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Abstract

The aim of this study was to estimate genotype by time-lagged heat stress (HS) variance

components as well as main and interaction SNP-marker effects for maternal HS during the

last eight weeks of cow pregnancy, considering milk production traits recorded in the off-

spring generation. The HS indicator was the temperature humidity index (THI) for each

week. A dummy variable with the code = 1 for the respective week for THI� 60 indicated

HS, otherwise, for no HS, the code = 0 was assigned. The dataset included test-day and lac-

tation production traits from 14,188 genotyped first parity Holstein cows. After genotype

quality control, 41,139 SNP markers remained for the genomic analyses. Genomic animal

models without (model VC_nHS) and with in-utero HS effects (model VC_wHS) were

applied to estimate variance components. Accordingly, for genome-wide associations, mod-

els GWA_nHS and GWA_wHS, respectively, were applied to estimate main and interaction

SNP effects. Common genomic and residual variances for the same traits were very similar

from models VC_nHS and VC_wHS. Genotype by HS interaction variances varied, depend-

ing on the week with in-utero HS. Among all traits, lactation milk yield with HS from week 5

displayed the largest proportion for interaction variances (0.07). For main effects from

model GWA_wHS, 380 SNPs were suggestively associated with all production traits. For

the SNP interaction effects from model GWA_wHS, we identified 31 suggestive SNPs,

which were located in close distance to 62 potential candidate genes. The inferred candidate

genes have various biological functions, including mechanisms of immune response, growth

processes and disease resistance. Two biological processes excessively represented in the

overrepresentation tests addressed lymphocyte and monocyte chemotaxis, ultimately

affecting immune response. The modelling approach considering time-lagged genotype by

HS interactions for production traits inferred physiological mechanisms being associated

with health and immunity, enabling improvements in selection of robust animals.
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Introduction

The tripled number of days with extreme temperatures in European countries from 1950 to

2018 [1] indicates the increasing importance of studying the effect of climate change on pri-

mary and functional traits in dairy cattle. Comparing to other domesticated livestock species,

high productive Holstein Friesian cattle responded very sensitive to heat stress (HS), especially

during the challenging early lactation period with temperatures beyond the thermoneutral

zone lower than 5˚C or higher than 25˚C [2]. Selection on improved milk production simulta-

neously increased feed intake and body weight, implying a raised metabolic heat increment

and a decline of the thermoneutral temperature range [3]. Furthermore, in addition to temper-

ature, dairy cow trait alterations were influenced by humidity, suggesting consideration of a

temperature-humidity index (THI) in genetic HS studies [4].

Response to direct HS, i.e., HS close to the trait recording date, was observed when THI

exceeds a certain threshold. For example, in Holstein cows, protein yield decreased at THI 68

[5]. Genetically, random regression models were applied to infer genetic (co)variance compo-

nents along a continuous THI scale [6]. Such modelling approach was also used to detect pos-

sible genotype x environment interactions (GxE), and THI dependent re-rankings of sires

have been observed [7]. Genomically, genetic markers significantly associated with HS

response and underlying candidate genes were detected via genome-wide association studies

(GWAS). Four single nucleotide polymorphisms (SNPs) contributing to a milk yield decline

under HS were identified by Hayes et al. [8] in Australian Holstein Friesian cattle. The four

SNPs were located on Bos taurus autosomes (BTA) 8, 10, 25, and 29. Among them, the SNP

BFGL-NGS-30169 on BTA29 was also identified in Jersey cattle, and the strongest annotated

candidate gene for the variation of milk yield under HS was the fibroblast growth factor 4 [8].

Selection of cattle displaying the ability to regulate body temperature under HS will contribute

to improved heat resistance genetically, implying only marginal detrimental effects on primary

and functional traits. Thus, the genetic architecture of traits reflecting the thermoregulation

ability under HS, such as rectal temperature and respiration rate, was investigated in Holstein

and Gir x Holstein crossbred cattle [9, 10]. Rectal temperature was used an indicator for HS

[11], and respiration rate reflects the ability to maintain body temperature through evaporative

cooling [10].

Most of the genetic studies focused on immediate responses to HS, i.e., considering THI at

the measuring day, or the average THI shortly before the measuring day. Phenotypically, HS

during late gestation in dams, termed as maternal or in-utero HS, significantly impaired

growth, metabolism, immune functions and survival in offspring [12–14], since this period

plays a crucial role in fetal growth [15]. Monteiro et al. [13] studied long-term effects of in-

utero HS on female fertility and performance traits recorded in offspring and identified most

detrimental impact of HS from the last 6 weeks of gestation. Quantitative-genetically, Halli

et al. [16] identified alterations of genetic co(variance) components for weight and growth

traits of dual-purpose cattle due to HS impact on their dams during the late pregnancy period.

In this regard, the current study focusses on enhanced genomic modelling approaches to

inferring time-lagged HS impact, and considers a large dataset of genotyped Holstein Friesian

cows kept in large-scale contract herds. Specifically, we firstly aim on the detection of signifi-

cant SNP for the direct (main) and the interaction effect in the context of time-lagged HS on

milk production traits at the first official test-day after calving and on first lactation production

records. The main effect represents the SNP effect for the respective trait expressed consis-

tently, independent from time-lagged HS. The interaction component is the difference of the

SNP effects between cows undergoing in-utero HS or not. Afterwards, on the basis of the iden-

tified SNP associations, we annotated potential candidate genes. Against this background, i.e.,
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in the context of pronounced time-lagged HS, we postulate the identification of candidate

genes affecting overall robustness, health and adaptation.

