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Despite the rapid advance in single-cell RNA sequencing (scRNA-seq) technologies within the last decade, single-cell tran-

scriptome analysis workflows have primarily used gene expression data while isoform sequence analysis at the single-cell

level still remains fairly limited. Detection and discovery of isoforms in single cells is difficult because of the inherent tech-

nical shortcomings of scRNA-seq data, and existing transcriptome assembly methods are mainly designed for bulk RNA

samples. To address this challenge, we developed RNA-Bloom, an assembly algorithm that leverages the rich information

content aggregated from multiple single-cell transcriptomes to reconstruct cell-specific isoforms. Assembly with RNA-

Bloom can be either reference-guided or reference-free, thus enabling unbiased discovery of novel isoforms or foreign tran-

scripts. We compared both assembly strategies of RNA-Bloom against five state-of-the-art reference-free and reference-

based transcriptome assembly methods. In our benchmarks on a simulated 384-cell data set, reference-free RNA-Bloom

reconstructed 37.9%–38.3% more isoforms than the best reference-free assembler, whereas reference-guided RNA-

Bloom reconstructed 4.1%–11.6% more isoforms than reference-based assemblers. When applied to a real 3840-cell data

set consisting of more than 4 billion reads, RNA-Bloom reconstructed 9.7%–25.0%more isoforms than the best competing

reference-based and reference-free approaches evaluated. We expect RNA-Bloom to boost the utility of scRNA-seq data

beyond gene expression analysis, expanding what is informatically accessible now.

[Supplemental material is available for this article.]

Single-cell RNA sequencing (scRNA-seq) refers to high-throughput
methods that interrogate the transcriptomes of individual cells.
Unlike RNA sequencing (RNA-seq) for bulk samples, scRNA-seq en-
ables the detection of cellular transcriptomic heterogeneity for a
given sample of cells. Within the last decade, it has been used
for studying cancer cells (Navin 2015) and virus-infected cells
(Cristinelli and Ciuffi 2018), as well as for building the cell atlas
of several species (Cao et al. 2017; The Tabula Muris Consortium
2018; Howick et al. 2019). The early uses of scRNA-seq data analy-
sis have been primarily limited to gene expression quantification.
Isoform-level analyses for single cells remain scarce (Arzalluz-
Luque and Conesa 2018) and mainly depend on splice-junction
detection (Song et al. 2017).

Although long-read sequencing technologies excel in captur-
ing near full-length transcript sequences, which are ideal for iso-
form-level analyses (Arzalluz-Luque and Conesa 2018), they have
a significantly higher error rate, limited sequencing depth, and
higher input requirement compared to short-read sequencing
technologies (Conesa et al. 2016). Droplet-based short-read se-
quencing prepared with transcript-end capture protocols
(Macosko et al. 2015; Zheng et al. 2017; Cole et al. 2018) are scal-
able to nearly 1 million cells, but they show low sensitivity and
strong transcript-end bias, prohibiting the reconstruction of splice
isoforms. Lifting this bias, there are well-based paired-end se-

quencing protocols, such as Smart-seq2 (Picelli et al. 2013) and
SMARTer (Verboom et al. 2019), that offer better sensitivity
and full-length transcript sequencing for single cells, thus permit-
ting both expression quantification and isoform structure analysis.
However, these scRNA-seq protocols are predominantly used
for gene expression profiling at the single-cell level. For exam-
ple, 7427 data series on Gene Expression Omnibus were generated
with Smart-seq2 or SMARTer (Supplemental Methods). Therefore,
new bioinformatics approaches are required to leverage the se-
quencing data for isoform analysis in these data sets.

To gain enough input RNA for sequencing, minute amounts
of RNA from each cell must be heavily amplified; thus, scRNA-seq
data are highly prone to technical noise. Current scRNA-seq as-
sembly methods are primarily intended for specific gene targets
(Canzar et al. 2017; Lindeman et al. 2018; Rizzetto et al. 2018),
and assemblymethods for bulk RNA-seq do not effectively accom-
modate uneven transcript coverage and amplified background
noise in scRNA-seq data. In principle, pooling reads frommultiple
cells can introduce reads to low-coverage andnoisy regions of tran-
scripts, thus closing coverage gaps and increasing the signal-to-
noise ratio (Supplemental Fig. S1). Yet, naively pooling reads
from multiple cells would obscure the cell precision of the assem-
bly process. Further, pooling reads for coassembly formultiple cells
would require much more memory than assembling the sequenc-
ing data for each individual cell. The overall run time for coassem-
bly is also expected to be significantly slower than the assembly for
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individual cells because the aggregated sequencing data of multi-
ple cells increases the complexity of the assembly problem.

Reference-based assembly methods, such as StringTie (Pertea
et al. 2015) and Scallop (Shao and Kingsford 2017), reconstruct
transcripts based on the alignment of reads against the reference
genome. Compared to reference-free methods, reference-based
methods tend to be better and more resource-efficient at assembl-
ing transcripts for known species. Furthermore, their assemblies
are usually chains of concordant exon coordinates on the refer-
ence genome and therefore are free from chimeric transcripts.
However, the absolute dependence on a reference genome often
disables reference-based assemblers’ ability to reconstruct gene fu-
sion transcripts, foreign transcripts (such as those from viruses),
and inter-species chimeric transcripts, of which all are candidates
for transcriptomic markers in diseases. Reference-free assemblers,
on the contrary, can still assemble these transcripts as no assump-
tions are made on the origin of input reads.

