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The rapid development of whole-genome mapping meth-
ods such as Hi-C1 for probing the 3D genome organization 
inside the nucleus has revealed multiscale higher-order chro-

matin structures2, including A/B compartments1, more refined 
nuclear compartmentalization3–5, topologically associating domains 
(TADs)6,7 and chromatin loops3. These 3D genome features in dif-
ferent scales are interconnected with vital genome functions, such 
as gene transcription and DNA replication8,9, yet the variation of 
3D genome structures and its functional implication in single cells 
remain mostly unclear10. The emerging scHi-C technologies have 
enabled genomic mapping of 3D chromatin structures in individual 
cells11–16 and, more recently, joint profiling of chromosome confor-
mation with other epigenomic features17,18. These exciting scHi-C 
assays have the potential to comprehensively reveal fundamental 
genome structure and function connections at single-cell resolution 
in a wide range of biological contexts.

However, computational methods that can make full use of 
the sparse scHi-C data to analyze the cell-to-cell variability of 3D 
genome features are substantially lacking. To account for the sparse-
ness of scHi-C data, methods have been developed for embedding 
the datasets19,20 and the imputation of the contact maps21. However, 
the current state-of-the-art imputation methods based on ‘ran-
dom walk with restart’, such as scHiCluster21, have much room for 
improvement for a more reliable single-cell 3D genome analysis. 
Current imputation methods also require storage and calculation 
on dense matrices with the size of the contact maps in memory, 
which is impractical when analyzing scHi-C data at relatively 
high resolutions. It also remains unclear how to reliably compare 
TAD-like domain boundaries and A/B compartments across single 
cells to analyze their cell-to-cell variability and functional connec-
tions. Therefore, new algorithms are needed to fill these gaps.

Here we report Higashi, a new computational method for mul-
tiscale and integrative single-cell Hi-C analysis using hypergraph 
representation learning. Using the embeddings and the imputed 
scHi-C contact maps produced by Higashi, we identified cell-to-cell 
variability of A/B compartment scores and TAD-like domain 
boundaries that are functionally important. Application to a recent 
scHi-C dataset of human prefrontal cortex demonstrated the unique 

ability of Higashi to reveal cell-type-specific 3D genome features in 
complex tissues. As a new and the most systematic method to date, 
Higashi enables improved analysis of scHi-C data with the potential 
to shed new light on the dynamics of 3D genome structures and 
their functional implications in different biological processes.

Results
Overview of Higashi. The key algorithmic design of Higashi is to 
transform the scHi-C data into a hypergraph (Fig. 1a). Such trans-
formation preserves the single-cell resolution and the 3D genome 
features from the scHi-C contact maps. Specifically, the process 
of embedding the scHi-C data is now equivalent to learning node 
embeddings of the hypergraph, and imputing the scHi-C contact 
maps becomes predicting missing hyperedges within the hyper-
graph. In Higashi, we use our recently developed Hyper-SAGNN 
architecture22, which is a generic hypergraph representation learn-
ing framework, with substantial new development specifically for 
scHi-C analysis (Methods).

Higashi has five main components. (1) We represent the scHi-C 
dataset as a hypergraph, where each cell and each genomic bin are 
represented as cell node and genomic bin node, respectively. Each 
non-zero entry in the single-cell contact map is modeled as a hyper-
edge connecting the corresponding cell and the two genomic loci 
of that particular chromatin interaction (Fig. 1a). This formalism 
integrates embedding and data imputation for scHi-C. (2) We train 
a hypergraph neural network (NN) based on the constructed hyper-
graph (Supplementary Figs. 1 and 2). (3) We extract the embedding 
vectors of cell nodes from the trained hypergraph NN for down-
stream analysis. (4) We use the trained hypergraph NN to impute 
single-cell Hi-C contact maps with the flexibility to incorporate 
the latent correlations among cells to enhance overall imputation, 
enabling more detailed and reliable characterization of 3D genome 
features. (5) With several new computational strategies, we reliably 
compare A/B compartment scores and TAD-like domain bound-
aries across individual cells to facilitate the analysis of cell-to-cell 
variability of these large-scale 3D genome features and its implica-
tion in gene transcription. In addition, we developed a visualization 
tool to allow interactive navigation of the embedding vectors and 
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the imputed contact maps from Higashi to facilitate discovery. The 
details are described in the Methods.

Higashi embeddings reflect cell types and cellular states. We 
sought to demonstrate that Higashi effectively captures the variabil-
ity of 3D genome structures from the sparse scHi-C data with the 
embeddings. We first tested our method on three scHi-C datasets 
with multiple cell types or known cell state information at 1-Mb 
resolution. These datasets include the 4DN sci-Hi-C dataset20, the 
Ramani et al. dataset14 and the Nagano et al. dataset15 (see Methods 
for data processing and Supplementary Tables 1 and 2 for statistics 
of these datasets). After training, the Higashi embeddings are pro-
jected to a two-dimensional space with uniform manifold approxi-
mation and projection (UMAP)23 for visualization. We found that 
the Higashi embeddings exhibit clear patterns that correspond to the 
underlying cell types and cellular states (Supplementary Fig. 3a–c).

We then quantified the effectiveness of the embeddings by vari-
ous evaluation settings and made direct comparisons to three exist-
ing scHi-C embedding methods: HiCRep/MDS19, scHiCluster21 and 
LDA20 (Supplementary Note A.1). The quantitative results based 
on unsupervised evaluation suggest that the Higashi embeddings 
consistently outperform other methods (Fig. 1b). Extensive evalua-
tions under various settings show that the Higashi embeddings can 
consistently achieve the best performance on scHi-C datasets with 

either categorical cell types or continuous cell states under various 
evaluation settings (Supplementary Figs. 3d–f and 4). Although 
all results in this section are based on the embedding with dimen-
sion size 64, our sensitivity analysis on the embedding dimension 
shows that Higashi is more robust to the choice of dimension size 
(Supplementary Note A.10 and Supplementary Fig. 5a).