Materials and methods

Cow traits

The official records at the first test-day for the milk production traits included milk yield

(TMY), fat percentage (TFP), fat yield (TFY), protein percentage (TPP), protein yield (TPY)

and somatic cell score (TSCS). First lactation records were available for milk yield (LMY), fat

percentage (LFP), fat yield (LFY), protein percentage (LPP) and protein yield (LPY). The first

test-day records of the genotyped cows covered the period between 5 and 35 days after calving.

Lactation lengths for LMY, LFP, LFY, LPP and LPY comprised 275 to 305 days in milk. Age at

first calving ranged from 20 to 40 months, and calving years from 2010 to 2015. A phenotypic

dataset including 14,188 first parity Holstein cows was available for subsequent GWAS. The

cows are kept in 53 large-scale herds, located in the German federal states of Mecklenburg-

West Pomerania and Berlin-Brandenburg. The average number of cows per herd ranged from

55 to 775. For the test-day records, cows with extreme TMY (� 2 kg per day or� 60 kg per

day) and TSCS larger than 9,999,000 cells/ml, were excluded. Descriptive statistics for the test-

day and the lactation production traits are listed in Table 1.

Genotype data

The cows were genotyped using the Illumina BovineSNP50 v2 BeadChip (3,775 animals), or

the Illumina Bovine Eurogenomics 10K low-density chip (10,413 animals). The 10K SNP geno-

types were imputed to the 50K SNP panel by project partner vit (Verden, Germany), as imple-

mented in the process for national routine genetic evaluations [17]. SNP quality controls were

performed using the preGSf90 program from the BLUPf90 package [18, 19]. Filtering criteria

for markers were as follows: consideration only of SNPs located on Bos taurus autosomes,

minor allele frequency larger than 0.01, minimum animal and SNP call rate of 0.95 and no sig-

nificant deviation from Hardy-Weinberg equilibrium (the difference between observed and

expected heterozygous frequencies was smaller than 0.15). Furthermore, we deleted cows pairs

Table 1. Descriptive statistics of first test-day and lactation production traits.

Traita #observations Mean Minimum Maximum Standard deviation

TMY 12,333 28.78 2.00 58.40 6.31

TFP 12,333 4.14 1.62 10.17 0.78

TFY 12,333 1.18 0.07 3.62 0.28

TPP 12,333 3.24 2.14 5.67 0.33

TPY 12,333 0.92 0.09 1.90 0.18

TSCS 12,307 2.80 -1.06 9.64 1.67

LMY 12,804 9104.29 1994.00 16156.00 1476.15

LFP 12,804 3.82 2.21 5.99 0.45

LFY 12,804 345.92 90.00 571.00 51.33

LPP 12,804 3.35 2.64 4.16 0.20

LPY 12,804 303.37 68.00 528.00 44.44

a: TMY = first test-day milk yield; TFP = first test-day fat percentage; TFY = first test-day fat yield; TPP = first test-day protein percentage; TPY = first test-day protein

yield; TSCS = first test-day somatic cell score; LMY = first lactation milk yield; LFP = first lactation fat percentage; LFY = first lactation fat yield; LPP = first lactation

protein percentage; LPY = first lactation protein yield.

https://doi.org/10.1371/journal.pone.0258216.t001
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with genomic relationships [20] larger than 0.95. Finally, 41,139 SNPs from the 14,188 geno-

typed cows were used for the ongoing genomic analyses. The test-day data were available from

12,333 genotyped cows, and 12,804 genotyped cows had first lactation records. In total, 10,949

genotyped cows had both test-day and lactation records. The SNP positions were coordinated

according to the reference assembly ARS-UCD1.2.

Meteorological data

Pairwise distances (in km) were calculated between weather stations and cow herds. The calcu-

lation based on coordinates for the respective longitude and latitude of each herd and weather

station, and was performed using the GEOSPHERE package in R [21]. According to the mini-

mal distances, we allocated 32 weather stations to 53 herds. The maximum distance between a

herd and a weather station was 27.88 km, the minimum distance was 0.74 km and the average

distance was 14.79 km. Hourly THI were calculated considering hourly temperature (T) and

relative humidity (RH) as follows [22]:

THI ¼ ½1:8� Tþ 32� � ½0:55 � 0:0055� RH� � ½1:8� T � 26�

The daily THI was computed by averaging hourly THI over 24 hours. Afterwards, we calcu-

lated the average daily THI within the following weeks during late gestation of the respective

dam, or, in other words, before the birth date of the genotyped cows: 0–7 days (WK1), 8–14

days (WK2), 15–21 days (WK3), 22–28 days (WK4), 29–35 days (WK5), 36–42 days (WK6),

43–49 days (WK7) and 50–56 days (WK8). The range of the weekly THI across the eight

weeks was from 10.43 to 73.10. Descriptive statistics for the weekly THI are displayed in

Table 2.

Statistical models

Variance components and genomic heritabilities. A genomic animal model was applied

to estimate variance components for milk production and TSCS. In this regard, we used the

AIREML algorithm as implemented in AIREMLf90 from the BLUPf90 package [19]. The sta-

tistical model in matrix notation was:

y ¼ Xbþ Zgþ e ½model VC nHS�

where y = a vector of observations for the test-day or the lactation records; b = a vector of fixed

effects including herd, calving year, calving month, age at first calving classes, lactation-calv-

ing-age classes for dams, classes for days in milk (for the test-day traits), lactation length classes

Table 2. Descriptive statistics of the weekly temperature humidity index before birth.

