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Overfishing of large predatory fish populations has resulted in lasting

restructurings of entire marine food webs worldwide, with serious socio-

economic consequences. Fortunately, some degraded ecosystems show

signs of recovery. A key challenge for ecosystem management is to anticipate

the degree to which recovery is possible. By applying a statistical food-web

model, using the Baltic Sea as a case study, we show that under current

temperature and salinity conditions, complete recovery of this heavily

altered ecosystem will be impossible. Instead, the ecosystem regenerates

towards a new ecological baseline. This new baseline is characterized by

lower and more variable biomass of cod, the commercially most important

fish stock in the Baltic Sea, even under very low exploitation pressure.

Furthermore, a socio-economic assessment shows that this signal is ampli-

fied at the level of societal costs, owing to increased uncertainty in

biomass and reduced consumer surplus. Specifically, the combined econ-

omic losses amount to approximately 120 million E per year, which

equals half of today’s maximum economic yield for the Baltic cod fishery.

Our analyses suggest that shifts in ecological and economic baselines can

lead to higher economic uncertainty and costs for exploited ecosystems, in

particular, under climate change.
1. Introduction
Management of depleted fish stocks has traditionally been treated as a single

species concern, primarily related to the level of exploitation [1]. Understanding

the dynamics of commercially exploited fish stocks in an ecosystem context,

including the interactions among ecosystem components and how these com-

ponents are affected by both anthropogenic and natural drivers, remains a

considerable challenge [2]. This understanding is required to evaluate the

chances of restoration of the target stocks and the ecological and socio-

economic implications this may have [2–4]. There are different levels of
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recovery depending on the magnitude and duration of the

perturbation [2] as well as on the focal species or group of

species. Furthermore, ecosystems are inherently dynamic in

the sense that they continuously develop owing to natural

and anthropogenic processes. This means that even if certain

population(s) recover after a perturbation, the configuration

and dynamics of the ecosystem as a whole has been altered,

i.e. populations may recover, but ecosystems regenerate in

the face of change [5]. Natural as well as anthropogenic

processes influence the restoration target or baseline [6,7]. It

is therefore important to incorporate and try to account for

the true nature of these interactions when evaluating

management strategies.

Climate, in particular, can greatly influence ecosystem

dynamics [8,9], and the compounded effects of climate

and anthropogenic drivers, such as eutrophication and

overexploitation, can lead to nonlinear and threshold-like

responses (regime shifts) to drivers [10]. Regime shifts

are sudden, persistent reorganizations in the structure and

function of ecosystems [10,11], usually driven by a multi-

tude of drivers, e.g. climate and overfishing [12]. Feedback

mechanisms have been suggested as regime stabilizers that

once established make the ecosystem state difficult to reverse

[13]. Regime shifts have been documented in several marine

ecosystems, e.g. the Black Sea [14], Mediterranean Sea [15]

and North Pacific [16].

In the Central Baltic Sea, a fishery- and climate-induced

regime shift in the late 1980s changed the food web from

being dominated by the large piscivorous cod (Gadus
morhua) to an alternative configuration dominated by plank-

tivorous fishes (figure 1) [17,18]. After the implementation of

a multi-annual management plan [19], the cod population

has shown signs of recovery [20], but the underlying causes

of the increase remain controversial [21,22].

Owing to extensive data availability, several studies on

ecosystem dynamics have been conducted in the Central

Baltic Sea, comprising empirical analyses (e.g. [17,18,23])

as well as food-web modelling [24–26]. However, none of

these studies has explicitly assessed the potential for ecosys-

tem regeneration and its associated economic consequences

under different climate conditions. Here, by focusing on

cod as most important economic and ecological indicator,

we evaluate the chances of the Baltic Sea to regenerate to

its previous state both from an ecological and socio-economic

perspective.

To do so, we develop a statistical model based on histori-

cal records over the last three decades. Our analysis

incorporates direct and indirect responses to the key drivers

of fishing mortality and environmental conditions (tempera-

ture and salinity) and at the same time allows for changes

in these interactions depending on the configuration of the

ecosystem at a time. These regime-dependent effects are

accounted for by means of a modified generalized additive

model (GAM) that allows the type and form of the

interactions to change depending on a threshold value [27].