The emerging new technologies that jointly profile chromosome 
conformation and other epigenomic features have provided unique 
opportunities to directly analyze 3D genome structures and other 
modalities at single-cell resolution17,18. Higashi has the versatility to 
incorporate the co-assayed signals into the hypergraph representa-
tion learning framework as compared to separate analysis of two 
modalities, thereby taking full advantage of the co-assayed data 
(Methods). We applied Higashi to a recently generated co-assayed 
dataset called single-nucleus methyl-3C sequencing (sn-m3C-seq) 
that jointly profiles Hi-C and DNA methylation in individual 
human prefrontal cortex cells17. We found that the Higashi embed-
dings trained only on scHi-C (referred to as ‘Higashi (hic)’) can 
already resolve complex cell types in this dataset (Figs. 1c and 4a,b; 
detailed results will be discussed in a later section). When using 
Higashi to jointly model both signals (the embeddings referred to 
as ‘Higashi (joint)’), it reaches the overall best performance as com-
pared to the embeddings based on only one modality (Fig. 1c and 
Supplementary Fig. 6; see Supplementary Note A.1 for details on 
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Fig. 1 | Overview of the Higashi framework for scHi-C analysis. a, The input scHi-C dataset is transformed into a hypergraph where each hyperedge 
connects one cell node and two bin nodes. A hypergraph NN is trained to capture high-order interaction patterns within the constructed hypergraph. The 
trained NN is able to generate embeddings for scHi-C data and impute the sparse scHi-C contact maps. The imputed contact maps and the embeddings 
allow detailed characterization of multiscale 3D genome features and also multi-omic integrative analysis. b, Quantitative evaluation of Higashi on the three 
public scHi-C datasets by comparing to HiCRep/MDS19, scHiCluster21 and LDA20. The performances are measured by Adjusted Rand Index (ARI) and also 
averaged circular ROC (ACROC) scores from the unsupervised cell type identification tasks (see also Supplementary Fig. 3). c, Quantitative evaluation 
of different embeddings of the sn-m3C-seq data17 using Micro-F1, Macro-F1 and ARI scores. The embeddings are generated through different embedding 
methods on scHi-C, the Higashi joint modeling of scHi-C and CG methylation profile (mCG) and the Scanorama35 embeddings on mCG. Dimensions of 
different embedding methods are kept the same for fair comparisons. scHi-C is binned to 1-Mb resolution, whereas mCG is generated at 100-Kb resolution. 
d, UMAP visualization of the Higashi embeddings of the joint modeling of both chromatin conformation and methylation of the sn-m3C-seq data17. Cell 
type abbreviations are in the legend (consistent with ref. 17): Astro, astrocyte; Endo, endothelial cell; L2/3, L4, L5 and L6, excitatory neuron subtypes; MG, 
microglia; Ndnf, Vip, Sst and Pvalb, inhibitory subtypes; NN1, non-neuronal cell; ODC, oligodendrocyte; OPC, oligodendrocyte progenitor cell.
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embedding generation). Higashi (joint) shows clearer patterns in 
the UMAP with cells being aggregated according to their cell types 
(Fig. 1d). Note that, here, the co-assayed methylation profiles are 
not part of the input to the NN but serve as the targets to approxi-
mate (Methods).

Taken together, these results demonstrate that the Higashi 
embeddings effectively capture the cell-to-cell variability of 3D 
genome structures based on scHi-C data to reflect the underlying 
cellular states. In addition, the unique capability of Higashi for the 
joint modeling of both scHi-C and methylation profiles further 
enhances the scHi-C embeddings.

Higashi robustly imputes scHi-C contact maps. In addition to 
dimension reduction of scHi-C data for cell type identification, 
Higashi can also impute sparse scHi-C contact maps. Here, we 
sought to demonstrate the imputation accuracy with several evalu-
ations. For comparisons, we included the imputed results from 
scHiCluster. Note that scHiCluster represents each scHi-C contact 
map as an individual graph, whereas Higashi represents the whole 
scHi-C dataset as a hypergraph, allowing imputation to be poten-
tially coordinated across different cells. Specifically, in Higashi, 
when imputing the contact map of cell i, its k-nearest neighbors in 
the embedding space would contribute to the imputation by taking 
advantage of their latent correlations (Methods). To demonstrate 
the advantages of this design employed in Higashi, we included 
the imputed results from Higashi with k as 0 and 4 (referred to as 
‘Higashi(0)’ and ‘Higashi(4)’, respectively). We performed sensi-
tivity analysis on the hyperparameter k and showed that Higashi 
is highly robust to the choice of k (Supplementary Note A.10 and 
Supplementary Fig. 5b).

We developed a simulation evaluation method to make use 
of the multiplexed 3D genome imaging data, which provides 
high-resolution physical views of 3D organization of genomic 
loci in individual cells24. Specifically, we turned the imaging data 

of a 2.5-Mb region on chr21 from 11,631 cells at 30-Kb resolu-
tion into scHi-C contact maps with various simulation coverage 
(Supplementary Note A.4 and Supplementary Fig. 7). We found that 
Higashi(0)—that is, no information sharing among different cells—
can already consistently outperform scHiCluster. In addition, we 
found that Higashi(4) improves the imputation most significantly 
(30–43% improvement on the median similarities across multiple 
metrics on the dataset with the lowest coverage). To illustrate why 
using neighboring cells in the embedding space improves imputa-
tion, we show a typical example from the simulated data with contact 
maps before and after imputation (Fig. 2 and Supplementary Fig. 8). 
Consistent with the quantitative evaluation, Higashi(4) shows the 
clearest patterns and identifies domain boundaries across all cov-
erage (Fig. 2 and Supplementary Fig. 8). The neighboring cells in 
the embedding space that contribute to the imputation indeed have 
similar 3D chromatin interactions compared to the selected cell, 
whereas the farthest cells do not. We carried out a similar set of 
evaluation using the more recent multiplexed imaging data of 3D 
genome structure25 (3,029 simulated contact maps of chr2 at 1-Mb 
resolution; see the statistics of scHi-C datasets that we used as ref-
erence for the simulation coverage in Supplementary Table 3) and 
reached the same conclusion of Higashi’s clear advantage (22–50% 
improvement on the median similarities across multiple metrics on 
the dataset with the lowest coverage; Supplementary Figs. 5c and 9).

We performed additional evaluation via downsampling the exist-
ing scHi-C datasets with relatively higher coverage (Supplementary 
Note A.4). We used the WTC-11 scHi-C dataset (personal communi-
cation with Bing Ren) of chr1 at 1-Mb resolution and downsampled 
the sequencing reads of each cell at different rates (Supplementary 
Note A.4 and Supplementary Tables 1 and 4). We again observed 
clear advantages of Higashi for imputation, with the strongest per-
formance achieved by Higashi(4) (consistent advantage with up to 
89% improvement on the distance stratified Spearman correlation; 
Supplementary Fig. 10).
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We further evaluated Higashi by (1) comparing the Higashi 
imputations to the imputation results of 3D structure modeling 
under different coverage and (2) comparing the pooled single-cell 
contact maps imputed by Higashi to the true bulk Hi-C data 
(Supplementary Notes A.11 and A.12 and Supplementary Figs. 11 
and 12). These results again confirmed the robustness and advan-
tages of the Higashi imputation.

Together, these evaluations demonstrate that Higashi achieves 
much improved imputation of scHi-C contact maps robustly. The 
performance is further enhanced by the unique mechanism of 
sharing information among neighboring cells in the embedding 
space. The improved imputation enables more reliable analysis of 
3D genome structural features of each individual cell with higher 
accuracy.

Higashi identifies compartmentalization variability. Next, we 
explored how the enhanced contact maps produced by Higashi 
facilitate multiscale 3D genome analysis at single-cell resolution. 
A/B compartments reflect large-scale chromosome spatial segrega-
tion with distinct connections to genome function1. To date, little 
progress has been made for systematic A/B compartment annota-
tion using scHi-C data, primarily because of the data sparseness. 
Here, we applied Higashi to impute the WTC-11 scHi-C data 
at 50-Kb resolution (see examples of the imputation results in 
Supplementary Fig. 13). We designed a method to calculate con-
tinuous compartment scores such that the scores are directly com-
parable across the cell population and reflect detailed cell-to-cell 
variation (Supplementary Note A.5).

Figure 3a shows the merged correlation matrices (Pearson cor-
relation of the merged contact maps) before and after Higashi impu-
tation, as well as the compartment scores from the bulk Hi-C, the 
compartment scores from the pooled scHi-C and the single-cell 
compartment scores of chr21. After imputation, the merged scHi-C 
correlation matrix has much clearer checkerboard patterns that 
correspond to A/B compartments. The calculated single-cell com-
partment scores are overall consistent with the bulk compartment 
scores (Supplementary Fig. 14) while showing cell-to-cell variabil-
ity. Note that we identified one cluster of cells in the heat map that 
has distinct patterns and is likely near the mitosis stage (marked 
with ‘*’ in the bottom panel of Fig. 3a).