Weeka Mean Minimum Maximum Standard deviation

1 47.88 11.47 72.44 12.10

2 47.83 11.80 73.10 12.22

3 47.84 10.43 72.52 12.16

4 47.91 14.02 72.62 12.10

5 48.01 10.43 72.64 11.95

6 48.08 11.76 72.62 11.99

7 48.10 11.76 72.33 12.03

8 48.17 14.40 73.10 11.99

a: week before birth.

https://doi.org/10.1371/journal.pone.0258216.t002
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(for lactation traits) and a dummy variable indicating the presence of HS during 1 to 8 weeks

before birth for the genotyped cows; g = a vector of random additive genetic effects following

N(0, Gs2
g), where G = the genomic relationship matrix constructed according to VanRaden

[20] and s2
g = the genomic variance; and e = a vector of random residuals following N(0, Is2

e ),

where I = an identity matrix and s2
e = residual variance. X and Z were incidence matrices for b

and g, respectively.

Age at first calving was grouped into 6 classes (class 1:� 22 months, class 2: 23–24 months,

class 3: 25–26 months, class 4: 27–28 months, class 5: 29–30 months, and class 6:� 31

months). Calving age and lactation (L) of the dams were combined to form 21 classes (class

1–6: the same as criteria for age at first calving in L1, class 7:� 35 months in L2, class 8: 36–37

months in L2, class 9: 38–39 months in L2, class 10: 40–42 months in L2, class 11:� 43 months

in L2, class 12:� 48 months in L3, class 13: 49–51 months in L3, class 14: 52–54 months in L3,

class 15:� 55 months in L3, class 16:� 61 months in L4, class 17: 62–66 months in L4, class

18:� 67 months in L4, class 19:� 77 months in L5, class 20:� 78 months in L5, and class 21:

dams in L6). For DIM on the first test-day, 6 classes were defined: class 1:� 10 days, class 2:

11–15 days, class 3: 16–20 days, class 4: 21–25 days, class 5: 26–30 days, and class 6:� 31 days.

Lactation length for lactation production traits was classified into 16 classes considering equal

intervals between 275 to 305 days. The dummy variable indicating in-utero HS was 1 for the

respective week for THI� 60, otherwise, a 0 was assigned. We performed separate runs for

each week before calving.

Alternatively, an interaction model (as introduced by Yao et al. [23]) considering interac-

tions between genotype and in-utero HS, was defined:

y ¼ Xbþ ZgþWghs þ e ½model VC wHS�

where ghs = a vector of genotype by HS interaction effects for cows with in-utero HS following

N(0, Ghss
2
ghs

), where Ghs = the genomic relationship matrix for the cows with in-utero HS and

s2
ghs

= the variance of GxE; W = a design matrix allocating phenotypic records to ghs. The

remaining effects are the same as described in model VC_wHS.

The genomic heritability (h2
g) for each trait was calculated as h2

g ¼ s
2
g=ðs

2
g þ s

2
eÞ for esti-

mates from model VC_nHS. For estimates from model VC_wHS, the heritability of the com-

mon genomic effects (h2
c ) was h2

c ¼ s
2
g=ðs

2
g þ s

2
ghs
þ s2

eÞ and the ratio of the variance for

genotype by HS interaction effects (rhs) was rhs ¼ s2
ghs
=ðs2

g þ s
2
ghs
þ s2

eÞ.

Genome wide associations. Subsequently, we estimated main and interaction effects for

every SNP via generalized least squares (GLS) equations according to the algorithm as intro-

duced by Yang et al. [24]. The models to estimate main and interaction SNP effects were:

y ¼ Xbþ xsnpibsnpi þ xinteribinteri þ Zgþ e ½model GWA nHS�

y ¼ Xbþ xsnpibsnpi þ xinteribinteri þ ZgþWghs þ e ½model GWA wHS�

For solving the equations of model GWA_nHS, we considered the variance components

estimated from model VC_nHS (algorithm is specified below). For solving the equations of

model GWA_wHS, we considered the variance components estimated from model VC_wHS

(algorithm is specified below).

Matrices and vectors of models for genome wide associations were as follows: xsnpi = a vec-

tor of centered genotypes calculated as msnpi−2psnpi (msnpi = a vector of genotypes for marker

i considering all genotyped animals; psnpi = a vector of allele frequency for marker i); bsnpi = a

regression coefficient for the ith SNP (the main SNP effect); xinteri = a vector of centered
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genotypes for cows undergoing in-utero HS in the respective week before birth (consecutive

runs for the 8 different weeks); and binteri = a regression coefficient for the ith SNP (the interac-

tion effect) under in-utero HS. The remaining effects, vectors and matrices were identical with

the effects as specified for models VC_nHS and VC_wHS.

For GWAS models, E(y) = Xb + xsnpibsnpi + xinteribinteri. Var(y) equals to VarðZgþ eÞ ¼
ZGs2

gZ’þ Is2
e ¼ Gs2

g þ Is2
e for model GWA_nHS and to VarðZgþWghs þ eÞ ¼ ZGs2

gZ’þ
WGhss

2
ghs
W’þ Is2

e ¼ Gs2
g þWGhss

2
ghs
W’þ Is2

e for model GWA_wHS. Z was an identity

matrix, because all phenotyped animals were genotyped.

