
1Scientific RepoRts | 5:12459 | DOi: 10.1038/srep12459

www.nature.com/scientificreports

Towards highest peak intensities 
for ultra-short MeV-range ion 
bunches
Simon Busold1,2, Dennis Schumacher1, Christian Brabetz1, Diana Jahn3, Florian Kroll4,5, 
Oliver Deppert3, Ulrich Schramm4,5, Thomas E. Cowan4,5, Abel Blažević1,2, 
Vincent Bagnoud1,2 & Markus Roth3

A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for 
heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration 
on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The 
necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like 
solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from 
the laser-driven source, high-current single bunches could be produced and characterized in a recent 
experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a 
FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy 
spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und 
thus separated from the harsh laser-matter interaction environment. These successful experiments 
represent the basis for developing novel laser-driven ion beamlines and accessing highest peak 
intensities for ultra-short MeV-range ion bunches.

Laser-based ion acceleration as a source for intense, MeV-range ion bunches is discussed for many pos-
sible applications: in the context of fusion science1, the creation of warm dense matter2–4 or as diag-
nostic tool5–7 as well as for medical applications8,9. A well understood and widely-used mechanism for 
laser-based ion acceleration is the TNSA (target normal sheath acceleration10,11). Typically accelerated 
protons show excellent beam properties with respect to bunch intensity and emittance12 and also the 
feasibility of efficiently accelerating heavier ions could be demonstrated experimentally13. However, the 
beam suffers from a large divergence and continuous broad energy spectrum, while for most applications 
a collimated bunch with defined energy spread is necessary. First promising results in beam shaping 
could be achieved via the application of pulsed solenoids14,15, permanent magnetic quadrupoles16,17 or 
laser-triggered microlenses18.

For the also necessary manipulation of the longitudinal bunch dynamics, injection into a synchro-
nous radiofrequency (rf) field yields high potential and a first conceptual demonstration was performed 
in Japan19,17. As interest in such novel beamline concepts arises20,21, the German national collaboration 
LIGHT (Laser Ion Generation, Handling and Transport22), has built a test beamline at the GSI Helmholtz 
center for heavy ion research as the central part of the collaboration’s agenda. This beamline exploits 
the TNSA mechanism to provide a very compact proton source with energies currently reaching up to 
28.4 MeV. The acceleration is driven by GSI’s PHELIX laser (Petawatt High Energy Laser for Ion eXper-
iments23), which is focused at a laser intensity of 5 ×  1019 W/cm2 onto a thin metal foil target (typically 
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5 or 10 μ m thin gold or titanium foils). From the continuous and highly divergent source spectrum a 
specific energy can be selected and collimated via a pulsed high-field solenoid, which can be operated at 
up to 9T field strength. The obtained source parameters are in the typical range for TNSA experiments 
within the given laser and target parameters and it is possible to accelerate more than 1012 protons above 
4 MeV energy in total with about 1010 protons in a 1 MeV energy bin around 10 or 8 MeV. Via chromatic 
focusing with the pulsed solenoid, up to one third of the protons in such an energy bin can be captured 
and transported through the beamline within a collimated bunch with still relatively large energy spread 
(about 20% FWHM). Although thus the overall capture efficiency is on the sub-percent level, still large 
single-bunch particle numbers above 109 can be created. However, the beamline is routinely not oper-
ated at its limit and also typical shot-to-shot fluctuations of up to a factor of 2 in particle numbers are 
observed. This first step of the experiment is described in detail in24 and an illustration given in Fig. 1.

The next step has been the longitudinal phase rotation of the bunch via applied electrical fields within 
a rf cavity, running at 108.4 MHz and providing a total electrical potential of more than ± 1 MV. Injection 
of the bunch at a synchronous phase of Φ S =  − 90 deg leads to a rotation around the central energy in 
longitudinal phase space and at a certain rf input power to an efficient energy compression of the bunch; 
less than 3% energy spread could be achieved in a previous experimental run25 for protons at 9.4 MeV 
energy and particle numbers larger than 109.

With increasing rf power the bunch can also be ‘over-rotated’ in phase space, leading to a situation of 
a well-ordered energy distribution within the bunch with the slower particles at the front and the faster 
particles at the back. Along a further propagation length, the faster will catch up with the slower particles 
and at one specific distance a minimum in the bunch length will be reached. The mechanism is called 
phase focusing and is illustrated in Fig. 2 together with the alternative operation mode for energy com-
pression. While the latter was already demonstrated in a previous run in 2013, finally the phase focusing 
could be experimentally accomplished recently. This completes the initial commissioning phase of this 
novel laser-driven ion beamline, available now at GSI and representing the focus of this paper.