This modelling approach is a novel way to explore the

regeneration potential of a deeply altered ecosystem by specifi-

cally incorporating feedbacks and thresholds in relation to the

confounding effects of climate and fishing. The biological

output of the model is then measured in terms of economic

profit, consumer surplus (CS) and annual risk premium (RP)

of the cod fishery. This allows us to translate the ecological

regeneration potential into societal costs.
2. Material and methods
(a) Data
We collected environmental and biological monitoring data

representative of the dynamics of the Central Baltic Sea over

the time period 1974–2011 [23,28] (electronic supplementary

material, table S1). In this area, the three commercially and eco-

logically most important fish stocks are cod (G. morhua), sprat

(Sprattus sprattus) and herring (Clupea harengus) [29]. The mean

annual fishing mortality (F ) for each species was used to rep-

resent the exploitation pressure exerted on them by the

commercial fishery [30]. The dominant zooplankton taxa were

characterized by spring (May) and summer (June–August) bio-

mass of the copepods Pseudocalanus acuspes, Acartia spp. and

Temora longicornis, as well as summer biomass of cladocerans

[31]. Chlorophyll a from both spring and summer was included

as a proxy for phytoplankton biomass. The biological data differ

in their spatial dimension (electronic supplementary material,

table S1). The annual fish stocks are generally assessed for

areas encompassing their geographical distribution. In our data-

set, cod and herring are representative for the Central Baltic Sea,

while the sprat stock is assessed for the whole Baltic Sea [30].

The zooplankton data were sampled in the Gotland Basin, a

sub-basin of the Central Baltic Sea [18], but temporal trends are

largely representative for the entire Central Baltic Sea [32]. Chlor-

ophyll a from both spring and summer were used from the

Gotland Basin.

The abiotic conditions were represented by sea surface

temperature in spring (May) and summer (July), mid-water

temperature (40–60 m) in spring and summer, and mid-water

salinity (80–100 m) in spring, all sampled in the Gotland Basin.

In addition, the annual cod reproductive volume for the whole

Central Baltic Sea, i.e. the volume of water with appropriate sal-

inity (above 11 PSU) and oxygen (more than 2 mg l21) conditions

for cod egg survival [33], as well as the Baltic Sea Index, a

regional atmospheric pressure index reflecting the effect of cli-

mate variability on oceanographic processes in the Central

Baltic Sea area [34], were included as explanatory variables (elec-

tronic supplementary material, table S1). Note that not all these

variables were finally retained (see Model selection section).

Regime shift detection in real ecosystems is challenging and a

number of methods have been proposed, e.g. [35,36]. We applied

a principal component analysis to the observed biological data,

which includes cod, sprat, herring, P. acuspes and cladocerans. The

first principal component (PC1) of this data subset was used as an

indicator for the ecosystem state as we expected to find a change

across all trophic levels. A sequential t-test with a p , 0.05 and

a cut-off length of 10 years was subsequently performed on this

proxy [35] and a significant break was detected in 1989 (figure

1a). This step-wise change supports the hypothesis of the existence

of two distinct regimes in the biological configuration of this

ecosystem [18].

(b) Statistical modelling, a four-step approach
Our modelling approach comprised four steps: (i) fitting separate

statistical models for each trophic level; (ii) coupling the individual

models into a ‘joint food web model’ that reproduces observed

population dynamics based on external drivers and the trophic

interactions emerging from the individual models [36]; (iii) explor-

ing the regeneration potential of the food web in response to

decreasing exploitation rates under past and current temperature

and salinity conditions; and finally (iv) assessing the economic

consequences for the commercial cod fishery (§2c).

(i) General model set-up and individual model selection
To be able to account for linear, nonlinear, as well as regime-

dependent relationships, we used two types of GAMs [37,38]
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Figure 1. Regime changes in the Baltic Sea ecosystem. Demarcation between regimes is indicated by red dotted line and coloured background for past (grey) and
current (red) regimes. Changing ecosystem structure based on the leading mode (PC1) of biotic data spanning three trophic levels and regime indicator (grey) (a),
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(figure 2, step 1): (i) fully additive or common GAM, which

assumes that the effect of each covariate is stationary, i.e. that

the form of the relationship does not change over time; and

(ii) non-additive threshold GAM (tGAM), which, contrary to

the former, allows the type of relationship between the response

and explanatory variables to change below and above a certain
value of a threshold variable. The threshold is estimated from

