor in tumor development and 
progression, especially in ccRCC, understanding the 
SETD2-inactivation-related pathways may offer new 
targets for therapy. The Genomics of Drug Sensitivity in 
Cancer database [119] lists four chemical compounds with 
a selective inhibitory capacity for SETD2-/- cell lines. 
Two of these components target P13Kbeta. Feng et al 
[120] further analyzed the effects of AZD6482 on SETD2-
/- ccRCC cell lines and showed that tumor cells were 
selectively inhibited. This represents the first indication 
that novel compounds targeting SETD2-/- tumors might 
become feasible treatment for ccRCC patients. In recent 
years many studies have focused on the ability of small 
molecules to target specific histone modifications, which 
could eventually be used in targeted therapies. A recent 
study shows that the combination of WEE1-inactivation 
by the AZD1775 inhibitor and H3K36me3-deficiency 
is lethal for cultured human cells [121]. These results 
were then validated in xenograft models of two tumor-
derived SETD2-/- cell lines. The underlying mechanism 
appears to be inhibition of the replication process. These 
recent developments may open the doors that allow for 
the development of targeted therapies for H3K36me3-
deficient tumors in combination with WEE1 inhibitors. 
The WEE1 inhibitor is currently being tested in several 
phase II clinical trials (http://www.clinicaltrials.gov).

CONCLUDING REMARKS

SETD2 is responsible for the trimethylation of 
H3K36 in the gene body of actively transcribed genes and 
its inactivation interferes with the function of readers of 
this specific histone modification. The role of H3K36me3 
on specific cellular functions is becoming more and 
more clear. Loss of one allele of SETD2, most likely a 
common event in many tumors due to widespread and 
frequent 3p copy number loss, may not be enough to 
cause a significant change in H3K36me3. On the other 
hand, biallelic inactivation of SETD2 is not the only 
mechanism that may cause loss of H3K36me3. Loss of 
SETD2 may also cause regional genomic instability, RNA 
processing defects and intragenic transcription initiations. 
Both genomic instability and alternative splicing are 
known as hallmarks of cancer. The former is a key force 
in carcinogenesis. The latter is an important mechanism 
for driving proteome diversity, which contributes to 
cancer development. In combination with the presence of 
SETD2-inactivating mutations in a substantial proportion 
of ccRCC, this clearly demonstrates SETD2’s role as a 
suppressor of both tumor initiation and progression. 

Our knowledge on SETD2-regulated signaling 
pathways is quite limited, especially in the context of 
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SETD2 binding proteins. Recent studies have indicated 
that SETD2 may interact with multiple proteins [122-
124]. The challenge will be to unravel novel SETD2 
functionalities that are independent of its function as 
trimethylator of H3K36. Conditional, and/or tissue-
specific, SETD2 knockout mice may be of help to identify 
the crucial pathways that are affected upon inactivation of 
SETD2. Loss of SETD2 appears to play an essential role 
in a substantial subset of ccRCC. However, the specific 
effect of SETD2 inactivation on ccRCC precursor cells, 
kidney primary tubular epithelial cells, is still unknown. 
As SETD2 mutations are also seen in other cancer types, 
understanding the role of SETD2 in ccRCC will contribute 
to our understanding of these tumors. 
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