The comparative simulations are performed with the TraceWin code from cea26 and use beam param-
eters, that are adapted to the experimental findings to most precisely model the experiment. The specific 
parameters used here will be discussed later in context with the experimental results.

Setup and Diagnostics
The mechanism of phase rotation for temporal bunch compression essentially relies on the quite large 
energy spread of the bunch. Therefore the bunch will quickly defocus again in phase behind the spe-
cific focal position. Our simulations predict this focal position to be at 3.45 m behind the cavity (6 m 
to source) for protons of 7.8 MeV energy and a total applied gap voltage of 0.96 MV. This position was 
chosen as diagnostic position in the performed experiments and the rf power varied to scan the bunch 
length at this specific position.

The first part of the experimental setup is the same as described in25: The pulsed solenoid is placed 
80 mm behind the laser matter interaction point and collimates a specific proton energy via chromatic 
focusing (the solenoid field strength can be assumed constant for the proton transition time). A drift 
leads then to the 550 mm long rf cavity, starting at 2 m to the source and consisting of three acceleration 
gaps. Behind the rf cavity the beamline is extended up to a diagnostic chamber at 6 m distance to the 
source: Two permanent magnetic quadrupole doublets (QD) keep the beam transversally confined along 
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Figure 1. Shown are the accesssible source parameters via TNSA (energy-dependent proton distribution 
function and half opneing divergence angle) at the used experimental area Z6 at GSI Darmstadt. Also 
indicated the effect of spectral filtering via chromatic focusing, in this case with the solenoid adjusted to 
collimate protons with an energy of 7.8 MeV.
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the drift. They are placed at 3.2 m and 5 m distance to the source and consist of 50 mm long, 25 T/m 
strong permanent magnetic quadrupoles in a Hallbach design. Optionally, for a steeper final focusing a 
third QD can be inserted, consisting of a (80 mm, 85 T/m) and a (45 mm, 105 T/m) permanent magnetic 
quadrupole in Hallbach design. A schematic of the full beamline is shown in Fig. 3.

Adjustment and online control of source and machine parameters are available: The current through 
the pulsed solenoid and the phase and relative voltage of the rf wave within the cavity are monitored 
on-shot as well as the PHELIX laser parameters, including a high-precision relative timing measurement 
for the synchronization of laser and rf. Concerning the accelerated proton bunch, the beamline has sev-
eral possible diagnostic ports for characterization: Transverse beam profile, spectral characteristics and 
proton numbers can be obtained with dosimetry films in stacked configuration (Radiochromic Imaging 

Figure 2. Illustration of phase rotation in longitudinal phase space via applied rf. The input beam 
is shown for reference in (a) and the two operational modes of interest are depicted in (b) and (c): At 
an injection phase of Φ S =  − 90 deg the bunch is rotated around the central energy by an angle ϕ in 
dependency on the rf amplitude Urf. (b) represents the energy compression mode, see25 and (c) the phase 
focusing mode, which is described in this paper and leads to (d) a focus of the bunch in the time domain 
after a certain drift length.

Figure 3. The setup of the current LIGHT beamline at GSI. (a) The PHELIX laser drives the acceleration 
of a broad proton spectrum up to 28.4 MeV energies via the TNSA mechanism. (b) A specific energy can be 
selected and collimated by a pulsed high-field solenoid, in this case 7.8 MeV protons, and the bunch is (c) 
rotated in longitudinal phase space within a rf cavity. Two quadrupole doublets, (d) and (e), provide for the 
beam transport up to (g), a diagnostic chamber at 6 m distance to the source. (f) represents an optionally 
third quadrupole doublet for a steeper final focusing of the bunch.
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Spectroscopy27), and the temporal bunch profile measurement is performed with two complementary 
methods:

