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Background: Ovarian cancer (OC) has a high mortality rate and poses a severe threat to
women’s health. However, abnormal gene expression underlying the tumorigenesis of OC has
not been fully understood. This study aims to identify diagnostic characteristic genes involved
in OC by bioinformatics and machine learning.

Methods: We utilized five datasets retrieved from the Gene Expression Omnibus (GEO)
database, The Cancer Genome Atlas (TCGA) database, and the Genotype-Tissue Expression
(GTEx) Project database. GSE12470 and GSE18520 were combined as the training set, and
GSE27651 was used as the validation set A. Also, we combined the TCGA database and
GTEx database as validation set B. First, in the training set, differentially expressed genes
(DEGs) between OC and non-ovarian cancer tissues (nOC) were identified. Next, Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease Ontology (DO)
enrichment analysis, and Gene Set Enrichment Analysis (GSEA) were performed for functional
enrichment analysis of these DEGs. Then, two machine learning algorithms, Least Absolute
Shrinkage and Selector Operation (LASSO) and Support Vector Machine-Recursive Feature
Elimination (SVM-RFE), were used to get the diagnostic genes. Subsequently, the obtained
diagnostic-related DEGs were validated in the validation sets. Then, we used the
computational approach (CIBERSORT) to analyze the association between immune cell
infiltration and DEGs. Finally, we analyzed the prognostic role of several genes on the KM-
plotter website and used the human protein atlas (HPA) online database to analyze the
expression of these genes at the protein level.

Results: 590 DEGs were identified, including 276 upregulated and 314 downregulated
DEGs.The Enrichment analysis results indicated the DEGs were mainly involved in the nuclear
division, cell cycle, and IL−17 signaling pathway. Besides, DEGs were also closely related to
immune cell infiltration. Finally, we found that BUB1, FOLR1, and PSAT1 have prognostic roles
and the protein-level expression of these six genes SFPR1, PSAT1, PDE8B, INAVA and
TMEM139 in OC tissue and nOC tissue was consistent with our analysis.
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Conclusions:We screened nine diagnostic characteristic genes of OC, including SFRP1,
PSAT1, BUB1B, FOLR1, ABCB1, PDE8B, INAVA, BUB1, TMEM139. Combining these
genes may be useful for OC diagnosis and evaluating immune cell infiltration.
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INTRODUCTION

Ovarian cancer (OC) is the eighth leading cause of cancer
death and the seventh-most frequently diagnosed among
females worldwide (Torre et al., 2015; Coburn et al., 2017).
Despite other cancers, such as cervical cancer, having higher
rates of incidence, ovarian cancer mortality rates continue to
be high (Siegel et al., 2020). As early-stage tumors symptoms
are typically asymptomatic (Chan et al., 2022; Zhang & Hu,
2022), more than 70% of OC cases are diagnosed at an
advanced stage (Chern & Curtin, 2016; Sung et al., 2021).
In most countries, the 5-year survival rate of OC is usually
lower than 40% (Vaughan et al., 2011). The high morbidity and
mortality rates make early screening and diagnosis of ovarian
cancer even more important. Cancer diagnostic genes are
closely related to tumor diagnosis and prognostic survival.
Ovarian cancer candidate diagnostic genes and tumor
microenvironment immune genes are still unclear, so this
study chooses the machine learning approach to predict
ovarian cancer diagnostic genes to provide some help for
the early diagnosis of ovarian cancer.

The occurrence and development of ovarian cancer are
affected by the tumor microenvironment (Jiang et al., 2020;
Zhang et al., 2021). Among the tumor microenvironment,
immune cells are the key factors of tumor progression. At
the same time, immunotherapy is a promising tumor-killing
method (Zhu et al., 2021). The degree of infiltration of immune
cells can reflect the response of ovarian cancer cells to
immunotherapy, as well as different prognoses (Goode
et al., 2017). However, despite the development of
immunotherapy for ovarian cancer, the results have not
been satisfactory. Immune cell infiltration and distribution
are highly heterogeneous and complex, and the search for
factors driving immune infiltration or key biomarkers is
crucial to reveal this heterogeneity (Odunsi, 2017; Cai et al.,
2021; Faust et al., 2022). Therefore, studying the infiltration
state of immune cells and discovering new immune-related
characteristic genes is essential for the treatment of ovarian
cancer.

In recent years, machine learning has been applied to
various fields of biomedicine. Compared with most
traditional statistical methods, the advantage of machine
learning is that it can identify potential rules through
massive data learning (Zhao et al., 2020). With the
development of high-throughput sequencing technology, the
efficiency of gene sequencing has improved exponentially, and
thus machine learning can also be well applied to identify
cancer characteristic genes. Machine learning algorithms have
been applied to identify cancer prognostic characteristic genes
and tumor classification. Cangelosi et al. (2014) used the Logic

Learning Machine algorithm to determine the prognostic
characteristic genes associated with neuroblastoma
(Cangelosi et al., 2014). Liu et al. (2021) used a variety of
machine learning algorithms to identify a ferroptosis-related
lncRNA signature for lung adenocarcinoma and three
pyroptosis-related molecular subtypes of lung
adenocarcinoma (Liu et al., 2021; Lu et al., 2021). All these
findings show the great potential of machine learning in
oncology research. It can learn high-dimensional gene
expression data to perform specific classification tasks.
However, there is little research on machine learning in
identifying characteristic genes related to cancer diagnosis,
hence, a further in-depth study is required.

In this study, based on three cohorts from the GEO dataset, we
analyzed differential genes between ovarian cancer tissues and
non-tumor tissues, and explored the biological functions and
pathways involved in these differential genes. Two different
machine learning algorithms were also used to identify key
ovarian cancer diagnostic characteristic genes. Finally, we
performed immune cell analysis and association analysis of
these key genes and immune cells.