According to a comprehensive study (Hölzer andMarz 2019),
Trans-ABySS (Robertson et al. 2010), Trinity (Grabherr et al. 2011),
and rnaSPAdes (Bushmanova et al. 2019) are the leading reference-
free transcriptome assembly tools, and they all follow the de Bruijn
graph (DBG) assembly paradigm. Although these methods use a
hash table data structure to store the DBG in memory, recent ge-
nome assembly approaches (Chikhi and Rizk 2013; Jackman
et al. 2017) showed how memory requirements may be reduced
by adopting succinct data structures, such as Bloom filters
(Bloom 1970), for compact k-mer storage to representing an im-
plicit DBG. Adapting this strategy for scRNA-seq assembly is an at-
tractive proposition for reducing memory consumption.

Existing reference-free assembly methods typically rely on
alignment of paired-end reads against assembled sequences to re-
construct longer transcript sequences. Read alignments can be
computationally costly, especially when performed against a non-
static target that cannot be indexed in advance, such as earlier stag-
es of reference-free assembly approaches. We note that recent
RNA-seq quantification tools, such as kallisto (Bray et al. 2016), re-
duce run time by replacing alignment with pseudoalignment.
Borrowing the strategy of substituting read alignment with a light-
weight alternative should also benefit run times when assembling
transcriptomes.

Taking all these into account, we developed RNA-Bloom for
single-cell transcriptome assembly of paired-end short-read se-
quencing data from well-based technologies. RNA-Bloom uses a
pooled assembly approach to leverage sequencing content from
multiple cells for improved transcript reconstruction of individual
cells. It follows the DBG assembly paradigm but uses Bloom filters
for efficient in-memory storage of k-mers as well as k-mer counts
derived from the reads of all cells, yielding an implicit DBG. This
DBG is only used for reconstructing fragments from read pairs;
to maintain cell precision, a new DBG built from each cell’s frag-
ment k-mers is used for reconstructing transcripts from fragments.
Owing to the anticipated slower run time of coassembly, RNA-
Bloom uses paired distant k-mers derived from reads and recon-
structed fragments as a fast alternative to read alignments. Like
paired-end reads, these paired distant k-mers are used to guide
the elongation of reconstructed fragments into full-length tran-
script sequences.

RNA-Bloom can assemble both bulk RNA-seq and scRNA-seq
data without any reference sequences, and it runs in the reference-
free mode by default. As a hybrid of reference-free and reference-
based strategies, RNA-Bloom has the option to assemble
transcripts in reference-guided mode where a reference transcrip-

tome is available. In RNA-Bloom’s reference-guided mode, k-mer
pairs from a transcriptome reference are included in addition to
those derived from reads and fragments. Therefore, the reference
is only used to guide the assembly and RNA-Bloom can still assem-
ble nonreference sequences, such as novel isoforms and foreign
transcripts, in both reference-free and reference-guided modes.

Results

RNA-Bloom can optionally run in bulk or pooled assembly mode
with or without reference guidance; it is important to understand
their synergistic effects on assembly quality. In our benchmarks,
we evaluated all four combinations: (1) reference-free mode only
(RB), (2) reference-guided mode only (RB(ref)), (3) reference-free
pooled assembly mode (RB(pool)), and (4) reference-guided pool-
ed assembly mode (RB(ref,pool)). We compared RNA-Bloom
against three reference-free RNA-seq assemblers (Trans-ABySS,
Trinity, and rnaSPAdes) and two reference-based RNA-seq assem-
blers (StringTie and Scallop). We examined the assembly quality
and computing performance of these approaches on both simulat-
ed and real data. Assembly evaluation metrics discussed in this
study are described in Table 1 and Supplemental Methods and
are calculated based on assembly evaluation with rnaQUAST
(Bushmanova et al. 2016).

Benchmarking on bulk RNA-seq data

We first investigated the performance of RNA-Bloom on both
simulated and real bulk RNA-seq samples. We simulated one sam-
ple with RSEM (Li and Dewey 2011) based on a real bulk RNA-
seq sample (European Nucleotide Archive [ENA] run accession:
ERR523093) of real mouse serum embryonic stem cells (Kolod-
ziejczyk et al. 2015). The simulation procedure is described in Sup-
plemental Methods. For benchmarking on real data, we used
another bulk RNA-seq sample (ENA run accession: ERR523027)
of the same cell type from the same study.

The assembly quality benchmarking results for simulated
data based on I95 and I50 are summarized in Figure 1 and
Supplemental Figure S2, respectively. RB and RB(ref) have higher
true positive rates (TPR95=18.9%, 19.3%, respectively) than all
other reference-free methods evaluated (Fig. 1A). As expected,
Scallop and StringTie, being reference-based methods, have the
highest true positive rates (TPR95=24.4%, 21.2%, respectively)

Table 1. Assembly evaluation metrics

Metric Description

I50 (I95) Number of true positive isoforms reconstructed to at
least 50% (95%) of annotated lengths.

TPR50
(TPR95)

True positive rate based on isoforms reconstructed to at
least 50% (95%) of annotated lengths.

FDR50
(FDR95)

False-discovery rate based on isoforms reconstructed to
at least 50% (95%) of annotated lengths.