In a self-written R program “GWAInter.R” (in S1 Appendix), we applied GLS to estimate

the main and interaction effects for each marker, implying a loop with 41,139 repetitions for

all SNP markers. The detailed procedure was:

1. Setting b1 ¼ ½b bsnpi binteri� and X1 ¼ ½X xsnpi xinteri�; then bb1 ¼ ðX
0

1V
� 1X1Þ

� 1X0
1
V� 1y (the

last two fixed effects in the solution from GLS were main SNP and interaction effects for

marker i, respectively) and varð bb1Þ = ðX01V
� 1X1Þ

� 1
, V = Gσ2

g þ Iσ2
e or V = Gσ2

g þ

WGhss
2
ghs
W’þ Iσ2

e (the last two variances were the variances for main SNP and interaction

effects for marker i, respectively);

2. The test statistic for the ith main SNP effect was: w2
snpi ¼

cbsnpi 2

varðcbsnpi Þ
, with 1 degree of freedom

(df);

3. The test statistic for the ith interaction effect was: w2
interi ¼

dbinteri 2

varðdbinteri Þ
, with 1 df.

The inflation factor (λ) was calculated based on the chi-squared statistics as:

bl ¼
medianðw2

i Þ

w2
0:5;df¼1

, where w2
i ¼ w

2
snpi or w2

interi, and w2
0:5;df¼1

= 0.4549 (the statistic for a probability of

0.5 from a chi-squared distribution with 1 df). The P-value of the main and interaction

effects for each SNP were determined by w2
snpi and w2

interi, respectively. Significantly associ-

ated SNPs were detected according to the Bonferroni correction calculated as PBonf =

0.05/(number of SNPs) = 0.05/41,139 = 1.22 × 10−6 (-log10(PBonf )) = 5.92. Additionally, a

less stringent correction was applied and defined as suggestive threshold with Psugg = 0.05/

(number of independent SNPs) = 0.05/3873 = 4.76 × 10−6 (-log10(Psugg)) = 4.89. The num-

ber of independent SNPs was calculated based on restrictions for linkage disequilibrium

(R2 � 0.15) for consecutive genomic windows including 500 SNPs (calculated in PLINK

2.0 [25, 26]).

Gene annotation

Suggestive SNPs according to Psugg were annotated to potential candidate genes as listed

in the Ensembl genome database [27] for main and interaction SNP effects. In this regard,

we used the BiomaRt R package [28, 29]. Only genes located within a window of ±100 kb

of suggestive SNP were considered as potential candidate genes. Afterwards, we submitted

the identified potential candidate genes to gene ontology (GO) overrepresentation tests

[30], using the GO web-tool [31, 32]. The false discovery rate of P < 0.05 was considered

to identify overrepresented GO terms for biological processes and reactome pathways. In

addition, the windows with suggestive SNPs were mapped with the bovine QTL database

through the online Data Analysis Tools [33] to elucidate the phenotypic contributions of

the genomic segments. According to Hu et al. [33], the phenotypes were concisely
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classified into milk, meat and carcass, growth performance, reproduction, exterior and

health trait categories.

Results and discussion

Variance components

The genomic heritabilities from a model without consideration of in-utero HS (model

VC_nHS) as well as common genomic, interaction and residual variances estimated from a

model with in-utero HS effects (model VC_wHS) are plotted in Fig 1. Basically, common

genomic and residual variances were quite constant for all studied weeks during late gestation.

Moreover, both variance components from model VC_wHS were approximately the same

when compared to the respective estimates from model VC_nHS. Hence, the genomic herita-

bilities from model VC_nHS and the common genomic heritabilities from model VC_wHS

were 0.13 for TMY, 0.19 for TFP, 0.15 for TFY, 0.24 for TPP, 0.10 for TPY, and 0.08 for TSCS.

Fig 1. Common genomic, interaction and residual variances of milk production traits and somatic cell score

estimated from an animal model with genotype by heat stress interactions during the last eight weeks of

pregnancy (model VC_wHS). Dotted line = heritability estimated from an animal model without interaction (model

VC_nHS); TMY = first test-day milk yield; TFP = first test-day fat percentage; TFY = first test-day fat yield; TPP = first

test-day protein percentage; TPY = first test-day protein yield; TSCS = first test-day somatic cell score; LMY = first

lactation milk yield; LFP = first lactation fat percentage; LFY = first lactation fat yield; LPP = first lactation protein

percentage; LPY = first lactation protein yield.

https://doi.org/10.1371/journal.pone.0258216.g001
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Minor differences in heritability estimates from model VC_nHS and VC_wHS were observed

for lactation production traits. In detail, the h2
c from model VC_wHS ranged between 0.35 and

0.37 for LMY, between 0.70 and 0.72 for LFP, between 0.34 and 0.36 for LFY, between 0.69

and 0.70 for LPP, and between 0.26 and 0.28 for LPY. The h2
g from model VC_nHS for the

same traits were 0.37, 0.72, 0.36, 0.71, and 0.28, respectively. However, interaction variances

varied to a large extent when HS during last eight weeks of pregnancy was considered in conse-

cutive runs, leading to diverse in-utero HS ratios across the eight weeks. Among all traits,

LMY displayed the largest rhs in a range from 0.00 (WK6) to 0.07 (WK5). The rhs estimates for

TFP were consistently very close to zero in response to climatic impact from all eight last

weeks of gestation. For all traits, the interaction variances explained small proportions of the

total phenotypic variance. In contrast to small interaction variances reported in our study,

environment-specific genomic variances for feed efficiency traits [23] were larger than the

common genomic variances from the present studies. However, in this study [23], production

and management environments different substantially, because datasets from three countries

located in two different continents were merged. Herd specific effects explained very large pro-

portions up to 30% of phenotypic variations in cow production traits in North America [34].