We explored the connection between the variability of compart-
ment scores across the cell population and the transcriptional activ-
ity in different cells. We compared the compartment scores with the 
single-cell RNA sequencing (scRNA-seq) from WTC-11 (ref. 26). 
For this analysis, the cells that are likely near the mitosis stage were 
removed. For each gene, the transcriptional variability was calculated 
using the coefficient of variation (CV) (Supplementary Note A.6). 
We quantified the compartment variability as the standard devia-
tion of the single-cell compartment scores and further classified the 
expressed genes as compartment variable or stable with a cutoff 
of 50% based on the quantile. Compared with the transcriptional 
variability within these two groups (Fig. 3b), we observed that the 
genes in more variable compartments have higher transcriptional 
variability (P < 0.001). We then used the 50-Mb window resolution 
to assess if such structure–function variability correlation can also 
be observed at a finer scale. We used a 50-Mb sliding window with 
a 1-Mb step size on each chromosome and calculated the log differ-
ence of the median transcriptional variability between the variable 
and stable compartment regions within this window. As shown in 
Fig. 3c, among all windows, 71% of them follow the trend that genes 
in compartment variable regions have higher transcriptional vari-
ability. As a comparison, ~76% of the genomic windows exhibit that 
the bulk compartment A correlates with higher expression levels1 
(Supplementary Fig. 15d). In addition, we made a step further to 
increase the resolution to individual genes. We classified genes as 
locally variable or stable by identifying the local minima/maxima of 

the transcriptional variability. We found that, for the genes that are 
locally variable in terms of transcription, their compartment vari-
ability scores also tend to be the local maximum (Fig. 3d).

To confirm the robustness of these observations, in addition to 
using CV to measure transcriptional variability, we used another 
metric based on a variance stabilizing algorithm (Supplementary 
Note A.6) and reached similar conclusions (Supplementary Fig. 
15a–c). These results further demonstrate the reliability of Higashi 
imputations, identifying cell-to-cell variability of compartment 
scores that are also functionally correlated.

Higashi unveils single-cell TAD-like domain boundaries. Recent 
work based on multiplexed STORM imaging of chromatin confor-
mation demonstrated the existence and cell-to-cell variability of 
TAD-like structures in single cells24. However, the identification of 
TAD-like domains remains extremely challenging for sparse scHi-C 
data. We developed an approach to identify TAD-like domain 
boundary variability from single cells based on the Higashi imputa-
tions (Supplementary Notes A.7 and A.8 and Supplementary Fig. 
16). The analysis was conducted on the WTC-11 scHi-C dataset at 
50-Kb resolution.

We calculated single-cell insulation scores in which the local 
minima correspond to TAD-like domain boundaries27 (Fig. 3e). 
As compared to the single-cell insulation scores calculated from 
the raw scHi-C, the single-cell insulation scores based on the 
imputed contact maps show more consistent patterns with the TAD 
boundaries identified at the population level and allow more reli-
able TAD-like domain boundary calling at single-cell resolution 
(Supplementary Fig. 17). We again observed a cluster of cells likely 
near the mitosis stage showing unidentifiable domain boundaries 
(marked with ‘*’ in the bottom panel of Fig. 3e). We also observed 
that the local minima of the single-cell insulation scores often cen-
ter around the domain boundaries observed in the merged imputed 
scHi-C, whereas the exact locations of the single-cell boundaries 
vary across the cell population (Fig. 3e). The dynamics of the single-
cell domain boundaries have two main patterns: (1) present/absent 
across the population (marked with a yellow box in Fig. 3e) and (2) 
sliding along the genome (marked with an orange box in Fig. 3e). 
The first pattern reflects that a domain boundary does not occur in 
all cells. The second pattern manifests the shift of domain boundary 
along the genome, suggesting more gradual cell-to-cell variability. 
Comparison with scRNA-seq following the same approach used for 
single-cell compartment scores reached similar conclusions, that 
domain boundary variability is strongly correlated with transcrip-
tional variability at different scales (Supplementary Fig. 15e–j).

Next, we made direct comparisons of TAD-like domain bound-
aries (Supplementary Note A.8). As shown in Fig. 3f, where each 
dot corresponds to a single-cell domain boundary, we observed a 
negative correlation between the occurrence frequency of a domain 
boundary with its median single-cell insulation scores. This sug-
gests that the more stable domain boundaries (that is, higher occur-
rence frequency) from the cell population tend to be ‘stronger’ 
boundaries in single cells associated with lower insulation scores. 
We also found positive correlation between the occurrence fre-
quencies of domain boundaries and the number of CTCF binding 
peaks as well as the average CTCF peak intensity in the boundar-
ies (Fig. 3g, Supplementary Fig. 18 and Supplementary Note A.13). 
This result is consistent with the observation based on multiplexed  
STORM imaging24.

As an induced pluripotent stem cell (iPSC) type, WTC-11 can 
undergo cell differentiation. We identified differentially expressed 
genes (DEGs) from an scRNA-seq dataset of WTC-11 cells at five 
differentiation stages26 (Supplementary Note A.9). Using hyper-
geometric test, we found that DEGs are over-represented in genes 
located near more variable domain boundaries in WTC-11 (top 
50% of the insulation score standard deviation, P ≤ 7.9 × 10−8)  
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(Fig. 3h). In addition, we compared the variability of insulation 
scores between DEGs and non-DEGs and found that DEGs have 
markedly higher standard deviation (one-sided t-test, P < 0.001) 

(Fig. 3i). This suggests that the cell-to-cell variability of domain 
boundaries in WTC-11 might indicate functional implications in 
cell differentiation.

2.5
–2.5

* 6

2

–2

–6

1.0

0.8

0.6

0.4

0.2

0.0

M
er

ge
d 

im
pu

te
d 

sc
H

i-C
C

el
ls

Single-cell PC1 values

PC1 values (bulk Hi-C)

2.5
–2.5

PC1 values (pooled scHi-C)

Merged raw scHi-C chr21: 13.0–46.7 Mb

–20 –10 0

Distance to TSS (# of bins)

10 20

0.52

0.48

0.44

0.40

P
C

1 
s.

d.

Stable genes

Random controlVariable genes

Var
iab

le

Sta
ble

 T
ra

ns
cr

ip
tio

n 
ac

tiv
ity

va
ria

bi
lit

y

300

200

100

0

***

Regions

Variable vs. stable

71%

29%

4

2

0

–2

lo
g 2

 d
iff

er
en

ce
 in

tr
an

sc
rip

tio
n 

ac
tiv

ity
 v

ar
ia

bi
lit

y 

I

Con
tro

l II III

0

1

2

3

4

5

N
um

be
r 

of
 C

T
C

F
 p

ea
ks

I

Con
tro

l II III

10

15

20

25

30

35

40

A
ve

ra
ge

 p
ea

k 
in

te
ns

ity

0.0

0.00

0.02

0.04

0.06

0.08

Group I Group II Group III

0.2 0.4 0.6

Occurrence frequency

In
su

la
tio

n 
sc

or
e

0.8 1.0

0.20

0.15

0.10

0.05

1.0

0.0
Single-cell insulation scores

C
el

ls

Merged imputed scHi-C

chr10:2,500,000–12,500,000

*

a

e

b c d

f

h i

g

In
su

la
tio

n 
sc

or
e 

s.
d.