MATERIALS AND METHODS

Datasets
The NCBI-GEO database, TCGA (http://portal.gdc.cancer.
gov/) database, and GTEx database are free and public
databases containing gene profiles. We retrieved three
microarray datasets (GSE12470, GSE18520, and GSE27651)
were from the GEO database (https://www.ncbi.nlm.nih.gov/
gds/). Microarray data of GSE12470, GSE18520, and
GSE27651 were all on account of GPL570 Platforms [(HG-
U133_Plus_2) Affyme-trix Human Genome U133 Plus 2.0
Array]. 43 serous ovarian cancer samples and 10 normal
peritoneum samples were included in GSE12470. 53
advanced stage, high-grade primary tumor specimens and
10 normal ovarian surface epithelium brushings were
contained by GSE18520. GSE2765149 included 43 ovarian
cancer (8 serous borderline ovarian tumors, 13 low-grade
serous ovarian carcinomas, and 22 high-grade serous
ovarian carcinomas) and 6 human ovarian surface epithelia.
Then, we defined the ovarian cancer sample as OC, and the
non-ovarian cancer tissues sample as nOC. Additionally, we
converted the probe matrix into a genes matrix based on the
annotation information using the “perl” language. Then, we
combined the GSE12470 and GSE18520 cohorts to constitute a
training set. Besides, “sva” and “limma” packages in R
language were used to do batch correction and to find out
the different genes between the OC group and nOC group.
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Finally, the GSE27651 cohort was used as the validation set A
for subsequent validation. Meanwhile, we merged 379 ovarian
cancer samples from TCGA and 88 normal ovarian samples
from GTEx, as well as batch correction. The merged data set
was used as validation set B for subsequent validation. Not
only the number of samples can be increased, but also the
accuracy of diagnostic genes can be rechecked.

Differential Expression
According to the data obtained from the GEO database, DEGs
screening was performed between the OC group and the nOC
group in the training set by the “limma” package. DEGs were
found by filtering according to |logFC| > 2 and adj p value <
0.01. If logFC >2, it indicated that this gene was upregulated in
the OC group. If logFC <−2, it indicated that this gene was
down-regulated in the OC group. Moreover, we visualized the
analysis results using a volcano plot and a heat map.

Functional Enrichment Analysis
GO functional analysis, KEGG pathway analysis, DO, and
GSEA enrichment analyses were carried out to predict the
potential functions of the DEGs by using the “clusterProfiler”
“enrichplot” “org.Hs.eg.db” and “ggplot2” in R package. This
helps to conclude whether the genes are significantly
concentrated in a particular pathway, a particular
cytological locus, or a particular class of diseases. These
functional enrichment analyses with p-value < 0.05 were
considered statistically significant.

Machine Learning
In our research, we needed to create a more accurate prediction
system. So, we used two machine learning algorithms, LASSO,
and SVM-RFE, to perform feature selection to screen
diagnostic markers for OC. LASSO regression is equivalent
to ridge regression using 1-parity to address the problem of
high-dimensional data sparsity. The analysis is performed in R
using functions from the glmnet package, with a model using a
binomial model (family = “binomial”) and a loss function
using binomial deviance (type.measure = “deviance”). SVM-
RFE containing recursive feature elimination recursively
removes ground influence factors for better genetic
screening. This method is implemented using the cfe
function in the “caret” package, and the fitted prediction
function is cross-validated. Taking the intersecting genes as
the diagnostic genes of the disease, we tested the diagnostic
genes in the validation group. If the p-value < 0.05, it would
mean that these genes differed from the training set and
validation set. Furthermore, receiver operating characteristic
curve (ROC) was used to observe the accuracy of the disease
diagnostic genes.

Immune Analysis
We used CIBERSORT in R language to analyze the differences
in the infiltration of 22 immune cells between the nOC and OC
groups. After that, we used diagnostic candidate genes to
obtain the relationship between each diagnostic gene and
immune cell infiltration. Furthermore, we plotted

correlation graphs in the form of scattered points, violin,
and lollipop to visualize the data.

Prognostic Analysis and Protein Expression
Analysis
We searched for these diagnostic candidate genes on the KM-
plotter (https://kmplot.com/). First, set the tumor type to
“ovarian cancer,” then enter the gene name in the search box,
and select “midian” in the “Split patients by” column. Finally,
select the “user selected probe set” option in the “Probe set
options” column.

To further validate our results, we searched the HPA online
database (www.proteinatlas.org/) for the protein-level expression
of these nine diagnostic candidate genes in ovarian cancer tissues
and normal tissues.

RESULTS

Screening of Predictive Genes
Article framework and workflow have been systematically
described in (Figure 1). 12,881 genes were obtained in OC
group and nOC group, and the filtering condition was set to |
log2FC| > 2 and p-value < 0.05 to obtain 590 DEGs. 50 genes with
the most significant upregulation and downregulation were
selected. Besides, the heat map and volcano plot were plotted
for visualization (Figures 2A,B).

Enrichment Analysis
To further investigate potential gene functions and signaling
pathways between OC and nOC, we extracted 590 DEGs in
the training set. Then, GO enrichment analysis, KEGG
pathway analysis, GSEA, and DO enrichment analyses were
performed based on these DEGs and biological processes with
significant enrichment. For KEGG enrichment analysis (p-value
< 0.05), 16 results with the most significant enrichment of KEGG
were selected for bubble visualization. Besides, the signaling
pathways with strong association were cell cycle, proteoglycan,
progesterone-mediated oocyte maturation, fluid shear stress and
atherosclerosis, cell adhesion molecules, and IL-17 (Figure 3A).
GO enrichment analysis was performed to determine the
enrichment of the functions (adjusted p-value < 0.05). The
graphs were separated according to biological processes (BP),
cell component (CC), and molecular function (MF). The top 10
genes in each of the three groups were selected for visual
enrichment analysis (Figure 3B). BP, DEGs were enriched in
the nuclear division, cell cycle, extracellular matrix, epithelial
growth-related. CC, DEGs were enriched in the collagen
deposition, chromosome-related functions. MF, DEGs were
significantly enriched in the DNA-binding transcriptional
activator activity, RNA polymerase specificity. DO enrichment
analysis (adjusted p-value < 0.05) obtained the top 30 most
significantly enriched diseases plotted as a bubble, with a
significant association with urological cancers, female
reproductive cancers, and non-small cell lung cancer
(Figure 3C). GSEA enrichment analysis was performed to
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observe the active functional pathways in the OC and nOC
groups (adjusted p-value < 0.05). The five most active
pathways were selected according to the OC and nOC groups,
and were plotted separately. The top five active pathways in nOC
were complement and coagulation cascade, cytokine and
cytokine-receptor-interaction, focal adhesion, MAPK signaling
pathway, and vascular smooth muscle contraction (Figure 3D).
However, the top five active pathways in OC group were base
excision repair, cell cycle, cysteine and methionine metabolism,
DNA replication, and homologous recombination pathway
(Figure 3D), which were totally different from nOC group.