MR50
(MR95)

Misassembly rate based on isoforms reconstructed to at
least 50% (95%) of annotated lengths.

S50 (S95) Number of spiked-in RNA controls reconstructed to at
least 50% (95%) of annotated lengths.

TPR50, TPR95, I50, I95, S50, and S95 are assembly sensitivity metrics; a
higher value in these metrics indicates better assembly. FDR50, FDR95,
MR50, and MR95 are assembly error metrics; a lower value in these
metrics indicates better assembly. Because real data have no ground
truth, TPR50, TPR95, FDR50, and FDR95 are only reported for simulated
data.
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and lowest misassembly rate (MR95=0 for both). We further ex-
amined the isoform reconstruction at different expression levels
(Fig. 1B). Scallop, StringTie, RB, and RB(ref) have comparable
true positive rates in the highest transcript expression stratum,
but StringTie and Scallop have much higher true positive rates in
the lowest two strata. However, StringTie has the highest false-dis-
covery rate (FDR95=1.5%), followed by Trinity (FDR95=1.3%);
Trans-ABySS has the lowest false-discovery rate (FDR=0.4%) (Fig.
1C). Trinity has the highest misassembly rate (MR95=5.2%), fol-
lowed by Trans-ABySS (MR95=2.8%) (Fig. 1D).

We also compared the assembly quality and computing per-
formance in both simulated and real data; the results are summa-
rized in Figure 2, Supplemental Figure S3, and Table 2.
Reference-based methods, Scallop and StringTie, have the highest

sensitivity, lowest misassembly rate, fast-
est run time, and lowest peakmemory us-
age in assembling simulated and bulk
data. The computing performance of RB
and RB(ref) are very similar in simulated
data and they are nearly identical in real
data. RB(ref) has a slightly higher sensi-
tivity than RB, but both RB and RB(ref)
have higher sensitivity, faster run time,
and lower peak memory usage than all
other reference-free methods. Although
RB and RB(ref) have lower misassembly
rates than rnaSPAdes in assembling sim-
ulated data, they have higher misassem-
bly rates than rnaSPAdes in assembling
real data. Overall, RNA-Bloom improves
upon state-of-the-art bulk RNA-seq
reference-free methods while maintain-
ing a relatively low computing resource
requirement.

Benchmarking on simulated scRNA-seq

data

We used RSEM (Li and Dewey 2011) to
generate a simulated data set containing
a total of 495.6 million paired-end 100-
bp reads (for the simulation procedures,
see Supplemental Methods) based on
the single-cell transcriptomes of 384
mouse microglia cells from Tabula Muris
(The Tabula Muris Consortium 2018).
Using this simulated data set, we assessed
each method’s assembly quality. Except
for RNA-Bloom’s pooled assembly
modes, that is, RB(pool) and RB(ref,
pool), all assemblymethodswere applied
to each cell separately.

The benchmarking results for simu-
lated isoform reconstruction are sum-
marized in Figure 3, A and B, and
Supplemental Figure S4, A and B. Among
the reference-free methods, RB(pool) has
the largest mean TPR50 (52.8%, with
SD = 2.6%) and mean TPR95 (34.0%,
SD = 4.5%), whereas Trinity has the sec-
ond-largest mean TPR95 (24.6%, SD=
4.7%) and RB has the second-largest

meanTPR50 (39.1%, SD=5.1%). Among reference-usingmethods,
RB(ref,pool) has the highest mean TPR50 (53.0%, SD=2.6%) and
TPR95 (34.2%, SD=4.5%), whereas StringTie has the second-larg-
est mean TPR50 (47.4%, SD=3.5%) and TPR95 (32.9%, SD=
4.9%). Overall, reference-using methods have better TPR95 than
reference-free methods, but RB(pool), being a reference-free meth-
od, has a mean TPR95 and TPR50 even larger than both StringTie
and Scallop.

We further examined the reconstruction of simulated iso-
forms at different expression levels.We split the set of all simulated
isoforms into four strata based on the quartiles of the expression
levels from all cells. For isoforms in the lower expression quartiles
(strata 1, 2, 3) (Fig. 3B; Supplemental Fig. S4B), RB(pool) and RB
(ref,pool) have the largest TPR95 and TPR50. In particular, the

BA

C

D

Figure 1. Assembly quality on mouse simulated bulk RNA-seq data. (A) True positive rate calculated
based on I95, denoted as TPR95. (B) True positive rate at four transcript expression strata. Isoforms in
strata 1, 2, 3, and 4 have nonzero values of transcripts per million (TPM) in the lowest quartile, sec-
ond-lowest quartile, second-highest quartile, and the highest quartile, respectively. (C ) False-discovery
rate calculated based on I95, denoted as FDR95. (D) Misassembly rate calculated based on I95, denoted
as MR95.
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proportional difference between them and other methods were
substantially larger in the lower quartiles. For isoforms in the high-
est expression quartile (stratum4) (Fig. 3B; Supplemental Fig. S4B),
StringTie and RB(ref) tied as the reference-using method with the
largest mean TPR50 (75.8%, SD=3.5% for StringTie and SD=
5.4% for RB(ref)), but StringTie has the highest mean TPR95
(71.8%, SD=6.3%). Among reference-free methods, RB has the
largest mean TPR50 (76.6%, SD=6.1%), whereas RB(pool) has
the largest mean TPR95 (68.4%, SD=6.0%).