The maximum rhs of 0.07 in our study indicate that the effect of in-utero HS during late preg-

nancy is smaller than the herd effect due to geographical impact across latitudes. The time

period from in-utero HS measurements until the trait recording date is longer for lactation

records, but the rhs for lactation production traits were slightly larger than for the respective

test-day traits. Nevertheless, the stronger impacts might be due to the accumulative in-utero

HS effects during the whole lactation.

In general, regarding in-utero HS, WK2 was most important for test-day yield traits, i.e.,

TMY (rhs = 0.05), TFY (rhs = 0.05) and TPY (rhs = 0.03). For lactation yield traits, WK4 and

WK5 displayed the largest rhs, with 0.06 and 0.07 for LMY, 0.06 and 0.05 for LFY, and 0.05 for

LPY.

Inflation factors

The inflation factors for the main effects from model VC_nHS and VC_wHS ranged from 0.74

for LFP to 1.05 for TSCS (S1 Fig). An inflation factor of value 1 represents sufficient correction

for the population structure in GWAS, and a value larger than 1.05 indicates overestimation

with inflated false positive results [35]. Consideration of the interaction variance in model

GWA_wHS had no impact on inflation factors for the main SNP effects (when compared to

inflation factors from model GWA_nHS). However, a larger number of values exceeding 1.05

were observed for the SNP interaction effects from model GWA_nHS (Fig 2). Generally, with

regard to model GWA_nHS, the inflation factors indicated more false positives for lactation

compared to test-day traits. For test-day traits, less than 30% of all runs had a λ> 1.05, but

67.5% of all runs for lactation milk-production traits displayed such an increased inflation fac-

tor. Interestingly, when considering the interaction variances for in-utero HS in model

GWA_wHS, inflated results decreased to 12.5% for test-day traits and to 5% for lactation traits.

Due to the improvements from model GWA_wHS (i.e., the preferable inflation factors), only

significant and suggestive SNPs for main and interaction effects from model GWA_wHS were

considered in the ongoing gene annotations.

Significant and suggestive SNPs for main effects

For the main effects, suggestive SNPs from model GWA_nHS overlapped to a large extent

with suggestive SNPs from model GWA_wHS. Therefore, only results from GWA_wHS are

presented. A total of 380 suggestive SNPs and 237 significant SNPs (including repetitive SNPs
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for different traits) exceeded the respective thresholds (Table 3). Number of suggestive and sig-

nificant SNPs equaled to 171 and 98, respectively, when considering only unique SNPs.

Detailed information for the suggestive SNPs is given in S1 Table. Among the eleven analyzed

traits, LPP displayed the largest number of suggestive SNPs (91), while only three suggestive

SNPs were detected for TSCS, indicating the strong polygenic genetic architecture of TSCS

compared to milk production traits [36]. For both test-day and lactation records, results for fat

and protein percentages indicated a likewise oligo-genic genetic architecture, as previously

reported in genomic studies comparing percentage and yield traits [37]. Hence, the number of

suggestive SNPs for milk composition traits including TFP, TPP, LFP, and LPP were always

larger than for the respective yield traits TFY, TPY, LFY and LPY. It is well known that fat and

protein percentages are controlled by some major genes with large effects, and many unknown

genes with small effects. In this regard, the gene DGAT1 on BTA14 strongly contributed to

milk fat content [38], and the bovine ABCG2 gene on BTA6 had a major effect on milk protein

content [39]. Accordingly, BTA14 comprised the most suggestive SNPs for all traits, apart

Fig 2. Inflation factors for interaction effects from GWAS models with (GWA_wHS) and without genotype by

heat stress interaction (GWA_nHS) during the last eight weeks of pregnancy. Dotted line = inflation factor of 1.05;

TMY = first test-day milk yield; TFP = first test-day fat percentage; TFY = first test-day fat yield; TPP = first test-day

protein percentage; TPY = first test-day protein yield; TSCS = first test-day somatic cell score; LMY = first lactation

milk yield; LFP = first lactation fat percentage; LFY = first lactation fat yield; LPP = first lactation protein percentage;

LPY = first lactation protein yield.

https://doi.org/10.1371/journal.pone.0258216.g002
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from TPY and TSCS. SNPs on BTA6 were suggestively associated with six traits, including

TMY, TFY, TPP, LMY, LPP and LPY. A larger number of SNPs were detected for lactation

than for corresponding test-day milk production traits, reflecting the larger variation for accu-

mulated lactation than for single test-day traits.