the data and chosen by minimizing the generalized cross-vali-

dation (GCV) criterion [38]. We selected cod biomass as the

threshold variable as the biomass of this top predator has been

shown to control the food-web dynamics in the Central Baltic

Sea [18].
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Individual model selection was based on a stepwise

approach, aimed at excluding covariates with a p-value . 0.05

and minimizing the GCV criterion of the model [27]. The under-

lying statistical assumptions of all models, whether GAMs or

tGAMs were tested (see details in the electronic supplementary

material). To avoid over-smoothing, which is likely to occur

with small datasets, we let the effective degrees of freedom

(edf) be restricted to a maximum of four for GAMs and three

when using tGAMs. Also, for tGAMs we used only one intercept

over the whole range of conditions and not one per regime (see

equation (2.2) in the electronic supplementary material). By

doing so, we ensure that the average level of the response vari-

able for a given regime, whether lower or higher than in the

alternative regime, is simply the result of the additive effect of

the various environmental covariates and trophic interactions

described by the model for that regime. Allowing one intercept

per regime would have increased the explanatory variance but

at the same time would have reduced the parsimony of the

model (one more parameter) and, more importantly, possibly

mask other potential relationships. The same applies if we had

used any temporal information, e.g. separating the dynamics

before/after the threshold year. This is important as we aimed

at simulating the ecosystem over a range of conditions without

having to use regime (or time) as an explanatory variable.

For P. acuspes, the additive formulation outperformed its

non-additive counterpart. However, the residuals of the former

model violated the normal distribution assumption, which

affects the significance ( p-values) of the covariates’ effect. The

alternative tGAM formulation met the normality assumption,

agreed to previous results [17], and was therefore preferred

over its fully additive counterpart. For herring, the tGAM formu-

lation turned out to be more parsimonious than the simple GAM

and was therefore retained. In total, we selected two additive and

two non-additive models (figure 3; electronic supplementary

material, tables S2–S5).
(ii) Food-web model and validation
In the next step (figure 2, step 2), the selected individual models

(based on data from 1974 to 2007) were dynamically coupled

into a joint food-web model, where the internal dynamics

(i.e. trophic interactions) are driven solely by the external
covariates (i.e. temperature, salinity and fishing) that were retained

during model fitting [39]. Since the joint food-web model involves

both lags and simultaneous interactions, i.e. trophic interactions

occurring in the same year, two approaches involving randomized

iterations were applied to account for these issues. After this step,

the model was validated using data from the period 2008–2011.

Details on both the set-up of the food-web model and its

validation are described in the electronic supplementary material.

(iii) Simulation of scenarios
The validated food-web model was then used to assess the ecosys-

tem regeneration potential under varying fishing pressure in

combination with two sets of environmental conditions (figure 2,

step 3). We defined a depletion–regeneration scenario where the

cod fishing mortality (F) was gradually increased from 0 to a maxi-

mum of 1.4 (i.e. close to the historical maximum) and decreased

again to 0 by applying a sequential change in the exploitation rate

of F ¼ 0.05. This scenario was run under two contrasting tempera-

ture and salinity conditions: (i) those found before 1989, which

were favourable for cod, and (ii) those occurring after the regime

shift, being less favourable for cod [18]. As the latter conditions

still largely prevail, we will refer to these two scenarios as past

(first regime) and current (second regime), respectively (figure 1d).

For each simulation, temperature and salinity values were randomly

sampled (with replacement) from the observations, corresponding

to past and current regimes (see the electronic supplementary

material, figure S5 and S6). All analyses were performed using R

software v. 2.5.1 (www.r-project.org).

(c) Bio-economic analysis
In order to assess the economic consequences of the depletion–

regeneration scenario a bio-economic analysis was performed

(figure 2, step 4). We estimated the profit of the commercial

cod fishery, the CS and the annual RP for our scenarios of vari-

able exploitation pressure under past and current temperature

and salinity conditions. CS is a monetary quantification of consu-

mer-related welfare. It is calculated by analysing the difference

between what consumers are willing to pay for fish relative to

its market price, and is mainly determined by harvest levels.