4.0

1e-2
Day 2 vs day 0 Day 30 vs day 0

3.5

3.0

2.5

2.0

1.5

*** ***

Non-differentially 
expressed

Differentially 
expressed

Total:13,456 

P < 7.9 × 10–8

Differentially expressed genes

Genes near variable boundaries

4,350

2,222

3,005

Fig. 3 | Higashi enables detailed characterization of 3D genome features and their connections to gene transcription at single-cell resolution. a, 
Compartment score annotations for WTC-11 scHi-C data at 50-Kb resolution. The merged scHi-C correlation matrix of chr21 (before and after imputation), 
as well as the compartment scores called from the bulk Hi-C contact map, the pooled scHi-C contact map and each single-cell contact map, are shown. The 
cells that are likely near the mitosis stage are marked with ‘*’ in the single-cell PC1 heat map. b, Global comparisons of transcriptional variability on regions 
with variable and stable compartment annotations (*** indicates P < 1 × 10−3). n = 10,146 genes used for the comparison. There are 5,071 genes that have 
stable single-cell compartment scores, with average transcription activity variability equal to 77.4. There are 5,075 genes that have dynamic single-cell 
compartment scores, with average transcription activity variability equal to 86.0. The middle line is the median; the lower and upper lines correspond to the 
first and third quartiles; and the upper and lower whiskers extend to values no farther than 1.5× IQR. One-sided t-test, P = 1.34 × 10−7. c, log2 difference of 
transcriptional variability of genes with variable versus stable compartment annotations within an Mb-scale window. d, Visualization of standard deviation 
of compartment scores around genes with variable or stable transcriptional level. The data are presented as mean values ± 1.96 s.e.m. (95% confidence 
interval). In b–d, the transcriptional variability is quantified as the CV of the imputed scRNA-seq data. e, TAD-like domain boundary calling for WTC-11 
scHi-C at 50-Kb resolution. The merged scHi-C contact maps at chr10:2,500,000–12,500,000 and the calculated insulation scores are shown. The cells 
that are likely near the mitosis stage are marked with ‘*’ in the single-cell insulation score heat map. Regions that represent the present/absent dynamics of 
single-cell domain boundaries are marked with a yellow box. Regions that represent the sliding dynamics of single-cell domain boundaries are marked with 
an orange box. f, Scatter plot of the single-cell insulation scores versus the occurrence frequency in the cell population of shared domain boundaries. For 
each cell, only the insulation scores of presented shared boundaries are visualized—that is, each dot corresponds to a single-cell domain boundary. g, CTCF 
binding at domain boundaries from different occurrence frequency groups. For the left panel: n = 8,004 boundaries in total, including 1,577 in the control 
group, 2,137 in group I, 2,127 in group II and 2,163 in group III. For the right panel: n = 4,434 boundaries with at least one CTCF binding, including 639 in the 
control group, 895 in group I, 1,408 in group II and 1,592 in group III. In the box plot, the middle line is the median; the lower and upper lines correspond to 
the first and third quartiles; and the upper and lower whiskers extend to values no farther than 1.5× IQR. h,Venn diagram of the overlap between genes near 
the variable domain boundary in WTC-11 (light red) and DEGs during cell differentiation (light blue). Hypergeometric test (P ≤ 7.9 × 10−8). i, Comparison 
of cell-to-cell variability of insulation scores between DEGs and non-DEGs. The high variance of insulation scores of DEGs indicates that the DEGs are 
enriched near domain boundaries with higher variability (*** indicates P < 1 × 10−3). Day 2 versus day 0: n = 13,467 genes in total, including 3,205 DEGs and 
10,262 non-DEGs, with mean insulation score standard deviation equal to 2.83 × 10−2 and 2.74 × 10−2, respectively. One-sided t-test, P = 2.23 × 10−9. Day 30 
versus day 0: n = 13,467 genes in total, including 4,308 DEGs and 9,159 non-DEGs, with mean insulation score standard deviation equal to 2.80 × 10−2 and 
2.74 × 10−2, respectively. In the box plot, the middle line is the median; the lower and upper lines correspond to the first and third quartiles; and the upper 
and lower whiskers extend to values no farther than 1.5× IQR. One-sided t-test, P = 4.16 × 10−6. IQR, interquartile range; TSS, transcription start site.
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Taken together, by analyzing the TAD-like domain boundar-
ies across single cells enabled by Higashi, we identified a correla-
tion between domain boundary variability and gene regulation at 
single-cell resolution.

Single-cell 3D genome features in human prefrontal cortex. To 
demonstrate Higashi’s ability to analyze single-cell 3D genome 
structures for complex tissues, we applied it to the aforementioned 
sn-m3C-seq data from human prefrontal cortex17. In this section, 
we present results from the Higashi framework trained only by the 
chromatin conformation information in sn-m3C-seq at 100-kb 
resolution to evaluate its unique strength in analyzing scHi-C data.

We found that the Higashi embeddings (with scHi-C only) are 
able to resolve the differences among the neuron subtypes (separat-
ing Pvalb, Sst, Vip, Ndnf, L2/3 and L4–6) while maintaining clear 

separation with non-neuron cell types (Fig. 4a; embedding dimen-
sion = 128). This suggests that, analyzed with Higashi, scHi-C alone 
has sufficient information to distinguish complex neuron subtypes. 
In contrast, scHiCluster cannot clearly distinguish these neuron sub-
types using scHi-C (Fig. 5c in ref. 17). We further obtained refined 
cell subtype information from ref. 28, where the methylation pro-
files of the sn-m3c-seq dataset are jointly embedded with single-cell 
methylation profiles from snmC-seq, snmCT-seq and snmC2T-seq 
on human prefrontal cortex to annotate cell types, resulting in more 
detailed cell type labels on the sn-m3c-seq dataset. When visualiz-
ing only the neuron cells with UMAP and the refined cell type labels 
based on ref. 28 (Fig. 4b), we observed clearer separation among neu-
ron subtypes, especially for L2/3, L4, L5 and L6. We also observed 
smaller clusters of Sst and Ndnf subtypes (denoted as Sst-1/2 and 
Ndnf-1/2 in Fig. 4b). In addition, a recent approach has been  
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UMAP visualization of the Higashi embeddings using scHi-C only. b, UMAP visualization of the Higashi embeddings of the neuron subtypes in a. Cell type 
information is from ref. 28. Subtypes L2–4, Sst1/2 and Ndnf1/2 are only used in this subfigure. c, Hierarchical clustering based on the average single-cell 
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domain boundaries. The enrichment analysis and the corresponding P values are from GREAT, which uses bionomial tests. f, Pooled imputed contact maps, 
insulation scores and methylation profiles near the gene THBS2, which is in four of the top five most enriched GO terms with ODC-specific high expression. 
The light purple bar shows an ODC-specific TAD-like domain boundary. Cell type abbreviations are in the legend (consistent with ref. 17): Astro, astrocyte; 
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proposed to separate neuron subtypes on a dataset based on Dip-C 
with much higher coverage per cell29. However, we found that, for the 
sn-m3c-seq dataset, the method developed in ref. 29 cannot distin-
guish neuron subtypes (Supplementary Fig. 19 and Supplementary 
Note A.14), further confirming the advantages of Higashi.