In general, for milk production traits, the identified suggestive SNPs for main effects, in

particular associated SNPs on BTA3, 5, 6, 10, 14, and 20, were in agreement with the associated

SNPs as reported in previous studies [40, 41]. A quite large proportion (66.67%) of the sugges-

tively associated SNPs was mapped by significant SNPs influencing milk production traits [40,

41]. For TSCS, Meredith et al. [40, 42] identified dozens of SNPs, but only one QTL region on

BTA24 (spanning from 59.67 Mb to 59.76 Mb) was in close proximity to the SNP detected in

our study. Meredith et al. [42] used daughter yield deviations for TSCS as phenotypes for sires

in their studies. When considering original phenotypes in a cow population as dependent

traits, the number of identified SNPs for TSCS decreased to nine [41].

Significant and suggestive SNPs for interaction effects

With regard to interaction effects, model GWA_nHS generated more suggestive SNPs (51)

than model GWA_wHS. This was especially the case for lactation production traits, because

the inflation factors for the interaction effects of lactation traits substantially decreased when

switching from GWA_nHS to GWA_wHS (Fig 2). The suggestive SNPs from model

GWA_nHS contained all suggestive SNPs from model GWA_wHS. Due to the improved infla-

tion factors from GWA_wHS, only suggestive SNPs from GWA_wHS were considered in

ongoing gene annotations. The number of suggestive and significant SNPs (31 and 4) for the

interaction effects was smaller than for the main effects (Table 4), reflecting the variance pro-

portions for the interaction and common genomic effects, respectively. In contrast to main

effects, the number of suggestive and significant SNPs for the interaction effects (estimations

from model GWA_wHS) was larger for test-day than for lactation traits. Three from the 31

suggestively associated SNP (model GWA_wHS) were associated with functional traits in Hol-

stein cattle, including ARS-BFGL-NGS-88748 (at 61.48 Mb on BTA19) with body size [43],

Table 3. Number of SNPs with suggestive main effects associated with milk production traits and somatic cell

score.

Traita #sug. SNPs Chromosome (#sug. SNPs on chromosome)

TMY 9 6 (3); 14 (4); 16 (1); 20 (1)

TFP 51 3 (1); 14 (40); 27 (10)

TFY 27 6 (2); 14 (23); 20 (1); 27 (1)

TPP 30 1 (1); 3 (3); 6 (9); 10 (1); 14 (9); 20 (1); 23 (6)

TPY 5 9 (1); 10 (1); 11 (2); 20 (1)

TSCS 3 5 (1); 24 (2)

LMY 34 5 (4); 6(5); 14 (25)

LFP 72 3 (1); 5 (24); 14 (43); 20 (4)

LFY 37 11 (1); 14 (33); 15 (1); 18 (1); 26 (1)

LPP 91 3 (6); 5 (9); 6 (9); 10 (7); 11 (3); 14 (38); 15 (2); 20 (12); 21 (1); 25 (1); 29 (3)

LPY 21 6 (8); 11 (2); 14 (9); 20 (1); 24 (1)

a: TMY = first test-day milk yield; TFP = first test-day fat percentage; TFY = first test-day fat yield; TPP = first test-

day protein percentage; TPY = first test-day protein yield; TSCS = first test-day somatic cell score; LMY = first

lactation milk yield; LFP = first lactation fat percentage; LFY = first lactation fat yield; LPP = first lactation protein

percentage; LPY = first lactation protein yield.

https://doi.org/10.1371/journal.pone.0258216.t003
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BTB-01195369 (at 90.95 Mb on BTA3) with endocrine fertility traits [44], and Hap-
map51393-BTA-113111 (at 23.81 Mb on BTA8) with cow conception rate [45]. Another three

SNPs, i.e., ARS-BFGL-NGS-17754 (at 52.12 Mb on BTA18), ARS-BFGL-NGS-73518 (at 90.98

Mb on BTA3) and ARS-BFGL-NGS-34063 (at 118.09 Mb on BTA5), had an effect on weight,

height at withers, and weaning weight, respectively, in Hanwoo cattle [46]. Hap-
map22875-BTA-155031 (at 112.90 Mb on BTA4) was significantly associated with tick resis-

tance in Brazilian Braford and Hereford cattle [47] and ARS-BFGL-NGS-106479 (at 79.75 Mb

on BTA11) with intramuscular fat percentage in Australian beef cattle [48]. Furthermore, the

Table 4. SNPs with suggestive interaction effects on first test-day milk yield (TMY), fat percentage (TFP), fat yield (TFY), protein percentage (TPP), protein yield

(TPY) and somatic cell score (TSCS), and on lactation milk yield (LMY), lactation fat percentage (LFP), lactation fat yield (LFY), lactation protein percentage (LPP)

and lactation protein yield (LPY).