We then evaluated the false-discovery rate and misassembly
rate (Fig. 3C,D). rnaSPAdes has the lowest mean FDR50 (4.6%,
SD=2.2%) and FDR95 (0.6%, SD=0.4%), whereas RB(pool) has
the highest mean FDR50 (8.3%, SD=1.1%) and FDR95 (2.7%, SD
=0.7%). StringTie and Scallop have no misassemblies, which is
the expected behavior of reference-based methods. RB and RB
(ref) have lower misassembly rates than all other reference-free as-
semblers, but Trinity has the largest meanMR50 (1.0%, SD=0.4%)
and MR95 (1.6%, SD=0.7%).

We examined the effect of the number of cells on RNA-
Bloom’s pooled assembly cell precision (Supplemental Methods)
by down-sampling to smaller pools of 96 cells. As the pool size in-
creased, the mean cell precision of RNA-Bloom decreased, but the
mean TPR95 increased (Fig. 4). Without pooling (i.e., pool size of
one cell), the mean cell precision of the reference-free mode (i.e.,
RB) and the reference-guided mode (i.e., RB(ref)) are 99.4% (SD=
0.4%) and 99.3% (SD=0.3%), respectively. At pool size of 96 cells,
the mean cell precision of the reference-free mode (i.e., RB(pool))
and the reference-guided mode (i.e., RB(ref,pool)) are 97.5%
(SD = 0.5%) and 97.4% (SD=0.5%), respectively. However, the cell
precision for both modes decreased marginally from pool size of
96 cells to384 cells; inparticular, thedecrease for the reference-guid-
ed mode is not statistically significant (Wilcoxon test, P=0.8).

Assembly of spiked-in RNA sequences

We investigated the ability to reconstruct novel sequences without
a priori knowledge of the sequencing data. Therefore, reference-
based methods, namely StringTie and Scallop, were omitted
from this analysis. Using the five reference-free methods, we as-

sembled a public real data set (Natarajan et al. 2019) composed
of 96 mouse embryonic stem cells spiked with External RNA
Controls Consortium (ERCC) and Spike-in RNA Variant (SIRV)
synthetic transcripts. Because these samples were deeply se-
quenced, we subsampled each library to 10% of its original size.
The assembly results are summarized in Figure 5, A and
B. Among reference-free methods, RB(pool) has the largest mean
S50 (45.5, SD=6.0) and S95 (27.9, SD=5.2), whereas RB has the
second-largest mean S50 (41.0, SD=6.2) and S95 (25.2, SD=4.9).
In addition, we also assembled this data set with RB(ref) and RB
(ref,pool) using only the mouse transcriptome reference. The dif-
ferences in mean S50 and S95 between RB(ref) and RB are not stat-
istically significant (Wilcoxon test, P=0.91 for S50; P=0.9 for
S95). Similarly, the differences in mean S50 and S95 between RB
(ref,pool) and RB(pool) are also not statistically significant
(Wilcoxon test, P=0.11 for S50; P=0.54 for S95). This shows
that reference guidance in RNA-Bloomhas no effect on the assem-
bly of novel sequences.

Assembly of real scRNA-seq data sets

We explored the scalability of all nine assembly approaches on two
experimental scRNA-seq data sets. In the first data set, we selected
3840 mouse microglia cells from Tabula Muris (for the procedure
for selecting cells, see Supplemental Methods) for a total of 4.4 bil-
lion paired-end 100-bp reads. The assembly evaluation results are
summarized in Figure 6, A through D. RB(pool) is the reference-
free method that has the largest I50 (1001, SD=326) and I95
(306, SD=105). RB(ref,pool) is the reference-using method that
has the largest I50 (1001, SD=326) and I95 (307, SD=105).
Among reference-free methods, Trans-ABySS and rnaSPAdes have
the lowest mean MR50 (3.8%, SD=1.2%) and MR95 (11.8%, SD
=4.1%), respectively. Trinity has the highest mean MR50 (5.7%,
SD=1.8%) and MR95 (17.7%, SD=5.6%). For methods that use
the reference, StringTie and Scallop have no misassemblies, as ex-
pected, whereas RB(ref) has the highest MR50 (6.1%, SD=2.1%)
and MR95 (17.7%, SD=5.3%). The difference in MR95 between
RB(ref) and Trinity is not statistically significant. RB, RB(pool),
and RB(ref, pool) have similar mean MR50 (4.5%∼4.8%, SD=
1.7%∼1.8%) and MR95 (13.9%∼14.0%, SD=4.3%∼4.8%).

We also assembled another public real data set composed of
260 mouse embryonic stem cells (Kolodziejczyk et al. 2015) with
a total of 3.94 billion paired-end 100-bp reads. Although this

Figure 2. Assembly quality on mouse simulated and real bulk RNA-seq
data. Assembly sensitivity was measured as the number of isoforms recon-
structed to at least 95% annotated isoform length (denoted as I95) in each
data set normalized by the total number of isoforms in reference annota-
tion. Misassembly rate was calculated based on I95, denoted as MR95.