Validation Group Difference Analysis
Twenty genes were selected by the LASSO algorithm (Figure 4A),
40 genes were selected by the SVM-RFE algorithm (Figure 4B).
Finally, their intersection was taken to obtain 10 genes, namely
BUB1, ABCB1, SFRP1, INAVA, TMEM139, BUB1B, PSAT1,
PDE8B, FOLR1, HOXA13 (Figure 4C). The 10 diagnostic
genes obtained were subjected to nOC and OC group
difference analysis. OC group is shown in red, nOC group is

shown in blue. If p-value < 0.05, these potential genes differed
between the two groups. In the training set, upregulated potential
genes in the OC group were PSAT1, FOLR1, INAVA, BUB1B,
and downregulated potential genes were PDE8B, ABCB1, SFRP1
(Figures 5A-J). The diagnostic accuracy of the OC group was
verified by ROC curves, and the area under the curve (AUC) of all
10 genes was greater than 0.9 (Figures 6A–J). Besides, there were
seven genes (FOLR1, INAVA, BUB1B, ABCB1, SFRP1, PSAT1,
PDE8B) with AUC bigger than 0.9. And these seven genes were
used as diagnostic genes. (Nuiplot et al., 2015) In validation set A,
the AUCs of ABCB1, BUB1B, INAVA, FORL1, PDE8B, PSAT1,
and SFRP1 were greater than 0.9 (Supplementary Figure S1). In
validation set B, 6 genes were differentially expressed in OC
group and nOC group. They were FOLR1, INAVA, BUB1,
ABCB1, PSAT1, PDE8B, and TMEM139 (Supplementary
Figure S3). The AUCs of all seven genes were greater than
0.9 (Supplementary Figure S4). However, there was no relevant
expression of SFRP1 and BUB1B genes detected in the
validation set B. Due to the high lethality of ovarian cancer,
we took the potential genes obtained from validation set A and

FIGURE 1 | Article framework and workflow.
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validation set B. Thus, altogether, 9 diagnostic genes were
obtained.

Immune Cell Infiltration
Analysis of the differential expression of immune cells in the OC
and nOC groups showed a significant difference in the infiltration
of B cells, T cells, macrophage, neutrophils, and non-activated
mast cells, p < 0.05 (Figure 7A). Immune cell correlation in TME
was then visualized in the form of a heat map (Figure 7B).
Further analysis of the difference in the degree of cellular
infiltration between nOC and OC groups indicated that
Memory B cells, CD8+ T cell, T follicular helper cells,
Regulatory T cells (Tregs), M0 macrophage, M1 macrophage,
and dendritic cell activation infiltration were significantly higher
in the Oc group than in the nOC group. However, B-cell
progenitor, CD4+ T cell memory, Gamma delta T cells,
monocytes, M2 macrophages, mast cell quiescence, reticulocyte
infiltration were significantly lower than that in the nCO group
(Figure 7C). After that, we further analyzed the relationship
between the screened differential genes and immune cell
infiltration (Figure 8). Correlation analysis was performed
between genes and immune cells, with the size of the circle
representing the absolute value of the correlation coefficient
and the color of the circle representing the p-value of the
correlation test. When p-value <0.05, then there is a
correlation between immune cells and the target gene (shown
in red), which implies that the correlation between the immune
cells and the target gene is significant (Figures 8A–J).

Prognostic Analysis and Protein Expression
Analysis
After searching these diagnostic candidate genes on the KM-
plotter website, we selected genes with log rank p < 0.05 in the

survival analysis graph. Finally, we found that BUB1, FOLR1, and
PSAT1 among these genes have prognostic effects
(Supplementary Figure S5).

We found that five (SFPR1, PSAT1, PDE8B, INAVA, and
TMEM139) of the nine diagnostic candidate genes could be
retrieved, and their expression trends were similar to our
analysis results (Supplementary Figure S6).

DISCUSSION

Ovarian cancer is one of the most lethal gynecologic malignancies,
characterized by high incidence and lethality (Torre et al., 2018). Due
to its vague symptoms in the early stage, 70–80% of patients are first
diagnosed at a late stage (III-IV) of the disease. Thus the five-year
survival rate of patients is significantly reduced (Lheureux et al.,
2019). In recent years, with the rapid development of bioinformatics
technology, the relationship between genes and tumors has been
explored more deeply. There is increasing evidence that alterations
in gene expression levels are involved in tumorigenesis and
progression. Machine learning is a core discipline of artificial
intelligence (AI), which utilizes algorithms that detect patterns
within existing data, then train itself to make predictions on new
data (Badrick et al., 2019). To identify more useful diagnostic
biomarkers in OC group, we used bioinformatics methods to
obtain 590 differentially expressed genes between OC and nOC
groups. The enrichment analysis of these DEGs indicated they were
mainly enriched in a cell cycle as well as proteoglycan-related
pathways and cell division-related functions highly associated
with gynecologic oncological diseases. Then, nine key genes were
screened as candidates for ovarian cancer diagnosis by two machine
learning algorithms, LASSO and SVM. Further immunoassays
revealed significant differences in the infiltration of B cells,
T cells, macrophages, neutrophils, and non-activated mast cells

FIGURE 2 | Differentially expressed genes between OC and nOC in the training set. (A) The heat map of differentially expressed genes, highly expressed genes
were red, and lowly expressed genes were blue. (B) The volcano map of differentially expressed genes. Fold changes >2 were indicated by red (upregulation) or green
(downregulation).
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FIGURE 3 | Enrichment analysis of differentially expressed genes. KEGG pathway analysis (A), GO function analysis (B), Disease analysis (C), and GSEA analysis
(D,E) show the active functions or pathways in the OC and nOC groups, respectively.