Trait #sug. SNPs SNP Week Chr. Base pair MAF Beta.inter SE P-value

TMY 2 ARS-BFGL-BAC-33086 8 19 14537900 0.27 -0.91 0.19 1.47E-06

ARS-BFGL-NGS-88748 7 19 61476059 0.18 -1.00 0.22 7.99E-06

TFP 7 ARS-BFGL-NGS-3794 5 1 89914813 0.13 0.15 0.03 1.37E-06

Hapmap39006-BTA-116188 1 2 30384603 0.35 -0.10 0.02 6.49E-06

Hapmap47201-BTA-121648 2 4 91525544 0.39 -0.09 0.02 1.11E-05

Hapmap22875-BTA-155031 2 4 112899067 0.25 0.11 0.02 3.49E-06

Hapmap44288-BTA-81147 5,7 8 48282567 0.19 -0.11 0.03 2.61E-07

ARS-BFGL-NGS-17797 5 18 51967260 0.15 0.14 0.03 1.33E-06

ARS-BFGL-NGS-17754 5 18 52115086 0.15 0.14 0.03 1.33E-06

TFY 3 Hapmap51787-BTA-101971 8 2 54937229 0.23 0.04 0.01 6.09E-06

Hapmap26991-BTA-151076 8 2 82959890 0.44 0.04 0.01 1.33E-06

BTA-104962-no-rs 4 6 8553220 0.16 -0.05 0.01 4.31E-06

TPP 6 ARS-BFGL-NGS-3821 3 1 60736616 0.32 -0.04 0.01 7.37E-07

BTB-01195369 8 3 90945010 0.39 -0.04 0.01 7.09E-06

ARS-BFGL-NGS-73518 8 3 90978652 0.37 0.04 0.01 7.70E-06

ARS-BFGL-NGS-34063 8 5 118085231 0.33 0.04 0.01 4.97E-06

ARS-BFGL-NGS-62753 3 12 66123957 0.11 0.06 0.01 7.69E-06

Hapmap33939-BES5_Contig460_1314 1 24 44888957 0.29 0.04 0.01 9.45E-06

TPY 3 ARS-BFGL-NGS-65689 2 8 23528913 0.08 -0.05 0.01 2.00E-06

Hapmap51393-BTA-113111 2 8 23814719 0.07 0.05 0.01 4.73E-06

ARS-BFGL-BAC-33086 8 19 14537900 0.27 -0.03 0.01 6.19E-06

TSCS 4 Hapmap38434-BTA-74956 6 5 106953248 0.19 -0.29 0.06 5.02E-06

ARS-BFGL-NGS-4427 6 11 81840635 0.14 0.32 0.07 5.48E-06

ARS-BFGL-NGS-17721 6 11 82176836 0.16 0.30 0.07 1.02E-05

ARS-BFGL-NGS-20982 1 27 23032376 0.30 0.30 0.05 1.93E-08

LMY 3 ARS-BFGL-NGS-103742 7,8 10 40203321 0.07 308.38 69.72 9.33E-07

ARS-BFGL-NGS-106479 4 11 79750751 0.19 -230.38 48.15 1.72E-06

ARS-BFGL-NGS-54155 8 27 7920380 0.37 168.80 38.47 1.15E-05

LFP 1 BTB-01985049 3 9 21565055 0.11 -0.07 0.02 7.47E-06

LFY 1 ARS-BFGL-NGS-53850 8 21 28216224 0.06 11.58 2.62 1.02E-05

LPP 1 BTB-01130157 4 7 56381886 0.25 -0.02 0.00 1.28E-05

LPY 3 ARS-BFGL-NGS-103742 8 10 40203321 0.07 10.16 2.09 1.24E-06

ARS-BFGL-NGS-54155 8 27 7920380 0.37 5.11 1.16 1.07E-05

ARS-BFGL-NGS-34282 5 29 33704537 0.41 5.04 1.13 8.03E-06

Week = week before birth; SNP = SNP name; Chr. = chromosome; MAF = minor allele frequency; Beta.inter = interaction effect; SE = standard error.

Bold = SNP with suggestive interaction effects for two traits.

https://doi.org/10.1371/journal.pone.0258216.t004
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Holstein haplotype of the gene APOB, detected as a causal mutation for cholesterol deficiency,

embraces the SNP ARS-BFGL-NGS-106479 [49]. Interestingly, for the interaction effects, the

eight SNPs as reported in the aforementioned studies are more relevant for functional than for

primary traits in cattle, although our analyses mainly focused on milk production. Results for

the suggestive SNP interactions and their associated traits indicate that robust cattle with supe-

rior functionality, e.g., favorable fertility and conformation, might be more tolerant to HS dur-

ing late pregnancy than cattle with breeding focus on milk production. Mapping all suggestive

SNPs for interaction effects with the bovine QTL database revealed that the two most impor-

tant QTL regions were associated with TPP and TPY.

Potential candidate genes

For test-day milk production traits, a total of 373 unique potential candidate genes are located

in regions spanning 100 kb upstream to downstream of suggestive main SNPs from model

GWA_wHS (S1 Table). In addition to the DGAT1 gene, the annotated genes CPSF1, FOXH1,

ARHGAP39, PPP1R16A, GRINA and MROH1 were frequently associated with milk produc-

tion traits [41, 50, 51]. Because of the quite large genetic correlations (� 0.75; in S2 Table)

between test-day and corresponding lactation traits, the percentage of overlapping candidate

genes was larger than 78%. Interestingly, the genes GHR and ABCG2 were only detected as

candidate genes for lactation, but not for test-day milk production traits. Only three candidate

genes were located in close distance to suggestive SNPs for TSCS. However, no study reported

a relationship between the three genes and TSCS. The gene ABCC9 harbors the most signifi-

cant SNPs for production traits [41], the gene WDR7 is associated with sperm motility and

concentration in Holstein-Friesian bulls [52], and the gene TXNL1 has an effect on moisture

content in rainbow trout [53]. The response to oxygen-containing compound and the G-pro-

teifan-coupled receptors signaling pathway were significantly detected based on all candidate

genes for main effects. The first pathway represents biological processes inducing changes in

cell or an organism activities (in terms of movement, secretion, enzyme production or gene

expression), due to an oxygen-containing compound stimulus [54]. The second pathway rec-

ognizes a broad array of extracellular mediators including cationic amines, lipids, peptides,

proteins and sensory agents [55].