Next, we sought to identify cell-type-specific 3D genome struc-
tures with the Higashi imputed contact maps. Here, the Higashi 
model was trained with the hyperparameter k = 4. During imputa-
tion, we also used the batch effects removal mechanism in Higashi 
because one of the three batches in the sn-m3c-seq dataset has 
smaller sequencing depths that could cause potential bias for the 
downstream analysis (Methods). When analyzing cell-type-specific 
3D genome features, we used the original cell type labels from ref. 17 
to make sure that each cluster has enough cells to reveal consistent 3D 
genome patterns. Our analysis identifies global connections among 
multiscale cell-type-specific genome structures (that is, single-cell 
A/B compartments and single-cell TAD-like domain boundaries) 
with the transcriptional activity of marker genes (Supplementary 
Note A.15 and Supplementary Figs. 20 and 21), further suggesting 
Higashi’s potential for annotating cell types from complex tissues 
based on scHi-C. We then specifically investigated the connec-
tion between TAD-like domain boundaries and individual marker 
genes. For instance, the single-cell insulation scores of the region 
surrounding the transcription start site of the marker gene GAD1 in 
inhibitory neuron subtypes reflect much stronger TAD-like domain 
boundaries (Fig. 4c). Note that such cell-type-specific patterns are 
obscured in the pooled population contact maps (Supplementary 
Fig. 22a, top). Although aggregating raw single-cell contact maps 
and the corresponding insulation scores by cell types can reveal 
similar patterns at the population level (Supplementary Fig. 23), 
our analysis shows that the single-cell insulation scores calculated 
based on Higashi imputed contact maps (with k = 0 or 4) have the 
power to separate complex cell types, whereas the single-cell insula-
tion scores based on raw contact maps cannot distinguish cell types 
robustly (Supplementary Fig. 24). The cell-type-specific domain 
boundary pattern is further manifested by comparison to the con-
tact maps and methylation profiles (Fig. 4d and Supplementary Fig. 
25; light purple bars indicate cell-type-specific domain boundar-
ies). In addition, we found that SULF1, which is a marker gene to 
distinguish subtypes L6 from the rest excitatory neuron subtypes 
(L2/3, L4 and L5), has a strong correlation with the surrounding 
cell-type-specific TAD-like domain boundaries and methylation 
profiles (Supplementary Figs. 22b and 26). Specifically, the TAD-like 
domain boundary is present in 93.2% of L6 cells but in only 65.3% 
of the rest of excitatory neuron subtypes. These results provide new 
insights into the marker gene regulation of human prefrontal cortex 
cell types and the connection between 3D genome structure and 
function.

We next asked whether the genes near cell-type-specific 
TAD-like domain boundaries identified by Higashi have distinct 
functional roles. We found that genes close to the oligodendro-
cyte (ODC)-specific domain boundaries (784 in total) are strongly 
enriched with synapse-related Gene Ontology (GO) terms as top 
hits (Fig. 4e; using the Genomic Regions Enrichment of Annotations 
Tool (GREAT)30), suggesting the functional role of ODC-specific 
domain boundaries in regulating synaptic functions31. To further 
analyze the connection between the ODC-specific domain bound-
aries and the regulation of the nearby genes, we investigated the 
gene THBS2, which appears in four of the top five GO term catego-
ries that we identified. THBS2 is known to be expressed in glial cells 
and is key to the regulation of synaptic functions32. The visualization 
of the pooled contact maps of the 4-Mb region surrounding THBS2 
shows that ODCs have a TAD-like domain boundary upstream of 
the transcription start site of THBS2 (Fig. 4f and Supplementary 
Fig. 27), which can be elucidated by single-cell insulation scores of 
this region (Supplementary Fig. 22c, top). Notably, the TAD-like 

domain boundary near THBS2 is obscured in the insulation score 
calculated from the population contact map (Supplementary Fig. 
22c). Note that THBS2 has cell-type-specific high expression in 
ODC (fold change of 8.6 compared to the population average)33. 
Therefore, the ODC-specific TAD-like domain boundaries might 
offer new perspectives for understanding the cell-type-specific gene 
regulation of THBS2.

Taken together, these results demonstrate the distinct abil-
ity and advantages of Higashi to effectively identify cell types and 
cell-type-specific 3D genome features in complex tissues using 
scHi-C data. This analysis shows the strong potential of Higashi in 
revealing cell-type-specific TAD-like domain boundaries, greatly 
facilitating the analysis of the roles of 3D genome structure in regu-
lating cell-type-specific gene function.

Discussion
In this work, we developed Higashi for multiscale and integrative 
scHi-C analysis. Our extensive evaluation demonstrated the advan-
tages of Higashi over existing methods for both embedding and 
imputation. Additionally, enabled by the improved data enhance-
ment of scHi-C contact maps, we developed methods in Higashi to 
systematically analyze variable multiscale 3D genome features (A/B 
compartment scores and TAD-like domain boundaries), revealing 
their implications in gene transcription. By applying to an scHi-C 
dataset from human prefrontal cortex, Higashi is able to identify 
complex cell types and reveal cell-type-specific TAD-like domain 
boundaries that have strong connections to cell-type-specific gene 
regulation.

The key algorithmic innovation of Higashi is the transforma-
tion of scHi-C data into a hypergraph, which has unique advantages 
compared to existing methods. First, this transformation preserves 
the single-cell precision and 3D genome features from scHi-C. 
Second, modeling the whole scHi-C datasets as a hypergraph 
instead of modeling each contact map as individual graphs allows 
information to be coordinated across cells to improve both embed-
ding and imputation by taking advantage of the latent correlations 
among cells. Third, although we mainly focused on scHi-C data, 
the hypergraph representation in Higashi is highly generalizable to 
other single-cell data types. As a proof of principle, we showed that 
Higashi can be extended to analyze co-assayed scHi-C data with 
methylation in an integrated manner, showing markedly improved 
performance compared to separate analysis of the two modalities.

There are several directions that Higashi can be further enhanced. 
As a data-driven method, despite the unique ability of using infor-
mation from neighboring cells in the embedding space, Higashi 
requires at least a moderate-size scHi-C dataset to achieve high per-
formance. Moreover, even though Higashi has clear advantages in 
imputing the scHi-C contact maps using hypergraph representation 
learning compared to existing methods, there is still much room 
for improvement regarding the imputation of long-range interac-
tions (≥10 Mb) due to their highly diverse nature in single-cell 
3D genome structures. Methods that can robustly impute these 
long-range interactions or even inter-chromosomal interactions 
are expected to further advance the understanding of single-cell 3D 
genome organization and its functional implication. In addition, to 
achieve more comprehensive delineation of 3D genome organiza-
tion at single-cell resolution, Higashi can be potentially extended to 
analyze single-cell assays of higher-order chromatin structures—for 
example, the recently developed scSPRITE34 that probes multiway 
chromatin interactions.
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Methods
scHi-C data and other genomic data processing. In this work, we used several 
publicly available single-cell Hi-C datasets. We refer to them as Ramani et al.14 
(Gene Expression Omnibus (GEO): GSE84920), Nagano et al.15 (GEO: GSE94489) 
and 4DN sci-Hi-C20 (4DN Data Portal: 4DNES4D5MWEZ, 4DNESUE2NSGS, 
4DNESIKGI39T, 4DNES1BK1RMQ and 4DNESTVIP977). We also used a 
new scHi-C dataset generated from the WTC-11 iPSC line (4DN Data Portal: 
4DNESF829JOW and 4DNESJQ4RXY5).