FIGURE 4 | LASSO and SVM-RFE screen characteristic genes. (A) LASSO regression screens disease characteristic genes, the abscissa is logλ, and the ordinate
is the cross-validation error. When 20 genes are selected, the cross-validation error is the smallest. (B) SVM-RFE screens characteristic genes. The abscissa represents
the change in the number of genes, and the ordinate represents the cross-validation error. When n = 40, the cross-validation error is the smallest. (C) Venn diagram
shows the intersection of genes found by two machine learning methods.
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between OC and nOC groups. These results provide new insights
into the diagnosis and treatment of ovarian cancer.

The 590 DEGs were used for GO, KEGG, GSEA, and DO
analyses. KEGG pathway analysis indicated that these DEGs were
mainly involved in the cell cycle, proteoglycan, progesterone-
mediated oocyte maturation, fluid shear stress, atherosclerosis,
cell adhesion molecules, and IL-17 pathways. These pathways are
closely associated with ovarian carcinogenesis and progression.
Abnormalities in cell cycle mechanisms often accompany ovarian
carcinogenesis. In the early stages of ovarian cancer, the process of
cell nuclear division with diminished ability to excise damaged bases,
as well as homologous recombination and diminished chromosome
repair, promotes cells to enter the S phase from G0/G1 phase. It
accelerates tumor cell proliferation and growth (Liu et al., 2019).
Interestingly, we obtained similar results in GSEA and GO analyses.
GSEA analysis revealed that the top five active pathways in OC were
base excision repair, cell cycle, cysteine and methionine metabolism,

DNA replication, and homologous recombination pathways, mainly
concentrated in the stage of ovarian carcinogenesis and cell
metabolism-related pathways. GO enrichment analysis also
revealed that these DEGs were primarily associated with cell
nuclear division, cell cycle, extracellular matrix, and epithelial
growth. In addition to cell cycle abnormalities, the metastatic
mechanism of OC is equally extremely important. Unlike most
advanced tumor types that metastasize through blood vessels, it
metastasizes mainly through the intra-abdominal cavity by the
luminal route (Hassan et al., 2020). In the peritoneal cavity,
tumor-mesothelial adhesions, as well as cell-to-cell interactions,
are important steps in the spread of the tumor. Selectins as a
glycan-binding molecule play an essential role in ovarian cancer
intraperitoneal metastasis, as do cell adhesion molecules. Fluid
dynamics mediates heterotypic cell-cell interactions underflow,
facilitating the early steps of this adhesion cascade. Besides,
related studies have shown that ovarian is a critical endogenous

FIGURE 5 |Characteristic genes between the OC group and the nOC group in the training set. (A-J) The box plot shows the expression of the intersection genes in
the training set between the OC group and the nOC group. Red indicates the ovarian cancer group, and blue indicates the non-ovarian cancer group. p < 0.05 indicates
differential expression.

FIGURE 6 | ROC curves of the OC group in the training set. (A-J)The figure shows the Roc curve of ten intersection genes in the training set A. The abscissa is the
false positive rate, which is represented by 1-specificity, and the ordinate is the true positive rate, which is represented by sensitivity.
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factor in inducing the progression of primary tumors to metastatic
ovarian cancer. Blocking progesterone signaling by the
pharmacological inhibitor, mifepristone, inhibits the development
of HGSC (high-grade plasmacytoma) and its metastasis to the
peritoneum as well as to the ovary effectively (Kim et al., 2020).
The literature suggests that OC patients have a higher survival rate if
they have IL-17-secreting (Th17s) T cells in their bodies (Block et al.,

2020). DO analysis revealed that DEGs PSAT1, FOLR1, ABCB1,
SFRP1, SFRP1, BUB1B have a greater association with female
reproductive system tumor-related diseases, such as malignant
ovarian surface epithelial-mesenchymal tumor, ovarian epithelial
carcinoma, and ovarian cancer. SFRP1 and FOLR1 have a greater
association with urologic tumors, like renal cell carcinoma or kidney
cancer.

FIGURE 7 | Immune cell infiltration analysis in the training set. (A) The graph shows the level of infiltration of different immune cells between the ovarian cancer group
and the non-ovarian cancer group. (B) The violin chart shows the different analyses of immune cells. The abscissa indicates the name of immune cells, the ordinate
indicates the content of immune cells, blue indicates the control group, and red indicates the ovarian cancer group. p < 0.05 indicates that there is a significant difference
in the content of immune cells between the two groups. (C) Correlation analysis between immune cells. Both the abscissa and the ordinate are the names of
immune cells, and the value indicates the correlation coefficient between immune cells. Red indicates positive correlation, and blue indicates negative correlation. The
two immune cells associated with the red grid, the higher the level of one immune cell, the higher the level of the other immune cell. The higher the level of one of the two
immune cells associated with the blue grid, the lower the level of the other immune cell.