RP quantifies the economic costs of increased variability in

biomass for both profits and consumer welfare.

http://www.r-project.org
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(i) Profit
We assume biomass growth dynamics for cod described by the

following general equation:

xtþ1 ¼ xt þ
r
a

xt 1� xt

K

� �a� �
� (1� exp(�F))xt: (2:1)

The biomass growth function contains as special cases the

logistic function rx(1 2 x/K) for a ¼ 1 and the Fox [40] function rx
ln(K/x) for a ¼ 0 (which can be seen by taking the limit a! 0
and applying l’Hospital’s rule). As we are interested in sustaina-

ble economic yield, we consider a dynamic equilibrium with

xtþt ¼ xt ¼ x. Rearranging this formula, we received the following

relationship between stock size and fishing mortality:

x ¼ K 1� a
r

(1� exp(�F))
� �1=a

, (2:2)

which we estimate by means of nonlinear ordinary least squares.
Further, we assume a profit function pH 2 cF, where H are

cod landings, p is the market price for cod, and cost of effort,

cF, is assumed to be proportional to instantaneous fishing mor-

tality F with proportionality factor equal to marginal cost c.

For the cost parameter we use the estimate from [41], which is

c ¼ 72.9 million E with a standard error of 19.8 million E. For

the price, we assume an inverse demand function of the type

p(H ) ¼ p0H2h. We use the estimate h ¼ 0.23 from [42], and cali-

brate p0 ¼ 559 E ton21 of cod, such that the inverse demand

function leads to a price of 1095 E ton21 of cod at landings of

0.0538 million tons with price and landings data from [41]. See

the electronic supplementary material for more information.
(ii) Consumer surplus and risk premium
Inverse demand is a measure for the consumer’s willingness to

pay for fish. With the downward-sloping inverse demand func-

tion of the type p(H ) ¼ p0H2h, the aggregate willingness to pay



rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:201428

6
for fish exceeds the market value p(H )H. This gives rise to a CS of

fish consumption, which is obtained as

CS ¼
ðH

0

p0h�h dh� p0H1�h ¼ h

1� h
p0H1�h: (2:3)

CS depends on harvest levels.

The annual RP additionally quantifies the costs of increased

variability in biomass and associated harvest. We quantify RP

for total economic welfare, i.e. the sum of profits and CS. As

the cod price is sensitive to harvest levels [42], revenue is a con-

cave function of harvest. Jensen’s inequality implies that

expected revenues are lower with a higher fluctuation of the

harvest. Similarly, as CS is a concave function for harvest, the

expected CS also decreases with harvest uncertainty. The RP

associated with fluctuating harvest is defined as the difference

between summed-up profits and CS at the expected biomass as

compared with profits plus CS with fluctuating biomass.

Higher variability gives rise to higher costs (see the electronic

supplementary material).

All computations for the bio-economic module were done

with MATLAB (R2011A).
 09
3. Results and discussion
(a) Individual model fits
Our final food-web model consisted of cod as top predator,

the two forage fish species herring and sprat, as well as the

copepod P. acuspes and cladocerans. The latter entered the

model only as covariate. The individual model fits show

which, how and under what circumstances the different vari-

ables relate to each other (figure 3; electronic supplementary

material, table S2–S5).

Our results show that cod is positively affected by the 2 year

lagged biomass of P. acuspes (figure 3a), reflecting the beneficial

feeding effect of this copepod on cod larvaesurvival and recruit-

ment [43]. Furthermore, cod is negatively related to sprat,

but only at intermediate to high biomass levels (figure 3b).

Although sprat is an important prey for cod, the negative

effect may reflect significant sprat predation on cod eggs [44],

particularly at higher biomasses. Note that owing to pro-

nounced model uncertainty at the extremes the weak-positive

effect at maximum sprat biomass should be treated with

caution. These two partial effects capture the two types of feed-

back mechanisms described in the ecosystem, the positive

relationship of P. acuspes on cod (first regime) and the prey-to-

predator loop (second regime). Finally, there is an obvious

linear negative relationship to fishing pressure (figure 3c).

Sprat shows a nonlinear positive relationship to summer

temperature (figure 3d ), representing its positive effects on

recruitment [45]. This effect is conspicuous up to about 48C,

above which increasing temperature does not lead to

increased sprat biomass. Cod shows a linear negative effect

on sprat (figure 3f ), indicating its role as a top predator.