Table 2. Computing performance on mouse simulated and real bulk
RNA-seq data

Simulated data Real data

Method
Memory
(GB)

Time (CPU
hours)

Memory
(GB)

Time (CPU
hours)

RB 18.2 120.8 14.0 62.0
rnaSPAdes 78.7 170.4 32.6 102.0
Trans-

ABySS
30.2 434.7 12.4 192.2

Trinity 64.1 159.3 237.8 137.0
RB(ref) 22.3 117.1 14.97 62.9
StringTie 5.4 51.8 5.5 29.6
Scallop 5.4 59.9 5.5 35.8

All assemblers were run in 48 threads. Peak memory usage was mea-
sured in GB, and run time was measured in CPU hours. For StringTie and
Scallop, performance figures include read alignment and the generation
of indexed BAM files. Best results for each metric are shown in bold.
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data set has a lot fewer cells than Tabula Muris, each cell was much
more deeply sequenced, averaging over 9 million reads per cell.
The assembly evaluation results are summarized in Supplemental
Figure S5. Among reference-free methods, RB(pool) has the largest
mean I50 (5328, SD=1118) and I95 (1653, SD=417), whereas
rnaSPAdes has the second-largest I50 (3265, SD=1207) and I95
(938, SD=389). Among methods that use the reference, RB(ref,
pool) has the largest mean I50 (5457, SD=1134) and I95 (1866,
SD=457), whereas StringTie has the second-largest I50 (4823, SD
=950) and I95 (1678, SD=396). Trinity has the highest mean
MR50 (17.5%, SD=3.8%) andMR95 (58.5%, SD=12.2%), whereas
all other assemblers have lower misassembly rates. In particular,
StringTie and Scallop have no misassemblies, like in the Tabula
Muris data set.

Computational performance

The computational performance of all as-
sembly strategies for the simulated and
real Tabula Muris data sets is summarized
in Table 3. All methods were configured
to use up to 48 CPUs. In assembling the
simulated data set, Trans-ABySS has the
lowest peak memory usage (2.6 GB),
whereas RB(ref,pool) has the highest
(58.5 GB). In assembling the experimen-
talTabulaMurisdata set, Trans-ABySShas
the lowest peak memory usage (1.5 GB),
whereas RB(ref,pool) has the highest
(154.8 GB). Scallop has the fastest total
run time in assembling the simulated
data set (1.5 wall-clock hours) and the
real data set (1.6 wall-clock hours). RB
was the fastest reference-free method
(12.3 wall-clock hours) in assembling
the simulated data. Trinity has the slow-
est total run time in both simulated
(288.5 wall-clock hours) and real data
sets (2009.2 wall-clock hours). Overall,
reference-based methods have faster run
times and lower peak memory usage
than reference-free methods.

Single-cell isoform analysis of microglial

genes

Based on the reconstruction levels of
known isoforms reported by rnaQUAST,
we clustered RB(ref,pool) assemblies of
the 3840-cell Tabula Muris real data set
using a set of 31 microglial genes
(Bonham et al. 2019). The procedure for
clustering is described in Supplemental
Methods. We chose to work with RB
(ref, pool) assemblies because they had
the best sensitivity figures in both simu-
lated and real data sets. The cell clusters
are presented in Figure 7. Isoforms of
C1qb and Tmem119 are assembled to
full-length in nearly all cells. Specific iso-
forms of Igsf6, Hpgds, and Csf2ra are fully
reconstructed, which are unique to cell
clusters 3, 4, and 7, respectively. The iso-
form of P2ry13was fully reconstructed in

all cell clusters except cell cluster 8, where partial reconstruction
was minimally observed. Similarly, the Trem2-201 isoform was
also fully reconstructed in all cell clusters except cluster
9. However, its alternative isoforms did not share the same pattern.
Trem2-202 had a mix of partial and full-length reconstruction
across all cell clusters. Trem2-203, a retained-intron alternative iso-
form, had only partial reconstruction in a very small number of
cells. Therefore, we reclustered the cells using only isoforms of
Trem2 (Fig. 8), and we observed signs of isoform switch.
Although Trem2-201 appeared to be the dominant isoform in
the majority of the cells, other smaller groups of cells showed
bias toward Trem2-202. These two isoforms encode different pro-
tein sequences, but they share the same Pfam domain (PF07686)
(Supplemental Fig. S6). Because variants of Trem2 are known to

BA
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Figure 3. Assembly quality on simulated data for 384 mouse cells. (A) True positive rate calculated
based on isoforms reconstructed to at least 95%of annotated length, denoted as TPR95. (B) True positive
rate at different transcript expression stratum. (C) False-discovery rate calculated based on isoforms re-
constructed to at least 95% of annotated length, denoted as FDR95. (D) Misassembly rate calculated
based on isoforms reconstructed to at least 95% of annotated length, denoted as MR95. Distributions
of each metric were measured over all 384 cells. The comparison bars on top between RB(pool) and
RB(ref,pool) and the next best performer in each class indicate statistical significance of the difference be-
tween distributions at P<0.001 (∗∗∗) or no significance (NS) using the Wilcoxon test.
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be associated with neurodegenerative
diseases such as Alzheimer’s disease in
humans (Jay et al. 2017), follow-up stud-
ies of the alternative isoforms may im-
prove our understanding of the gene’s
function.

Discussion

New sequencing technologies that inter-
rogate single-cell transcriptomes provide
information on gene regulation at un-
precedented details. Whereas transcript-
end capture protocols are primarily used
to measure expression levels, full-length
sequencing protocols have richer infor-
mation content for isoform structures
in single cells. However, to realize the
full potential of the full-length sequenc-
ing protocols, specialized bioinformatics
tools are needed.