FIGURE 8 | The correlation lollipop plot shows the results of immune cell and target gene correlations. (A-J) Association between the diagnostic-related genes and
immune cell infiltration. The horizontal coordinate indicates the correlation coefficient, and the vertical coordinate indicates the immune cell name. The circle size indicates
the absolute value of the correlation coefficient, the color indicates the p-value of the correlation test, and the p-value size is indicated by color.
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After further screening by two machine learning algorithms, a
total of nine genes with diagnostic values were selected: SFRP1,
PSAT1, BUB1B, FOLR1, ABCB1, PDE8B, INAVA, BUB1, and
TMEM139. Secreted frizzled-related protein 1 (SFRP1) plays an
important role in tumorigenesis, acting as a negative regulator of
Wnt signaling (Cheng et al., 2017). It was found that the SFRP1
gene, as a potential tumor suppressor, was down-regulated by
epigenetic alteration of SFRP1 protein expression. Besides,
abnormal activation of the SFRP1/Wnt pathway leads to
ovarian tumorigenesis. On the contrary, inhibiting the Wnt/β-
catenin pathway suppresses epithelial ovarian cancer.
Phosphoserine aminotransferase (PSAT1) is a serine catalase
that plays an important role in the development of ovarian
cancer. Serine-related proteins are overexpressed in epithelial
ovarian cancer (EOC) compared to normal ovarian tissue. Their
expression correlates with tissue subtype, FIGO stage, histological
grade, lymph node metastasis, distant metastasis, and metastasis
in the presence of ascites (Zhang et al., 2020). In vitro
experiments, downregulation of PSAT1 inhibited the growth
of EOC cells and induced apoptosis and cell cycle arrest (Dai
et al., 2019). Recently, increasing evidence demonstrated that
PSAT1 was overexpressed in OC with poor prognosis (Zheng
et al., 2019). Mitotic checkpoint serine/threonine kinase B
(BUB1B) is a conserved multifunctional protein essential for
mitotic spindle checkpoint and correction of kinetic-
microtubule junctions. BUB1B variants cause ovarian
insufficiency and early menopause. Several studies have shown
that highly elevated BUB1B is associated with high OC cell
proliferation and poor clinical prognosis (Feng et al., 2019;
Chen et al., 2020). Folate receptor 1 (FOLR1) is a
glycosylphosphatidylinositol (GPI)-anchored glycoprotein,
enriched in oocytes of primary, secondary, and tertiary
follicles as well as in surrounding granulosa cells. FOLR1 is
expressed in rapidly growing solid malignancies as well as in
most ovarian cancers (Köbel et al., 2014). Related experiments
have shown that single-dose bispecific targeting of FOLR1 and
death receptor 5 (DR5) is an effective strategy for treating ovarian
cancer, suggesting FOLR1 may be a potential biomarker for
ovarian cancer (Shivange et al., 2018). ATP Binding Cassette
Subfamily B Member 1 (ABCB1) encodes a multidrug resistance
protein (MDR1). It is involved in the cellular exocytosis of
chemotherapeutic drugs, and it may be used as an alternative
marker for the diagnosis of ovarian cancer progression.
Moreover, it also correlates with ovarian cancer resistance,
healing, and prognosis (Zhou et al., 2019). Many drug-
resistant recurrent ovarian cancers are associated with the
upregulation of ABCB1. Targeted regulation of ABCB1
expression can sensitize ovarian cancer cells to paclitaxel and
cisplatin, providing an effective treatment option for patients with
chemoresistant ovarian cancer (Sun et al., 2015; Vaidyanathan
et al., 2016). The phosphodiesterase (PDE) family is a group of
enzymes that catalyze the conversion of cyclic nucleotides to 5′
nucleotides (Petersen et al., 2015). PDE8 is one of the major PED
in human ovaries, and has a significantly altered lipogenic and
cholesterolemia gene expression profile in ovarian cancer cells.
Downregulation of the steroidogenic regulator PDE8B, for
example, explains the increased membrane fluidity in ovarian

cancer cells, which has potential applications in the development
of new biomarkers and treatment of ovarian cancer and deserves
further investigation (Pampalakis et al., 2015). INAVA, known as
Innate Immunity Activator, is a risk gene for inflammatory bowel
disease specifically expressed by mucosal surface epithelial cells.
Recent studies have shown that it is associated with tumorigenesis
and inflammatory responses (Chang et al., 2021). INAVA
expression is associated with regulating two transcription
factors, ELF5 and GATA3, which are important in breast stem
cells, and targeting INAVA has therapeutic value in breast cancer
(Ma et al., 2019). Furthermore, in inflammatory bowel disease,
INAVA was used for mitogen-activated protein kinase (MAPK),
nuclear factor kappa-B (NF-κB) activation, cytokine secretion,
and intracellular bacterial clearance after pattern recognition
receptor (PRR) stimulation (Yan et al., 2017). The protein,
Threonine-protein kinase (BUB1), was bound to kinetochores
and played a key role in establishing the mitotic spindle
checkpoint and chromosome congression. In ovarian cancer,
BUB1 showed high-level expression (Feng et al., 2019). Down-
regulation of BUB1 expression levels suppressed ovarian cancer
progression (Jin & Ye, 2021). Transmembrane Protein 139
(TMEM139) has no relevant studies in ovarian cancer.
However, two available articles were related to human kidney
isoform of anion exchanger 1 (kAE1) (Nuiplot et al., 2015) and
papillary thyroid carcinoma. In papillary thyroid carcinoma,
TMEM139 was a potential independent predictive gene for the
recurrence of PTC (He et al., 2020).

The tumor microenvironment is a complex ecological
environment in which the interactions between tumor cells,
immune cells, and non-immune cells determine the tumor
progression (Hornburg et al., 2021). Among them, immune cells
play an important role and greatly influence the invasive and
metastatic ability of tumors (Giraldo et al., 2019; van Vloten
et al., 2022). Although an increasing number of studies have
focused on analyzing the prognostic features of tumors. Yan et al.
(2020) constructed a prognostic feature model of ovarian cancer
based on immune cell infiltration (Yan et al., 2020). Zhao et al.
(2022) constructed a prognostic model of ovarian cancer through
WGCNA and machine learning methods (Zhao et al., 2022).
However, there is no research to analyze the diagnostic signature
genes of ovarian cancer through machine learning algorithms and
medical big data. In this study, a machine learning algorithm was
used to screen out ovarian cancer genes with diagnostic
characteristics, and the correlation between these genes and
immune cells was also analyzed. These results help to improve
the diagnostic specificity of ovarian cancer patients, and at the same
time can inform us which genes may influence the immunotherapy
of ovarian cancer patients. In this study, we found that the highest
level of infiltration in the tumormicroenvironment of ovarian cancer
patients is CD8+ T lymphocytes. CD8+ T lymphocytes are typical
anti-tumor immune cells that specifically label cytotoxic T cells that
play an active role in tumor clearance while recognizing and
secreting cytotoxic molecules to kill tumor cells. This process of
cytotoxicity by CD8+ T cells needs to be initiated by dendritic cells.
In breast cancer studies, investigators found that high infiltration of
CD8+ T cells was associated with more prolonged survival. Tumor-
associated macrophages (TAMs) are macrophages in tumor tissues.
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Different types of TAMs have different characteristics.M1TAMs are
characterized by high expression of IL-12 and low expression of IL-
10, which can present tumor-specific antigens and inhibit tumor
growth (Mantovani et al., 2017). In contrast, M2 TAMs have high
expression of IL-10 and low expression of IL-12, which can promote
tumor growth and are resistant to chemotherapy (Lee et al., 2019).
Different types of macrophages in ovarian cancer have different
effects on their prognosis, and studies have shown that high density
of CD163 + M2 TAMs is associated with advanced stage and poor
prognosis in epithelial ovarian cancer (Reinartz et al., 2014). This
study also found more M2 macrophages in ovarian cancer patients
than in non-ovarian cancer patients. M2 macrophages can promote
tumor invasion andmetastasis by inducing stromal cell proliferation,
angiogenesis, and extracellular matrix deposition (Qian et al., 2011;
Pyonteck et al., 2013). In addition, some studies have found that
macrophages and B cells are associated with prolonged survival in
patients with non-small cell lung cancer (Ohri et al., 2009; Lohr et al.,
2013; Hernández-Prieto et al., 2015). The composition of the tumor
microenvironment is complex and variable, and we cannot only
explore the tumor-promoting or tumor-suppressing effects of one
type of immune cells, but further studies are needed to explore the
interactions among immune cells and between immune cells and
other cells.