For all scHi-C datasets, we kept only the cells with more than 2,000 read pairs 
that have genomic span greater than 500 Kb. At a given resolution, we define 
the number of contacts per cell as the number of interaction pairs (read count) 
assigned to the non-diagonal entries of the intra-chromosomal contact maps. The 
Ramani et al. dataset and the 4DN sci-Hi-C dataset used single-cell combinatorial 
indexed Hi-C (sci-Hi-C).

After filtering, the Ramani et al. dataset contains 620 cells of four human cell 
types (GM12878, HAP1, HeLa and K562) with 7,800 median contacts per cell, 
whereas the 4DN sci-Hi-C dataset contains 6,388 cells of five human cell types 
(GM12878, H1ESC, HAP1, HFFc6 and IMR90) with 3,800 median contacts 
per cell. The Nagano et al. dataset used a different protocol with 1,171 cells 
and 56,800 median contacts per cell. The WTC-11 scHi-C dataset (188 cells in 
total) was generated using single-nucleus Hi-C with 144,800 median contacts 
per cell. The interaction pairs from the Nagano et al. and Ramani et al. datasets 
were downloaded from the corresponding GEO repository. The interaction 
pairs for WTC-11 were obtained through personal communication with Bing 
Ren. For 4DN sci-Hi-C, we downloaded the FASTQ files and processed them 
with the recommended processing pipeline (https://github.com/VRam142/
combinatorialHiC). The interaction pairs can be directly used as input for Higashi.

The co-assayed single-cell methylation and Hi-C dataset (sn-m3C-seq) 
was from ref. 17. We followed the same processing pipeline as sn-m3C-seq for 
processing the methylation signals. We obtained the 10-kb processed contact 
maps from ref. 17 and used them as input for Higashi. The corresponding cell type 
information was obtained from ref. 17 as well. The refined cell type information 
for the sn-m3c-seq dataset was from ref. 28, where the methylation profiles of the 
sn-m3c-seq dataset are jointly embedded with single-cell methylation profiles 
from snmC-seq, snmCT-seq and snmC2T-seq on human prefrontal cortex to 
annotate cell types. We then merged the small clusters with fewer than 30 cells in 
the sn-m3c-seq dataset for better visualization and more robust analysis. For all 
datasets, only intra-chromosomal contacts were used to make fair comparisons 
with other methods. In principle, Higashi can include inter-chromosomal 
interactions as well by adding the corresponding hyperedges to the model. 
However, the amount of inter-chromosomal contacts in scHi-C data is generally 
not sufficient for reliable imputation and analysis.

We also used other publicly accessible genomic datasets in this work. The bulk 
Hi-C of WTC-11 was obtained from the 4DN Data Portal (4DNESPDEZNWX and 
4DNESJ7S5NDJ; two clones were merged before calculating bulk compartment 
scores). The scRNA-seq of WTC-11 was from ref. 26. The details on calculating 
transcriptional variability based on scRNA-seq can be found in Supplementary 
Note A.6. We also analyzed the CTCF binding near the identified single-cell 
TAD-like domain boundaries in WTC-11 cells. We used the WTC-11 CTCF 
ChIA-PET data (4DN Data Portal: 4DNES8MZ76GP) and called peaks based on 
the singleton reads from the dataset following the ENCODE ChIP-seq peak calling 
pipeline36. Specifically, peaks were generated for individual replicates and merged 
by keeping only the reproducible peaks. The scRNA-seq of multiple cortical areas 
of the human brain was obtained from the Allen Brain map33,37.

Hypergraph NN architecture in Higashi. A hypergraph G is a generalization of 
a graph and can be formally defined as a pair of sets G = (V, E), where V = {vi} 
represents the set of nodes in the graph, and E = {ei = (v(i)1 , ..., v(i)k )} represents 
the set of hyperedges. For any hyperedge e ∈ E, it connects two or more nodes 
(∣e∣≥2). Both nodes or hyperedges can have attributes reflecting the associated 
properties, such as node type or the strength of a hyperedge. The hyperedge 
prediction problem aims to learn a function f that can predict the probability of a 
group of nodes (v1, v2, . . . , vk) forming a hyperedge or the attributes associated with 
the hyperedge. For simplicity, we refer to both cases as predicting the probabilities 
of forming a hyperedge.

The core part of Higashi is a hypergraph representation learning framework, 
extending our recently developed Hyper-SAGNN22 that models higher-order 
interaction patterns from the hypergraph constructed from the scHi-C data. The 
model aims to predict the value of an entry (that is, contact frequency) in an 
scHi-C contact map using the rest of the contact map as input. The model also 
has the option to use the contact maps from cells that share similar 3D genome 
structures (that is, close to each other in the embedding space) as auxiliary 
information for the prediction as well. This setting shares similarity with the 
self-supervised learning on graphs38 where a proportion of the graph is masked 
randomly, and the NN is trained to recover the masked part with the rest of the 
graphs. The overall structure of the hypergraph NN is illustrated in Supplementary 
Fig. 1. We use xi to represent the attributes of node vi. The input to the model 
is a triplet—that is, (x1, x2, x3)—consisting of attributes of one cell node and two 
genomic bin nodes. For simplicity, we do not differentiate between these two 

types of nodes in this section. Each node within a triplet passes through an NN, 
respectively, to produce (s1, s2, s3), where si = NN1(xi). The structure of NN1 used in 
this work is a position-wise feed-forward NN with one fully connected layer. By 
definition, each si remains the same for node vi independent to the given triplet and 
is, thus, called the ‘static embedding’, reflecting the general topological properties 
of a node in the given hypergraph. In addition, the triplet as a whole also passes 
through another transformation, leading to a new set of vectors (d1, d2, d3), where 
di = NN2(xi∣(x1, x2, x3)). The structure of NN2 will be discussed later. The definition 
of di depends on all the node features within this triplet that reflect the specific 
properties of a node vi in a particular hyperedge and is, thus, called the ‘dynamic 
embedding’.

Next, the model uses the difference between the static and dynamic 
embeddings to produce ŷi by passing the Hadamard power of di − si to a fully 
connected layer. Additional features, including the genomic distance between the 
bin pair, one hot encoded chromosome ID, batch ID when applicable and also the 
total read number per cell, are concatenated and sent to a multi-layer perceptron 
with output ŷext. All the output ŷi and ŷext are further aggregated to produce the 
final result ŷ—that is, the predicted probability for this triplet to be a hyperedge:

ŷ = ŷext +
3

∑

i=1
ŷi = ŷext +

3
∑

i=1
FC

[

(di − si)◦2
]

(1)

where FC is the fully connected layer.
In the following sections, we describe how the node attributes are generated, 

the structure of NN2, the model training and how we incorporate co-assayed 
signals into Higashi.

Node attribute generation in Higashi. As mentioned, the input to the hypergraph 
NN model is a triplet consisting of attributes of one cell node and two genomic bin 
nodes. For the bin nodes, we use the corresponding rows of the merged scHi-C 
contact maps as the attributes. For the cell nodes, we calculate a feature vector 
based on its scHi-C contact maps as its attributes. This process is as follows:

	1.	 Each contact map is normalized based on the total read count.
	2.	 Contact maps are flattened into one-dimensional vectors and concatenated 

across the cell population.
	3.	 (optional) Singular value decomposition is used to reduce dimensions for 

computational efficiency.
	4.	 The corresponding row in the feature matrix is used as the attributes for the 

corresponding cell.

For computational efficiency, we calculate the feature vectors for cell nodes in 
low-resolution scHi-C contact maps (such as 1 Mb or 500 Kb) when training 
Higashi for high-resolution imputation.