Here, we present RNA-Bloom, an
RNA-seq assembly algorithm that ad-
dresses this need. Overall, in our bench-
marks on scRNA-seq data, RNA-Bloom

has the best isoformreconstructionwithmisassembly rates compa-
rable to that of other assemblers. Without using the pool assembly
mode, RNA-Bloom’s reference-guidedmode has better reconstruc-
tion than its reference-free mode in simulated and real data, but
both assembly modes behave similarly in assembling novel tran-
scripts a priori. This shows that reference-guidedmode is preferred
whenever a high-quality transcriptome reference is available.

All assembly methods evaluated have the best isoform recon-
struction in the highest expression stratum of the simulated data,
likely because highly expressed transcripts are represented bymore
reads, making them easier to assemble. However, the proportional
difference in mean reconstruction between RNA-Bloom and bulk
RNA-seq assemblers increased in the lowest three expression strata.
This is very remarkable because reference-based assemblers recon-
structed more isoforms than RNA-Bloom in our benchmarking
with bulk RNA-seq data. This illustrates that RNA-Bloom’s pooled
assembly strategy is working effectively despite potential coverage
gaps and amplifiednoise, which tend to have larger detrimental ef-
fects on the reconstruction of low-expressed transcripts owing to
insufficient good quality reads. This advantage comes at the cost
of a relatively higher memory usage and a higher false-discovery
rate than other assembly methods.

Despite pooling reads frommultiple cells, RNA-Bloom can ro-
bustly reconstruct isoforms specific to individual cells and alterna-
tive isoforms within individual cells, as shown in our isoform
analysis of the microglial genes using the Tabula Muris data set.
As a scalable assembler shown to work for more than 4 billion
paired-end reads, RNA-Bloom unlocks the possibility of cataloging
cell types at the isoform level in large data sets.

Methods

The workflow of RNA-Bloom consists of three stages: (1) shared
DBG construction, (2) fragment sequence reconstruction, and (3)

Figure 4. Cell precision and true positive rate of RNA-Bloom’s refer-
ence-free and reference-guided modes over 384 cells. The simulated
data set of 384 cells is split into four smaller subpools of 96 cells and 1
cell. Pool size of 1 refers to no pooling between cells. Each subpool is as-
sembled separately, and the cell precision of the assembled isoforms in
each cell is calculated based on the I95. True positive rate was calculated
based on I95, denoted as TPR95. Distributions of cell precision and
TPR95 were measured over all 384 cells. The comparison bars on top be-
tween different pool sizes indicate statistical significance of the difference
between distributions at P<0.001 (∗∗∗), P<0.01 (∗∗), P<0.05 (∗), or no
significance (NS) using the Wilcoxon test.

BA

Figure 5. Assembly sensitivity on experimental data of 96 mouse embryonic stem cells with ERCC and
SIRV spiked-in transcripts. (A) Number of spiked-in transcripts reconstructed to at least 50% annotated
length, denoted as S50. (B) Number of spiked-in transcripts reconstructed to at least 95% annotated
length, denoted as S95. Distributions of each metric were measured over all 96 cells. RB(ref) and RB
(ref,pool) assemblies were guided by the mouse transcriptome reference. The comparison bars on top
indicate statistical significance of the difference between distributions at P<0.001 (∗∗∗), P<0.01 (∗∗),
P <0.05 (∗), or no significance (NS) using the Wilcoxon test.
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transcript sequence reconstruction (Fig. 9). In stage 1, an implicit
DBG is constructed using the k-mers from all input reads of all
cells. In stage 2, fragment sequences of each cell are reconstructed
by connecting the cell’s read pairs using the DBG from stage 1. To
maintain the cell precision of the transcripts to be reconstructed in
stage 3, a new DBG for each cell is created solely using k-mers from
the cell’s reconstructed fragments following stage 2. In stage 3, us-
ing the cell-specificDBGs, fragments are extended outward in both
directions to reconstruct transcript sequences.

Bloom filter data structure

The hash functions for Bloom filters in RNA-Bloom were imple-
mented based on the nucleotide hashing algorithm, ntHash
(Mohamadi et al. 2016). The number of unique k-mers and the
user-defined false positive rate (FPR) for Bloom filters are used to
determine the size for each Bloom filter. RNA-Bloom has the op-
tion to run ntCard (Mohamadi et al. 2017) to quickly estimate
the number of unique k-mers, provided ntCard is already installed
on the user’s computing environment. If the number of unique
k-mers is not specified or ntCard is not available, then the total
size of Bloom filters is configured in proportion to the total file
size of all input read files. In our experience, a Bloom filter FPR

of 0.5% ∼ 1.0% provides a relatively
good trade-off between memory usage
and assembly quality.