Despite the use of bioinformatics and machine learning
algorithms in our study and the discovery of the diagnostic
value of key genes in ovarian cancer patients, there are still
some limitations. First of all, the data in this study comes
from the GEO database, which requires more data from
different databases to verify. To reduce the deviation of a
single data set, we used three GEO data sets for this study.
Secondly, since this study only utilizes data from online
databases, the results may be biased. We need to collect
complete data for research and further experiments to verify.
Finally, our study was only explored at the genetic level, and
multi-omics data or immune-related non-coding RNA signatures
may help us gain insight into the pathogenesis of ovarian cancer
and better predict survival.

CONCLUSION

In summary, we identified 10 characteristic genes of ovarian
cancer using bioinformatics methods and two machine
learning algorithms, and also explored the biological
functions and pathways involved in these genes. Nine key
characteristic genes were then screened by metrics such as
AUC. Notably, the characteristic genes validated in our study
may be associated with different levels of immune infiltration
in ovarian cancer patients. A better understanding of the
immune status of cancer is essential to advance treatment
progress. As clinical trials of immunotherapeutic agents and
their various combinations progress, this approach may
provide some reference value to develop reliable guidelines
for drug selection, increase treatment response, and help
clinicians manage patients with ovarian cancer.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.ncbi.nlm.nih.gov/geo/.
GSE12470, GSE18520, and GSE27651. Also found in TCGA
database (http://portal.gdc.cancer.gov/) and GETx database
(www.gtexportal.org).

AUTHOR CONTRIBUTIONS

JL was responsible for the study concept and design. Y-WL and
FL revised the manuscript and made final approval of the version.
JL and LL analyzed the data. LL and PAA helped to write the
manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 81802668, 82172832), the Wisdom
Accumulation and Talent Cultivation Project of the Third
Xiangya Hospital of Central South University (YX202108), the
Natural Science Foundation of Hunan Province (No.
2018JJ3776), and the Postgraduate Research and Innovation
Project of Central South University (No.2020zzts892).

ACKNOWLEDGMENTS

The authors would like to acknowledge the GEO databases
(https://www.ncbi.nlm.nih.gov/gds/) TCGA database (https://
tcga-data.nci.nih.gov/tcga/) and GTEx database for providing
their platforms and those contributors for uploading their
valuable datasets.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2022.858466/full#supplementary-material

Supplementary Figure S1 | The figure shows the Roc curve of 10 diagnostic genes
in the validation set A.

Supplementary Figure S2 | 10 Diagnostic genes and immune cell infiltration
correlation test.

Supplementary Figure S3 | Characteristic genes between the OC group and the
nOC group in the validation set B.

Supplementary Figure S4 | ROC curves of the OC group in the validation set B.

Supplementary Figure S5 | Diagnostic candidate genes on the KM-plotter.

Supplementary Figure S6 | Protein expression analysis.

Supplementary Table S1 | Briefly describe of each data set.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 85846610

Liu et al. Diagnostic Genes of Ovarian Cancer

https://www.ncbi.nlm.nih.gov/geo/
http://portal.gdc.cancer.gov/
http://www.gtexportal.org
https://www.ncbi.nlm.nih.gov/gds/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://www.frontiersin.org/articles/10.3389/fgene.2022.858466/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.858466/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Badrick, T., Banfi, G., Bietenbeck, A., Cervinski, M. A., Loh, T. P., and Sikaris, K.
(2019). Machine Learning for Clinical Chemists. Clin. Chem. 65 (11),
1350–1356. doi:10.1373/clinchem.2019.307512

Block, M. S., Dietz, A. B., Gustafson, M. P., Kalli, K. R., Erskine, C. L., Youssef, B.,
et al. (2020). Th17-inducing Autologous Dendritic Cell Vaccination Promotes
Antigen-specific Cellular and Humoral Immunity in Ovarian Cancer Patients.
Nat. Commun. 11 (1), 5173. doi:10.1038/s41467-020-18962-z

Cai, Y., Wu, G., Peng, B., Li, J., Zeng, S., Yan, Y., et al. (2021). Expression and
Molecular Profiles of the AlkB Family in Ovarian Serous Carcinoma. Aging 13
(7), 9679–9692. doi:10.18632/aging.202716

Cangelosi, D., Muselli, M., Parodi, S., Blengio, F., Becherini, P., Versteeg, R., et al.
(2014). Use of Attribute Driven Incremental Discretization and Logic Learning
Machine to Build a Prognostic Classifier for Neuroblastoma Patients. BMC
bioinformatics 15 (Suppl. 5), S4. doi:10.1186/1471-2105-15-S5-S4