Cell-dependent graph NN for dynamic embeddings. Here, we introduce NN2 
(mentioned above) that transforms the attributes of a node given a node triplet to 
the corresponding dynamic embeddings. In the original Hyper-SAGNN, this was 
accomplished by a modified multi-head self-attention layer39. This self-attention 
layer functions as follows. Given a group of nodes (x1, x2, x3) and weight matrices 
WQ, WK, WV to be trained, the model first computes the attention coefficients that 
reflect the pairwise importance of nodes:

eij =
(

WT
Qxi

)T (
WT

Kxj
)

, ∀1 ≤ i, j ≤ 3, i ̸= j (2)

These coefficients then normalize eij by all possible j within the tuple through the 
softmax function. Finally, a weighted sum of the transformed features with an 
activation function is calculated:

αij =
exp(eij)

∑

1≤l≤k,l ̸=i exp(eil)
(3)

di = tanh





∑

1≤j≤k,j ̸=i
αijWT

Vxj



 (4)

However, the representation capacity of using self-attention layers to calculate 
dynamic embeddings is constrained by the embedding dimensions and the depth 
of self-attention layers, which would lead to high computational cost and increased 
training difficulty.

To increase the expressiveness of this NN for generating dynamic embeddings 
while maintaining small embedding dimensions and fewer layers, we developed a 
cell-dependent graph neural network (GNN)40 that transforms the attributes of bin 
nodes before passing to the self-attention layer. For a node triplet (ci, bj, bk), where ci 
corresponds to a cell node and bj, bk are bin nodes, a graph G(ci) (where both bj, bk 
are nodes in it) is constructed by taking ci as input. Details on the construction of 
G(ci), which is shared for all triplets that contain the cell node ci, is discussed in the 
next section. For each layer in the GNN, to generate the output vector for bin node 
bj, the information of its neighbors in the graph NG(ci)(bj) is aggregated:
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H(n)
NG(ci)

(bj) = Average
(

{H(n−1)
u e(u, bj|ci), u ∼ NG(ci)(bj), u ̸= bk}

)

(5)

H(n)
bj = σ

{

W(n)
GNN · Concat

[

H(n−1)
bj , H(n)

NG(ci)
(bj)

]}

(6)

where H(n)
bj  is the output vector of the node bj at the nth layer of the GNN, and 

H(0)
bj  represents the attributes of the node bj before passing to the GNN. e(u, bj∣ci) 

is the edge weight between node u and bj in G(ci). W(n)
GNN represents the weight 

matrix to be optimized at the nth layer, and σ is the non-linear activation function. 
Optionally, to take the similarity of adjacent bins in the genome into account, bj 
can also aggregate the information from the neighbors of its adjacent bins bj ± 1. 
We call this GNN cell-dependent because the structure of the graph depends 
on the cell, although the weight matrix W(n)

GNN is shared across all cells. This 
cell-dependent GNN can improve the expressiveness of the NN by incorporating 
a large amount of single-cell information (contact maps) into the structure of the 
model instead of entirely relying on the embeddings of the cell nodes. The GNN 
is trained to reconstruct the interaction between a pair of bin nodes by using only 
information of themselves and their neighborhood (but not including each other). 
The attributes of both bj and bk are transformed by this cell-dependent GNN into ˆbj 
and ˆbk, respectively, and the triplet of (ci, ˆbj, ˆbk) passes through the aforementioned 
self-attention layer to generate the final dynamic embeddings.

Information-sharing among cells. Higashi has a unique capability for cells to 
share information with each other in the embedding space to enhance imputation 
by taking advantage of the latent correlations among cells. Specifically, we first 
train Higashi until convergence without the cell-dependent GNN to allow 
the self-attention layer to capture cell-specific information and reflect in the 
embeddings through back-propagation. We then calculate the pairwise distances of 
cell embeddings that indicate the similarities among cells. Given a hyperparameter 
k, we construct a graph G(ci) based on the contact maps of ci and its k-nearest 
neighbors in the embedding space. It is crucial to clarify that, when we mention 
the neighbor of a cell N (ci), we are referring to other cells that have small pairwise 
distances of embedding vectors instead of other nodes that have connections to the 
cell in the hypergraph. We name the contact maps of ci as M(ci). The new G(ci) is 
constructed as the weighted sum of M(u), u ∈ {ci} ∪ N (ci), where the weight is 
calculated based on the pairwise distance d(u, ci) in the embedding space—that is,

G(ci) ∼

∑

u
w(u, ci)M(u), u ∈ {ci} ∪ N (ci) (7)

w(u, ci) ∝ exp [−d(u, ci)] (8)

Each embedding is normalized by the maximum ℓ2 norm. Note that, although 
contact maps of different cells are mixed in this step, we do not mix the prediction 
results from different cells or directly use the mixed contact maps as output. 
This differentiates our method from the k-NN-based smoothing methods 
fundamentally. The Higashi model is trained with only the observed interactions 
in each single cell, together with the interactions in cells that share overall similar 
structures serving as auxiliary information for synergistic prediction in a cell 
population.

Loss function and training details of Higashi. The hypergraph NN in Higashi 
produces a score ŷ for any triplet (ci, bj, bk). The NN is trained to minimize the 
difference between the predicted score ŷ and the target score y (that is, the 
observations in the dataset), indicating the probability of the pairwise interaction 
between bin nodes bj and bk in cell ci. In Higashi, we offer several choices of loss 
function for scHi-C datasets with different coverage. For scHi-C datasets with 
relatively low sequencing depths, or the analysis resolution is high (hence, fewer 
reads in each genomic bin), the model is trained with a binary classification loss 
(cross-entropy) where the triplets corresponding to all non-zero entries in the 
single-cell contact maps are treated as positive samples, and the rest are considered 
as the negative samples (that is, y(ci, bj, bk) ∈ {0, 1}). The classification loss is:

Lossclass = −

∑

i,j,k
y(ci, bj, bk)log ŷ(ci, bj, bk)

+

[

1 − y(ci, bj, bk)
]

log
[

1 − ŷ(ci, bj, bk)
]

(9)

For datasets with relatively high sequencing depths or when the analysis resolution 
is low (hence, more reads in each genomic bin), we further differentiate among 
the non-zero values by training the model with a ranking loss, which maintains 
consistent ranking of predicted scores versus the continuous target scores (that 
is, y(ci, bj, bk) ∈ R). The ranking loss can be described as a binary classification 
problem aiming to identify the triplet with the larger target score in a pair of 
selected triplets. For simplicity, we denote two triplets as ti, tj and the corresponding 
target scores as y(ti), y(tj). The ranking loss is:

lij = I
[

y(ti) > y(tj)
]

(10)

pij = Sigmoid
[

ŷ(ti) − ŷ(tj)
]

(11)

Lossrank = −

∑

|y(ti)−y(tj)|≥α

lijlog pij + (1 − lij)log
(

1 − pij
)

(12)

where α defines whether the order of y(ti), y(tj) can be reliably called and is set to 2 
in this work. Note that lij, pij are intermediate variables used only in this definition.