Stage 1: shared de Bruijn graph

construction

The shared DBG is represented by three
separate Bloom filters: (1) DBG Bloom fil-
ter, (2) k-mer counting Bloom filter, and
(3) read k-mer pairs Bloom filter. The
DBG Bloom filter is a bit array, and it pro-
vides an implicit representation of the
DBG for the k-mers in all cells. The
k-mer counting Bloom filter provides a
compact nonexact storage of k-mer
counts, and it is implemented based on
the 8-bit minifloat byte-array data struc-
ture introduced previously (Birol et al.
2015). To minimize the effect of false
positives in the Bloom filters, a k-mer is
deemed present in the data set only if it
is found in the DBG Bloom filter and it
has a nonzero count in the k-mer count-
ing Bloom filter. The read k-mer pairs
Bloom filter stores pairs of distant
k-mers at a fixed distance along each
read (Supplemental Fig. S7). These k-mer
pairs are essentially sparse representations
of individual reads, and they are useful
in guiding graph traversal in later stages.
The shared DBG is used throughout frag-
ment reconstruction of individual cells.

Stage 2: fragment sequence

reconstruction

After the sharedDBGhas been construct-
ed, the process of fragment sequence re-
construction is performed separately for
individual cells. For each read pair in
each cell, mismatch and indel errors are

BA

DC

Figure 6. Assembly quality evaluation on an experimental scRNA-seq data set consisting of 3840
mouse microglia cells. (A) Number of isoforms reconstructed to at least 50% of annotated length, denot-
ed as I50. (B) Number of isoforms reconstructed to at least 95% of annotated length, denoted as I95. (C )
Misassembly rate calculated based on I50, denoted as MR50. (D) Misassembly rate calculated based on
I95, denoted as MR95. Distributions of each metric were measured over all 3840 cells.

Table 3. Computing performance on simulated and real Tabula
Muris single-cell data sets

Simulated data Real data

Method
Memory
(GB)

Time (CPU
hours)

Memory
(GB)

Time (CPU
hours)

RB 11.0 591.2 10.5 5431.6
RB(ref) 12.9 1039.1 13.3 9155.3
rnaSPAdes 31.0 2154.5 31.0 16,807.5
Trans-

ABySS
2.6 2154.5 1.53 11,277.9

Trinity 20.5 13,847.9 20.4 96,440.6
RB(pool) 58.5 661.0 153.6 8447.8
RB(ref,

pool)
58.5 864.2 154.8 11,077.4

StringTie 5.2 98.1 5.2 169.2
Scallop 5.2 72.1 5.2 77.7

All assemblers were run in 48 threads. Peak memory usage was mea-
sured in GB, and run time was measured in CPU hours. For StringTie and
Scallop, performance figures include read alignment and the generation
of indexed BAM files. Best results for each metric are shown in bold.
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identified and corrected based on k-mer counts in a procedure sim-
ilar to the RNA-seq error correction method, Rcorrector (Song and
Florea 2015; Supplemental Fig. S8). After error correction, the read
pair is connected by extending each constituent read toward its
mate to reconstruct the underlying fragment sequence. Each
read is extended by searching for neighbors in the shared DBG.
When the current extension reaches a branching point in the
graph, the unambiguous extension of
each branch is assigned a score based on
its median k-mer count and the number
of read k-mer pairs spanning across the
branching point (Supplemental Fig. S9;
Supplemental Methods). Because longer
extensions tend to havemore supporting
k-mer pairs, the score is normalized by
the length of the extension. The branch
with the highest score is added to the cur-
rent extension from the read. This exten-
sion routine is initially depth-bounded
by a permissive default threshold (de-
fault = 1000 bp) for each cell. After the
first N read pairs (default = 1000) of the
cell have been evaluated, the depth
threshold is readjusted to 1.5-fold of the

interquartile range of reconstructed frag-
ment lengths. This threshold limits the
depth of graph traversal to ensure fast
overall assembly run time and prevents
spurious connections of reads. Extension
is first attempted from the left read to-
ward the right, and a second attempt is
made from the right read toward the
left when the first attempt fails. Exten-
sion from each direction terminates if
the paired reads are connected or the ex-
tension has reached either a dead end or
the depth threshold.

Each reconstructed fragment is
checked for consistency with input reads
by scanning for overlapping read k-mer
pairs. If the reconstructed fragment is
consistent with read k-mer pairs, more
distant pairs of k-mers at a fixed distance
within the reconstructed fragment are
stored in the fragment k-mer pairs
Bloom filter (Supplemental Fig. S7). The
distance between the paired k-mers are
set to the first quartile of reconstructed
fragment lengths from the first N read
pairs evaluated. This results in ∼75% of
the cell’s reconstructed fragments being
represented by at least one fragment k-
mer pair. As observed previously (Birol
et al. 2015), althoughmore distant paired
k-mers tend to be more unique, and thus
are better at the resolution of ambiguous
branches in the DBG, increasing the dis-
tance between paired k-merswould lower
the proportion of fragments represented
by k-mer pairs. Therefore, it is important
to balance the proportion of fragments
represented by k-mer pairs and the dis-
tance between paired k-mers.

To avoid redundant storage, each
fragment is screened against an assem-

bled k-mer Bloom filter, which contains k-mers of previously re-
constructed fragments, and the fragment k-mer pairs Bloom
filter. If the fragment contains at least one new k-mer or k-mer
pair, new k-mers and k-mer pairs are inserted into the correspond-
ing Bloom filters. The fragment is then assigned to one of the strata
according to its minimum k-mer count and its length
(Supplemental Fig. S10). Fragments not consistent with reads are

Figure 7. Clustering of microglial cells based on isoform reconstruction. The first row indicates 10 cell
clusters, and colors in subsequent rows encode three levels of isoform reconstruction: none (below 50%),
partial (at least 50% but below 95%), and full-length (at least 95%). The labels refer to isoforms of micro-
glial genes that have either partial or full-length reconstruction in at least 38 cells.