Finally, the negative relationship with cladocerans

(figure 3e) denotes strong top-down control. Such negative

effects of prey on predators are a frequent statistical result in

top-down structured systems. For instance in the Black Sea,

Llope et al. [39] found a negative effect of zooplankton on jelly-

fish for the regime when the latter were most abundant and,

consequently, consumption was at its maximum. The same

effect shifted to positive for the alternative regime (low abun-

dance of jellyfish) when predation was less intense and the

control turned to be bottom-up. These findings suggest that if
predation is strong (runaway consumption, senso Strong [46]),

the pattern displayed is that of a negative effect of the predator

on the prey as it would only be possible to observe large num-

bers of prey when the abundance of its predator is low. An

alternative model with the same covariates but excluding clado-

cerans would render the same shape for the temperature and

cod partial effects and cause only a slight decrease in r2 (0.54

versus 0.6). Although cladocerans are not connected to any

other model components and as such has little effect on model

dynamics, it provides an understanding of food-web structure.

Herring and P. acuspes displayed non-additive dynamics

depending on the biomass of cod. The threshold was lower

for herring than for P. acuspes, 246 564 and 462 502 tons, res-

pectively. Herring responds negatively to fishing (figure 3g)

independently of the level of cod biomass. In addition, when

cod biomass is low (and consequently sprat is high) competition

with sprat becomes conspicuous as a negative effect of sprat

biomass (figure 3h) [47]. Pseudocalanus acuspes is negatively

impacted by small pelagics (herring and sprat) for the low

cod biomass regime (figure 3j). Alternatively, above the cod

threshold P. acuspes is positively related to salinity (figure 3k),

probably owing to its positive effect on reproduction and matu-

ration [48]. This result agrees with Casini et al. [17] showing that

the dynamics of zooplankton is being driven either by

hydrography or sprat predation depending on the level of cod.

The individual models together represent the general func-

tioning of the system. Figure 3 summarizes those key linkages

between components described above, which include some

regime-dependent interactions defined by the level of cod

in the ecosystem. When cod is abundant (more than

450 000 ton), its predation pressure on sprat releases zooplank-

ton from top-down control. Consequently, P. acuspes, and

possibly also cladocerans, increase in biomass and become

regulated by environmental factors. This allows favourable

bottom-up processes (e.g. high salinities) to propagate

upwards, first via a positive effect on P. acuspes, which in

turn, positively affect cod with a lag of 2 years. For the alterna-

tive regime (cod spawner biomass , 450 000 ton), small

pelagics and particularly sprat control zooplankton.
(b) Ecosystem regeneration pathways
The food-web model proved to reproduce the past dynamics

reasonably well, as well as the recent increase in cod biomass

(see the electronic supplementary material, figure S4).

Our simulations show that regeneration pathways differ

between past and current temperature and salinity conditions.

Current environmental conditions result in biomasses that are

lower for cod (figure 4a), higher for sprat (figure 4b) and lower

for P. acuspes (figure 4c). Additionally, variability in biomass of

the different food-web components increases in the current

regime with decreasing cod fishing mortality, as illustrated

by an increase in the coefficient of variation (CV) of simulated

biomasses by up to 200% (figure 4d).

The difference in baseline and amount of variability can be

explained by the climate’s influence on the stabilizing feedback

between cod and P. acuspes [18]. Generally, a reduction in cod

exploitation causes an increase in cod biomass, a decrease in

sprat owing to higher predation, and an increase in P. acuspes
owing to lower sprat predation [49]. This so-called trophic cas-

cade [50] is reinforced by a positive feedback (figure 4e), as a

larger P. acuspes population will in turn positively affect cod

larval recruitment and survival [43]. Forcing the model
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simulation with favourable temperature and salinity conditions

(past regime) resulted in a strengthening of this feedback loop,

maintained the system within the high cod regime, which

in turn dampened the oscillations. Under same fishing mor-

tality but current environmental conditions the feedback

weakens and the prey-to-predator loop is favoured as higher

temperatures enhance sprat recruitment [45] and lower sali-

nities impair reproduction and maturation of P. acuspes [48].

Furthermore, P. acuspes currently experiences a larger salinity

range (figure 1), which results in higher population variability.

When the conditions open a window for this bottom-up

effect to affect cod (with a lag of 2 years), this variability is

also propagated to cod biomass.