Chan, J. K., Tian, C., Kesterson, J. P., Monk, B. J., Kapp, D. S., Davidson, B., et al.
(2022). Symptoms of Women with High-Risk Early-Stage Ovarian Cancer.
Obstet. Gynecol. 139 (2), 157–162. doi:10.1097/AOG.0000000000004642

Chang, D., Luong, P., Li, Q., LeBarron, J., Anderson, M., Barrett, L., et al. (2021).
Small-molecule Modulators of INAVA Cytosolic Condensate and Cell-Cell
junction Assemblies. J. Cel Biol 220 (9), e202007177. doi:10.1083/jcb.202007177

Chen, Q., Ke, H., Luo, X., Wang, L., Wu, Y., Tang, S., et al. (2020). Rare Deleterious
BUB1B Variants Induce Premature Ovarian Insufficiency and Early
Menopause. Hum. Mol. Genet. 29 (16), 2698–2707. doi:10.1093/hmg/ddaa153

Cheng, Y. Y., Mok, E., Tan, S., Leygo, C., McLaughlin, C., George, A. M., et al.
(2017). SFRP Tumour Suppressor Genes Are Potential Plasma-Based
Epigenetic Biomarkers for Malignant Pleural Mesothelioma. Dis. Markers
2017, 1–10. doi:10.1155/2017/2536187

Chern, J.-Y., and Curtin, J. P. (2016). Appropriate Recommendations for Surgical
Debulking in Stage IV Ovarian Cancer. Curr. Treat. Options. Oncol. 17 (1), 1.
doi:10.1007/s11864-015-0380-2

Coburn, S. B., Bray, F., Sherman, M. E., and Trabert, B. (2017). International
Patterns and Trends in Ovarian Cancer Incidence, Overall and by Histologic
Subtype. Int. J. Cancer 140 (11), 2451–2460. doi:10.1002/ijc.30676

Dai, J., Wei, R., Zhang, P., and Kong, B. (2019). Overexpression of microRNA-195-
5p Reduces Cisplatin Resistance and Angiogenesis in Ovarian Cancer by
Inhibiting the PSAT1-dependent GSK3β/β-Catenin Signaling Pathway.
J. Transl Med. 17 (1), 190. doi:10.1186/s12967-019-1932-1

Faust, J. R., Hamill, D., Kolb, E. A., Gopalakrishnapillai, A., and Barwe, S. P. (2022).
Mesothelin: An Immunotherapeutic Target beyond Solid Tumors. Cancers 14
(6), 1550. doi:10.3390/cancers14061550

Feng, H., Gu, Z.-Y., Li, Q., Liu, Q.-H., Yang, X.-Y., and Zhang, J.-J. (2019).
Identification of Significant Genes with Poor Prognosis in Ovarian Cancer via
Bioinformatical Analysis. J. Ovarian Res. 12 (1), 35. doi:10.1186/s13048-019-
0508-2

Giraldo, N. A., Sanchez-Salas, R., Peske, J. D., Vano, Y., Becht, E., Petitprez, F., et al.
(2019). The Clinical Role of the TME in Solid Cancer. Br. J. Cancer 120 (1),
45–53. doi:10.1038/s41416-018-0327-z

Goode, E. L., Goode, E. L., Block, M. S., Kalli, K. R., Vierkant, R. A., Chen, W., et al.
(2017). Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes
and Survival Time in High-Grade Serous Ovarian Cancer. JAMA Oncol. 3 (12),
e173290. doi:10.1001/jamaoncol.2017.3290

Hassan, A. A., Artemenko, M., Tang, M. K. S., andWong, A. S. T. (2020). Selectins:
An Important Family of Glycan-Binding Cell Adhesion Molecules in Ovarian
Cancer. Cancers 12 (8), 2238. doi:10.3390/cancers12082238

He, J., Tian, Z., Yao, X., Yao, B., Liu, Y., and Yang, J. (2020). A Novel RNA
Sequencing-Based Risk Score Model to Predict Papillary Thyroid Carcinoma
Recurrence. Clin. Exp. Metastasis 37 (2), 257–267. doi:10.1007/s10585-019-
10011-4

Hernández-Prieto, S., Romera, A., Ferrer, M., Subiza, J. L., López-Asenjo, J. A.,
Jarabo, J. R., et al. (2015). A 50-gene Signature Is a Novel Scoring System for
Tumor-Infiltrating Immune Cells with strong Correlation with Clinical
Outcome of Stage I/II Non-small Cell Lung Cancer. Clin. Transl Oncol. 17
(4), 330–338. doi:10.1007/s12094-014-1235-1

Hornburg, M., Desbois, M., Lu, S., Guan, Y., Lo, A. A., Kaufman, S., et al. (2021).
Single-cell Dissection of Cellular Components and Interactions Shaping the

Tumor Immune Phenotypes in Ovarian Cancer. Cancer Cell 39 (7), 928–944.
doi:10.1016/j.ccell.2021.04.004

Jiang, Y., Wang, C., and Zhou, S. (2020). Targeting Tumor Microenvironment in
Ovarian Cancer: Premise and Promise. Biochim. Biophys. Acta (Bba) - Rev.
Cancer 1873 (2), 188361. doi:10.1016/j.bbcan.2020.188361

Jin, W., and Ye, L. (2021). KIF4A Knockdown Suppresses Ovarian Cancer Cell
Proliferation and Induces Apoptosis by Downregulating BUB1 Expression.
Mol. Med. Rep. 24 (1), 516. doi:10.3892/mmr.2021.12155

Kim, O., Park, E. Y., Kwon, S. Y., Shin, S., Emerson, R. E., Shin, Y.-H., et al. (2020).
Targeting Progesterone Signaling Prevents Metastatic Ovarian Cancer. Proc.
Natl. Acad. Sci. U.S.A. 117 (50), 31993–32004. doi:10.1073/pnas.2013595117

Köbel, M., Madore, J., Madore, J., Ramus, S. J., Clarke, B. A., Pharoah, P. D. P., et al.
(2014). Evidence for a Time-dependent Association between FOLR1
Expression and Survival from Ovarian Carcinoma: Implications for Clinical
Testing. An Ovarian Tumour Tissue Analysis Consortium Study. Br. J. Cancer
111 (12), 2297–2307. doi:10.1038/bjc.2014.567