Figure 8. Clustering of microglial cells based on isoform reconstruction of Trem2. Colors encode three
levels of isoform reconstruction: none (below 50%), partial (at least 50% but below 95%), and full-length
(at least 95%). The labels refer to Trem2 isoformswith either partial or full-length reconstruction in at least
38 cells.
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discarded, and their original paired-end reads are assigned to the
strata for unconnected reads. This stratification of reconstructed
transcript fragments provides a crude separation of fragment se-
quences of different expression levels. After all paired-end reads
have been evaluated for a cell, both fragment k-mer pairs
Bloom filter and the assembled k-mers Bloom filter are emptied
in preparation for transcript fragment reconstruction of the
next cell.

Stage 3: transcript sequence reconstruction

After fragment sequence reconstruction has been completed for all
cells, transcript sequences can be reconstructed by extending each
fragment sequence outward in both directions. To reconstruct
transcript sequences for each cell, the DBG Bloom filter is emptied
and repopulated with only k-mers along the cell’s reconstructed
fragments. Emptying the DBG Bloom filter ensures that fragments
are extended with k-mers specific to the corresponding cell.

Fragment sequences are retrieved from strata with decreasing
k-mer counts because low-expression strata tend to be more en-
riched in sequencing errors and artifacts. Strata for long fragments
are retrieved first, followed by the strata for short fragments, and
finally strata for unconnected reads (Supplemental Fig. S10).
Each fragment sequence is extended outward in both directions.
The extension routine for each direction is the same as its counter-
part in fragment sequence reconstruction, except that the scoring
scheme here includes fragment k-mer pairs in addition to read k-
mer pairs (Supplemental Fig. S9; Supplemental Methods).

The reconstructed transcript sequences are evaluated for con-
sistency with input reads and reconstructed fragments by scan-
ning along the reconstructed transcript sequence for overlapping
read k-mer pairs and fragment k-mer pairs. Segments of the tran-
script sequence without overlapping k-mer pairs are trimmed
from the transcript sequence. This procedure ensures a low num-
ber of misassembled transcripts.

To reduce redundancy in the assembly, assembled tran-
scripts for each cell are overlapped with minimap2 (Li 2018).
Containment and dovetail overlaps (where one sequence is end-
to-end contained in the other, and the end of one sequence par-
tially overlaps with the beginning of the other, respectively) are
identified from the overlaps having >99% sequence identity.
Contained sequences are removed from the assembly and se-
quences with dovetail overlaps are merged into a single sequence.

Reference-guided assembly

When the reference-guided option (“-ref”) is used, k-mer pairs
from the user-supplied transcriptome reference are used in con-
junction with read k-mer pairs and fragment k-mer pairs. In stage
1, k-mer pairs, at a distance the same as the read k-mer pairs,
from the transcriptome reference are stored in the Bloom filter
for read k-mer pairs. In stage 3, k-mer pairs, at a distance the
same as the fragment k-mer pairs, from the transcriptome refer-
ence are stored in the Bloom filter for fragment k-mer pairs. The
processes for fragment reconstruction and transcript reconstruc-
tion do not distinguish the origin of the k-mer pairs.

Assembly evaluations

All read data were trimmed for adaptors with fastp (Chen et al.
2018), and only paired-end reads longer than 25 bp are retained
for assembly. Benchmarking was performed with RNA-Bloom,
Trans-ABySS, Trinity, rnaSPAdes, StringTie, and Scallop. The soft-
ware versions and commands for each assembler are described in
Supplemental Methods. All assemblers were run using 48 threads
on a machine with 48 HT-cores at 2.2 GHz and 384 GB of RAM.
Because the bulk RNA-seq assemblers evaluated do not pool reads
from multiple cells in their algorithms, the total run time was the
sum of those of the assemblies of individual cells.

For reference-based methods, alignment of reads against the
reference genome was performed with HISAT2 (Kim et al. 2019),
and BAM files were generated and indexed with SAMtools (Li
et al. 2009). FASTA files were derived from each assembly’s GTF us-
ing gffread (Pertea and Pertea 2020).

Isoform reconstruction and misassemblies in each assembly
were determined with rnaQUAST (Supplemental Methods), using
themouse reference genomeGRCm38 and Ensembl version 99 an-
notations for measuring assembly sensitivity and correctness.

We calculated the quartiles of the expression levels measured
on the transcripts per million (TPM) scale for all simulated iso-
forms in all 384 cells. We used these TPM quartiles to define
four expression strata: (1) TPM<Q1, (2) Q1≤TPM<Q2, (3) Q2≤
TPM<Q3, and (4) Q3≤TPM. Every simulated isoform in each
cell was assigned to one of the four strata.

Software availability

RNA-Bloom is implemented in the Java programming language
and distributed under GPLv3 license. It is available for download
as a prebuilt executable JAR file at GitHub (https://github.com/
bcgsc/RNA-Bloom) and as Supplemental Code S1.

Data access

The simulated bulk and single-cell RNA-seq data generated in this
study have been deposited on our website (http://www.bcgsc.ca/
downloads/supplementary/rnabloom/genome_2019_260174/)
within the archive files, Supplemental_Data_S1.tar.gz and Supple-
mental_Data_S2.tar.gz, respectively.
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