On the one hand, the bunch hits a large, fast plastic scintillator (BC-422Q from Saint Gobain, 1% 
benzene quenching, decay time τ =  0.7 ns). Besides picturing the full scintillator area and thus recording 
the transverse beam profile with a fast dicam pro (from pco), a horizontal lineout at the center of the 
scintillator is recorded with a streak camera (for visible light, from Hamamatsu), using a 50 ns streak time 
and a resulting temporal resolution of Δ τ =  ± 0.2 ns. On the other hand, the scintillator has a 1.5 mm 
diameter central hole to let part of the beam pass through and hit a specially designed fast diamond 
detector, which consists of a 13 μ m thin pcCVD (polycrystalline chemical vapor deposition) diamond 
plate with an active detection area of 0.8 mm2. An applied field gradient of 2.3 V/μ m is used to quickly 
drain the free charges, that are created by the protons (electron-hole pairs) while passing the detector. A 
special impedance matching results in a calculated signal rise time of the detector of only τ =  RC ≈  40 ps. 
This detector has been developed in collaboration with GSI’s detector laboratory and reaches the neces-
sary time resolution. It is connected to a 8 GHz oscilloscope using a minimized cable length for signal 
transport of less than 0.5 m high-frequency compatible SMA cables.

The arrangement in the diagnostic chamber is illustrated in Fig. 4 and includes relevant dimensions 
and distances. As the dosimetry measurements with radiochromic film (RCF) could not be done in 
parallel to the other measurements, particle numbers have not been recorded routinely. However, they 
could be determined to be at a level of 3 ×  108 and constant within the typical shot-to-shot fluctuations 
from the source (± 50%) as observed in previous campaigns24,25.

Bunch characterization. For reference purposes the transported proton bunch was first character-
ized at the diagnostic position at 6 m behind the source without the rf cavity running. The solenoid was 
always driven at a peak current of 7.8 kA, resulting in an maximum magnetic field of 6.55 T. This leads 
via energy selection through chromatic focusing to a central bunch energy of E0 =  7.8 MeV protons. The 
central part of the bunch is well fitted by a Gaussian with (21 ±  3)% energy spread (Δ E/E0 at FWHM), 
which is also in good agreement with the results from previous campaigns24,25. Due to expected addi-
tional losses in the new transport section the measured particle numbers were slightly lower and in 
the range of 1.5 ×  108 to 5 ×  108 protons within FWHM. These values are obtained from the dosimetry 
measurements and served as input parameters for the comparative simulation studies.

Switching on the rf in the cavity, first an absolute calibration of the synchronous phase Φ S is necessary 
to synchronize the laser and the rf and being able to inject the bunch at the correct phase of Φ S =  − 90 
deg. This was done by scanning the rf phase and diagnosing the bunch with the streak camera and 
optionally a dipole spectrometer (as described in25). After this absolute calibration of the timing system, 
the synchronous phase can be adjusted in advance to a precision of Δ Φ S =  ± 12 deg and measured 
on-shot with even Δ Φ S =  ±2 deg, which defines the relative uncertainty for all given values for Φ S in 
this paper.

Phase focusing. For the phase focusing experiments, the bunch is injected into the rf field at 
Φ S ≈  − 90 deg synchronous phase, thus efficiently rotated in longitudinal phase space as pictured in 

Figure 4. Setup of the beam diagnostics. The bunch hits the fast plastic scintillator at 6 m distance to the 
TNSA proton source. The full transverse profile of the scintillator is recorded with a camera and a horizontal 
lineout is imaged to a streak camera. Through a free, centered aperture within the scintillator a part of the 
beam passes towards the diamond detector for a time-of-flight measurement. Optional to the scintillator, a 
dosimetry measurement is possible with a stack of radiochromic films.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:12459 | DOi: 10.1038/srep12459

Fig. 2. The bunch length is recorded at the detection position at 6 m behind the source with a streak and 
a diamond detector and the rf amplitude is varied to find the minimum achievable bunch length. The rf 
amplitude cannot be measured directly, but is determined by the (known) rf input power and the shunt 
impedance of the cavity. A comparison to the expected values from the simulations will be done later on 
and instead an (arbitrarily) normalized rf amplitude Ur,f,n will be given as the experimental observative, 
which is directly proportional to the real amplitude.