Due to the limited number of suggestive SNPs for interaction effects from model

GWA_wHS, a smaller number including 62 unique candidate genes in the vicinity of the SNP

locations, were identified (± 100 Kb, S3 Table). In human, the members of ABCA6-like trans-

porters, ABCA6, ABCA8, ABCA9 and ABCA10, are all integrated in cholesterol-related path-

ways, either directly or based on their dynamic regulation upon cholesterol application [56].

Chemokines, including CCL14 and CCL16, play important roles in regulating bovine endome-

trial functions during early pregnancy [57]. The genes CCL5, HEATR9, MMP28, GIMAP fam-

ily and VEGFC activate immune responses [58–62]. Proteins encoded by the genes GAS2L2
and NRIP2 participate in growth process [63, 64]. Mutations in the SCN1A and TTC21B genes

cause several diseases [65, 66]. Sanglard et al. [67] reported a strong correlation between

ETNPPL variants and the top 20 differentially expressed genes in beef calves in response to

energy restriction during late gestation. GPC4 from the same family of the identified GPC5
and the directly identified gene RASL10B were favorably associated with ETNPPL [67]. The

genes LSAMP and GRM8 are involved in emotional and motivational functions [68, 69]. The

MDGA2 gene encodes novel proteins which regulate neuronal migration and neural develop-

ment [70]. The GPC5 gene was identified by Naderi et al. [71], who focused on selection signa-

tures in subpopulations of local dual-purpose black and white cattle from Germany. As a result

from another selection signature analyses, the gene FOCAD was identified by Alshawi et al.
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[72] in Iraqi cattle. The gene C8H9orf85 was detected as a candidate gene for milk production

traits in water buffalo [73]. The genes TULP3, IQSEC3 and FAM49A were identified as poten-

tial candidate genes for milk production traits in US Holstein cattle [41] and for milking speed

in French Holstein cattle [74]. The genes RHNO1 and FOXM1 are linked to a variety of cancers

and are defined as DNA damage repair regulators [75]. Demetriou et al. [76] explained the

role of the FKBP4 gene in recurrent fetal losses in humans. Bourneuf et al. [77] identified de
novo deleterious mutations in the FAM189A1 gene. The zinc-finger proteins constitute one of

the most abundant groups of proteins in the mammalian genome and are involved in several

cellular processes, differentiations of serval tissues, development of several diseases, as well as

in tumorigenesis, cancer progression and metastasis formation [78].

From the overrepresentation test, two biological processes, including lymphocyte chemo-

taxis and monocyte chemotaxis, were excessively represented, referring to all genes from the

bovine genome. Lymphocytes contribute to the development of immunity and to allergic

inflammation of the lower respiratory tract [79]. Monocytes participate in both innate and

adaptive immune responses, because of their phagocytic activity [80]. The identified annota-

tions indicate the biological complexity of in-utero HS on productivity in offspring. Neverthe-

less, sensitivity to in-utero HS in offspring seems to be correlated with the health status of their

dams.

In conclusion, the rhs in the range from 0 to 0.07 indicate quite small effects of HS during

late pregnancy on test-day and lactation milk production traits. The accumulative effects due

to in-utero HS may explain the generally larger interaction variances for lactation compared to

test-day traits. Superiority in inflation factors for the SNP interaction effects from the model

GWA_wHS over the model GWA_nHS suggests modelling of interaction variances when

applying a GWAS with GxE interactions. Suggestive SNPs for the main effects and their corre-

sponding annotated potential candidate genes reflect findings from previous GWAS focussing

on milk production traits. For the SNP interaction effects, eight out of 31 suggestive SNPs are

known to effect cattle functionality, indicating a possible favourable correlation between func-

tional traits and heat tolerance. Furthermore, two biological processes as inferred on the basis

of the identified 62 candidate genes located in close proximity to the SNPs with suggestive

interaction effects, contribute to immune response mechanisms.
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S1 Table. Suggestive SNPs and potential candidate genes associated with main effects for

test-day and lactation production traits.

(XLSX)

S2 Table. Genetic correlations between test-day and lactation production traits.
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S3 Table. Potential candidate genes associated with interaction effects for test-day and lac-

tation production traits. a: TMY = first test-day milk yield; TFP = first test-day fat percentage;

TFY = first test-day fat yield; TPP = first test-day protein percentage; TPY = first test-day pro-

tein yield; TSCS = first test-day somatic cell score; LMY = first lactation milk.
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S1 Appendix. An R script to perform genome wide associations considering interaction

between each marker and a discrete environmental descriptor with two classes.
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S1 Fig. Inflation factors for main effects from GWAS models with (GWA_wHS) and with-

out genotype by heat stress interaction (GWA_nHS) during the last eight weeks of preg-

nancy. Dotted line = inflation factor of 1.05; TMY = first test-day milk yield; TFP = first test-

day fat percentage; TFY = first test-day fat yield; TPP = first test-day protein percentage;

TPY = first test-day protein yield; TSCS = first test-day somatic cell score; LMY = first lactation

milk yield; LFP = first lactation fat percentage; LFY = first lactation fat yield; LPP = first lacta-

tion protein percentage; LPY = first lactation protein yield.

(TIF)
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