Moreover, the structure of Higashi can be easily adapted to estimate a 
distribution for y(ti). Zero-inflated negative binomial (ZINB) distribution and 
its variants have been widely used in the modeling of single-cell sequencing 
datasets41. Specifically, the distribution of the read count for an entry in an scHi-C 
contact map can be characterized by three parameters: the mean parameter μ(ti), 
the dispersion parameter θ(ti) and the dropout rate π(ti). To incorporate this loss 
function into the Higashi framework, we change the output size of the last layer of 
the NN from 1 to 2. We also constrain that the dropout rate π(ti) is approximated 
by batch effects, total read counts in a cell and genomic distance, which are the 
additional features a(ti) in Higashi. The loss function for the ZINB regression can, 
thus, be described as:

ŷ(ti) = [μ(ti), θ(ti), ]T (13)

π(ti) = FC [a(ti)] (14)

LossZINB = −

∑

ti

log PZINB [y(ti)|μ(ti), θ(ti), π(ti)] (15)

If the model is trained with the ZINB loss, μ(ti) is used as the imputed read count 
for the specific entry in the contact map. In this work, the Higashi model for 
sn-m3c-seq data is trained with the ZINB loss, whereas the Higashi models for the 
other datasets are trained with the ranking loss.

Using any of the above loss functions requires negative samples (samples 
with zero read count in the original datasets) in the training data. We designed 
an effective negative sampling approach. Specifically, at each epoch, we randomly 
sample a batch of triplets and make sure that these triplets do not overlap with 
the positive samples. To reflect the similarity of 3D genome structures of flanking 
genomic bins, we also exclude triplet (ci, bj, bk) from the negative samples if triplets 
such as (ci, bj + 1, bk) belong to the positive samples. The number of negative samples 
generated for each batch is guided by the sparsity of the input data. When studying 
an scHi-C dataset where s% of the contact map entries are zeros, for a batch of n 
positive triplets, min [s/(100 − s), 5] n negative samples will be generated. For 
computational efficiency, the number of negative samples is no more than five times 
the number of positive samples. The model is optimized by the Adam algorithm42 
with the learning rate of 1 × 10−3. The batch size is set as 192. For a dataset with 
multiple chromosomes, only one Higashi model is trained for all chromosomes. For 
different resolutions on the same dataset, separate Higashi models are trained.

Incorporating co-assayed signals in Higashi. The unique design of Higashi allows 
joint modeling of co-assayed scHi-C and the corresponding one-dimensional 
signals (for example, from sn-m3C-seq17). We add an auxiliary task for Higashi 
by using the learned embeddings for cell nodes ci to accurately reconstruct the 
co-assayed signals mi through a multi-layer perceptron. The auxiliary loss term 
is added to the main loss function and optimized jointly. The model, thus, builds 
an integrated connection between chromatin conformation and the co-assayed 
signals, guiding the embedding of the scHi-C data—that is,

Lossaux = MSE [mi, MLP (ci)] (16)

where MSE refers to the mean squared error between the co-assayed signals and 
the estimate.

Batch effects removal during imputation. The core structure of Higashi can 
already implicitly remove batch effects to a certain extent during imputation. As 
described in Eq. (1), the final predicted probability of a triplet includes the values 
ŷext produced by feeding extra features that include features related to batch 
effects, such as the batch ID and the total read counts per cell. During imputation, 
these factors are set as constant for all cells in order to remove batch effects. The 
motivation for this design is to use the batch ID and total read counts to regress out 
the batch effects.

However, one problem that might arise is the use of contact maps with 
potential batch effects to construct the cell-dependent graph G(ci). This is because, 
when imputing cell ci, the k-nearest neighboring cells in the embedding space 
that contribute to its imputation are more likely from the same batch of ci. As a 
result, the batch effects in the constructed cell-dependent graph G(ci) are expected 
to lead to unreliable batch-correlated imputation results. To address this, we 
developed the following framework to explicitly remove batch effects during 
imputation. As described in the above section, the k-nearest neighboring cells in 
the embedding space could contribute to the imputation by using the weighted 
average of the corresponding contact maps to construct the cell-dependent graph 
G(ci). Motivated by the mutual nearest neighbor method that is widely adopted in 
scRNA-seq analysis for batch effect removal43, we add constraints for the selection 
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of neighboring cells that will involve in the imputation. When imputing a cell i 
from an scHi-C dataset with N batches, we require that the k-nearest neighbors 
contributing to the imputation process must be evenly distributed across N batches. 
In cases where there is no exact division ⌈k/N⌉ cells will be sampled from each 
batch based on their distance to cell i in the embedding space. Next, k cells will 
be randomly selected and serve as the final set of neighboring cells to contribute 
to imputation. Note that this new neighborhood construction mechanism will be 
carried out dynamically after every epoch of the training process of Higashi to 
improve the robustness of the imputation and the random sampling process. By 
incorporating this mechanism into Higashi, G(ci) will have similar distribution 
across different batches. The Higashi model is now able to regress out the batch 
effects with the batch ID and read count information. During imputation, the 
batch-effects-related features will be set as constant from the input to recover 
batch-effect-corrected contact maps.

Variability of compartmentalization and TAD-like boundaries. In Higashi, 
we developed strategies for reliable analysis of 3D genome features in different 
scales across the cell population. We developed a method to calculate continuous 
compartment scores for the imputed single-cell contact maps such that these scores 
are directly comparable across different cells in the population to assess variability 
(Supplementary Note A.5). For single-cell TAD-like domain boundary analysis, we 
developed a calibration method using an optimization scheme based on insulation 
scores to achieve comparative analysis of domain boundary variability from single 
cells (Supplementary Notes A.7 and A.8). These algorithms greatly enhance the 
analysis of variable multiscale 3D genome structures at single-cell resolution.

Visualization tool for integrative scHi-C analysis. In Higashi, we developed a 
visualization tool that allows interactive navigation of the scHi-C analysis results. 
Our tool enables the navigation of the embedding vectors and the imputed contact 
maps from Higashi in a user-friendly interface. Users can select individual cells or 
a group of cells of interest in the embedding space and explore the corresponding 
single-cell or pooled contact maps. Supplementary Fig. 28 shows a screenshot 
of the visualization tool. See the GitHub repository of Higashi for detailed 
documentation of this visualization tool: https://github.com/ma-compbio/Higashi.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We used the following publicly available datasets: sci-Hi-C of four cell lines from 
Ramani et al.14 (GEO: GSE84920); scHi-C of mouse embryonic stem cells from 
Nagano et al.15 (GEO: GSE94489); sci-Hi-C of five cell lines from Kim et al.20 
(4DN Data Portal: 4DNES4D5MWEZ, 4DNESUE2NSGS, 4DNESIKGI39T, 
4DNES1BK1RMQ and 4DNESTVIP977); scHi-C of WTC-11 iPSC cell line (4DN 
Data Portal: 4DNESF829JOW and 4DNESJQ4RXY5); sn-m3c-seq of human 
prefrontal cortex cells from Lee et al.17 (GEO: GSE130711); Bulk Hi-C of WTC-11 
(4DN Data Portal: 4DNESPDEZNWX and 4DNESJ7S5NDJ); scRNA-seq of WTC-
11 from Friedman et al.26 (EMBL-EBI: E-MTAB-6268); CTCF ChIA-PET of WTC-
11 (4DN Data Portal: 4DNES8MZ76GP); and scRNA-seq of multiple cortical areas 
of the human brain from the Allen Brain map37: https://portal.brain-map.org/
atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq.

Code availability
The source code of Higashi can be accessed at https://github.com/ma-compbio/
Higashi. The detailed code dependency list of Higashi can be found at the 

GitHub page, which includes Python (3.7.9), numpy (1.19.2), pytorch (1.4.0) and 
scikit-learn (0.23.2).
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