Scanning the rf power around the value of optimum temporal bunch compression for the given setup 
reveals the expected minimum as shown in Fig. 5. Both, diamond and streak detector show a consistent 
behavior. A minimum FWHM pulse length of τ =  (462 ±  40) ps is measured with the diamond detector. 
The streak camera in this case is only able to set the upper limit to the pulse length, as it suffers from two 
major error contributions: a symmetric error through the finite entrance slit width (Δ τ =  ± 200 ps) and 
an asymmetric error through the still large signal decay time of the scintillator (τdecay =  0.7 ns according 
to manufacturer’s specification). A direct comparison of the response of both detectors is given in Fig. 6, 
showing the measured signal at the optimum temporal compression parameters. While both show a rapid 

4 4.2 4.4 4.6 4.8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

normalized rf gap voltage U
rf,n

 [V]

F
W

H
M

 p
ul

se
 le

ng
th

 [n
s]

streak camera
diamond detector

Figure 5. Measured FWHM bunch lengths within the diagnostic chamber at an injection phase into 
the rf cavity of ΦS = −90 deg and varying rf amplitude Ur,f,n. The streak data gives an upper boundary 
only due to the long decay time of the scintillator, while the diamond detector provides a much better time 
resolution. With respect to the general behavior, both detectors are in very good agreement.
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Figure 6. Temporal profile of the shortest obtained bunch with τ = (462 ± 40) ps (FWHM), measured 
by the streak and diamond detector in parallel. Both signals are normalized to maximum value and 
furthermore this maximum value is shifted to time t =  0. Also indicated: The convolution of a Gaussian 
signal (FWHM =  462 ps) with an exponential decay function (τ =  700 ps), which reproduces the scintillator 
signal perfectly.
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signal rise time, the signal decay is dominated for the streak camera by the slow scintillator decay time 
and the diamond shows an undershoot oscillation due to intrinsic detector characteristics. Calculating 
the convolution of a Gaussian with a FWHM of 462 ps and the exponential decay function of the scin-
tillator reproduces the measured signal very good and thus the measurement of the diamond detector 
can be verified with this complementary measurement via the streak camera. (The convolution pictured 
in Fig. 6 has an additional slight shift upwards to match the non-zero offset of the experimental data.)

Similarly, the undershoot oscillation of the diamond detector can be identified as a detector intrinsic: 
For once, an in reality occuring second particle peak 1 ns after the main bunch would be visible in the 
streak detector, too. Moreover, the oscillating behavior could be identified as an artefact of a resonant 
circuit within the detector electronics.

Discussion
The 7.8 MeV proton bunch could be temporally re-compressed to less than 500 ps length. Still, this is far 
more than the original bunch length (approximately 1 ps acceleration time). First, a major reason is the 
difference in the propagation path for all the particles within the bunch. The pulsed solenoid collects 
particles from a large solid angle (± 100 mrad) and the covered propagation length while passing through 
the solenoid is quite different for e.g. a proton passing the solenoid straight on axis or a proton entering 
at 100 mrad, which is then bent back towards the axis on a spiral trajectory. Further contributions of the 
same kind are added along the beamline within the different elements and results in a temporal broad-
ening for particles with the exact same energy. These effects are included in the comparative simulation 
studies, which predict a minimum FWHM pulse length for a proton bunch with a central energy of 
7.8 MeV of Δ τΔS ≈  70 ps just due to the difference in propagation paths.

Secondly, the temporal focus is very sensitive to the experimental parameters (rf phase, rf amplutide 
and detection position). The practically limited adjustment accuracy needs to be taken into account here: 
the synchronization jitter of ± 12 deg adds to the total error and especially an increased step size for the 
rf power scan might reveal a slightly shifted position of the minimum. A more detailed scan is planned 
for future experiments.

Summary and Outlook. In summary, a worldwide unique laser-driven beamline is now available 
at GSI, providing highest proton currents due to the unique source parameters via phase focusing. In 
recent experiments, up to 5 ×  108 (± 20%) protons could be compressed in time to a bunch length of 
τ =  (462 ±  40) ps, thus to a peak particle current of 170 mA. The transverse final focusing was not yet 
optimized and the minimum transverse beam size at the longitudinal focus position was measured to 
3 ×  18 mm2.

As the next steps in the further development of the LIGHT beamline, an upgrade of the final focusing 
system is planned to minimize the transverse beam profile and thus access highest bunch intensities. 
Also the ion species will be varied so that acceleration and beam shaping of carbon and flourine can 
be explored. The possibility of efficient acceleration of these ion species has already been demonstrated 
within the TNSA regime13. With these forseen upgrades, the beamline might enter a comparable param-
eter regime as the proposed NDCX-II machine28.

Finally, the beamline profits from the unique experimental possibilities at its location at GSI: Also 
available for combined experiments are the conventional ion beam from the UNILAC accelerator and 
the high energy laser nhelix29 as well as multifold ion beam and plasma diagnostics.
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