Our simulation results support the existence of a feedback

loop between sprat, P. acuspes and cod [17,18] and demonstrates

for the first time, to our knowledge, that multiple drivers syner-

gistically affect the strength of the feedback loop under a range

of exploitation rates and climate conditions. Current salinity

and temperature conditions reduce the stabilizing effect of the

feedback, leading to a weaker and more variable recovery path-

way for cod. Hence, the Baltic Sea ecosystem probably cannot

recover to its previous state, but instead regenerates towards a

new, and more variable, ecosystem baseline.

It is worth noting that in our simulations we only focused

on the synergistic effects between temperature, salinity and

cod fishing mortality. Other stressors, e.g. sprat and herring
fishing or eutrophication, would have probably affected the

model structure and dynamics. In addition, we do not specifi-

cally account for any changes in life-history traits (size, rates) or

in the spatial distributions of the species. We assume that such

changes are at least partially reflected in the underlying data,

e.g. biomass estimates, and therefore implicitly accounted for

in the model set-up and simulations. Also, we consider the

Gotland Basin as representative of the Central Baltic Sea for

the lower trophic levels and hydrographical conditions.

While acknowledging that this is a simplification of a complex

system, we think the results provide new insight into the

regeneration potential of the Baltic Sea.
(c) Economic consequences
The last step of our analysis focused on the evaluation of the

direct and indirect economic implications of an altered pro-

ductivity of cod, the most important species in this regard

(figure 2). We found that while the economically optimal

exploitation levels (aka F) differ only slightly (figure 5a)

between the past and current temperature and salinity con-

ditions, the annual profit is considerably lower (140 compared

with 230 million E). Total economic costs have to also include

the costs to society, in particular losses in CS. CS amounts to

approximately 30% of fishing profits under optimal exploita-

tion, and is, like direct fishing profits, considerably reduced



–50

0

50

150

250
fi

sh
in

g 
pr

of
its

 (
m

ill
io

n 
  )

(a)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

20

40

60

80

C
S 

an
d 

R
P 

(m
ill

io
n 

  )

(b)

cod fishing mortality

Figure 5. Economic profits and societal costs. Sustainable economic yields (a)
and corresponding CS and RP (b) at different cod exploitation levels (fishing mor-
tality) under past (black) and current (red) conditions of temperature and salinity.
Dashed lines indicate 95% confidence limits (a) and CSs minus RPs (b).

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20142809

8

under the current temperature and salinity conditions (shown

as dots in figure 5b). In addition, the annual RP–a quantification

of the costs of increased cod biomass variability—is higher

under current conditions and amounts to another 6 million E,

which have to be subtracted from welfare (the resulting reduced

welfare levels are shown as dashed lines in figure 5b).

Overall, the change in ecosystem baseline is estimated to

cause a total annual loss of approximately 123 million E, of

which almost 30% are indirect costs. These results indicate

that the economic baseline not only shifted in parallel to

the ecological baseline, but that the current conditions may

not be able to support as many viable fishing units as

before, and imply a higher uncertainty for fishermen.
4. Conclusion
Climate change is projected to cause drastic increases in sea sur-

face temperature of the world’s oceans in general, and in the
Baltic also lower salinities [51,52]. At the same time, efforts are

being made worldwide to regenerate the ecosystems to favour-

able highly productive states [53]. In this study, we show that the

pathway of ecosystem regeneration is, besides fishery manage-

ment, conditionally dependent on the interaction of climate

and human pressures and that the output of this interaction

implies severe economic and societal costs. Our results show

that the environmental conditions determine not only the

level of achievable baselines but also—what is most important

in socio-economic terms—their degree of variability.

We think that this study is relevant to managers and policy

makers by providing a new perspective to the potential bio-

economics of the Baltic Sea. Our results point out that: (i) the

regeneration of an ecosystem to an economic target is not straight-

forward, as there are multiple interacting drivers involved that

need be considered and understood; and (ii) an accurate evalu-

ation of a given management strategy should account for these

drivers and incorporate nonlinear and regime-dependent

dynamics, as these features have been observed and determine

the final outcome. It is important that the developing concept

of adaptive resilience which should guide future policies

embraces this evidence in order to maintain our ecosystems

healthy, productive and sustainable for future generations [54].
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22. Möllmann C, Blenckner T, Casini M, Gårdmark A,
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