Lee, C., Jeong, H., Bae, Y., Shin, K., Kang, S., Kim, H., et al. (2019). Targeting ofM2-
like Tumor-Associated Macrophages with a Melittin-Based Pro-apoptotic
Peptide. J. Immunotherapy Cancer 7 (1), 147. doi:10.1186/s40425-019-0610-4

Lheureux, S., Braunstein, M., and Oza, A. M. (2019). Epithelial Ovarian Cancer:
Evolution of Management in the Era of Precision Medicine. CA A. Cancer
J. Clin. 69 (4), 280–304. doi:10.3322/caac.21559

Liu, L.-P., Lu, L., Zhao, Q.-Q., Kou, Q.-J., Jiang, Z.-Z., Gui, R., et al. (2021).
Identification and Validation of the Pyroptosis-Related Molecular Subtypes of
Lung Adenocarcinoma by Bioinformatics and Machine Learning. Front. Cel
Dev. Biol. 9, 756340. doi:10.3389/fcell.2021.756340

Liu, L., Fan, J., Ai, G., Liu, J., Luo, N., Li, C., et al. (2019). Berberine in Combination
with Cisplatin Induces Necroptosis and Apoptosis in Ovarian Cancer Cells.
Biol. Res. 52 (1), 37. doi:10.1186/s40659-019-0243-6

Lohr, M., Edlund, K., Botling, J., Hammad, S., Hellwig, B., Othman, A., et al. (2013).
The Prognostic Relevance of Tumour-Infiltrating Plasma Cells and
Immunoglobulin Kappa C Indicates an Important Role of the Humoral
Immune Response in Non-small Cell Lung Cancer. Cancer Lett. 333 (2),
222–228. doi:10.1016/j.canlet.2013.01.036

Lu, L., Liu, L.-P., Zhao, Q.-Q., Gui, R., and Zhao, Q.-Y. (2021). Identification of
a Ferroptosis-Related LncRNA Signature as a Novel Prognosis Model for
Lung Adenocarcinoma. Front. Oncol. 11, 675545. doi:10.3389/fonc.2021.
675545

Ma, J., Liu, C., Yang, D., Song, J., Zhang, J., Wang, T., et al. (2019). C1orf106,
an Innate Immunity Activator, Is Amplified in Breast Cancer and Is
Required for Basal-Like/luminal Progenitor Fate Decision. Sci. China
Life Sci. 62 (9), 1229–1242. doi:10.1007/s11427-019-9570-y

Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., and Allavena, P. (2017).
Tumour-associated Macrophages as Treatment Targets in Oncology. Nat.
Rev. Clin. Oncol. 14 (7), 399–416. doi:10.1038/nrclinonc.2016.217

Nuiplot, N.-o., Junking, M., Duangtum, N., Khunchai, S., Sawasdee, N.,
Yenchitsomanus, P.-t., et al. (2015). Transmembrane Protein 139
(TMEM139) Interacts with Human Kidney Isoform of Anion Exchanger
1 (kAE1). Biochem. Biophysical Res. Commun. 463 (4), 706–711. doi:10.
1016/j.bbrc.2015.05.128

Odunsi, K. (2017). Immunotherapy in Ovarian Cancer. Ann. Oncol. 28 (Suppl.
l_8), viii1–viii7. doi:10.1093/annonc/mdx444

Ohri, C. M., Shikotra, A., Green, R. H., Waller, D. A., and Bradding, P. (2009).
Macrophages within NSCLC Tumour Islets Are Predominantly of a
Cytotoxic M1 Phenotype Associated with Extended Survival. Eur.
Respir. J. 33 (1), 118–126. doi:10.1183/09031936.00065708

Pampalakis, G., Politi, A.-L., Papanastasiou, A., and Sotiropoulou, G. (2015).
Distinct Cholesterogenic and Lipidogenic Gene Expression Patterns in
Ovarian Cancer - a New Pool of Biomarkers. Genes Cancer 6 (11-12),
472–479. doi:10.18632/genesandcancer.87

Petersen, T. S., Kristensen, S. G., Jeppesen, J. V., Grøndahl, M. L., Wissing, M.
L., Macklon, K. T., et al. (2015). Distribution and Function of 3′,5′-Cyclic-
AMP Phosphodiesterases in the Human Ovary. Mol. Cell Endocrinol. 403,
10–20. doi:10.1016/j.mce.2015.01.004

Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L.,
Quail, D. F., et al. (2013). CSF-1R Inhibition Alters Macrophage
Polarization and Blocks Glioma Progression. Nat. Med. 19 (10),
1264–1272. doi:10.1038/nm.3337

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 85846611

Liu et al. Diagnostic Genes of Ovarian Cancer

https://doi.org/10.1373/clinchem.2019.307512
https://doi.org/10.1038/s41467-020-18962-z
https://doi.org/10.18632/aging.202716
https://doi.org/10.1186/1471-2105-15-S5-S4
https://doi.org/10.1097/AOG.0000000000004642
https://doi.org/10.1083/jcb.202007177
https://doi.org/10.1093/hmg/ddaa153
https://doi.org/10.1155/2017/2536187
https://doi.org/10.1007/s11864-015-0380-2
https://doi.org/10.1002/ijc.30676
https://doi.org/10.1186/s12967-019-1932-1
https://doi.org/10.3390/cancers14061550
https://doi.org/10.1186/s13048-019-0508-2
https://doi.org/10.1186/s13048-019-0508-2
https://doi.org/10.1038/s41416-018-0327-z
https://doi.org/10.1001/jamaoncol.2017.3290
https://doi.org/10.3390/cancers12082238
https://doi.org/10.1007/s10585-019-10011-4
https://doi.org/10.1007/s10585-019-10011-4
https://doi.org/10.1007/s12094-014-1235-1
https://doi.org/10.1016/j.ccell.2021.04.004
https://doi.org/10.1016/j.bbcan.2020.188361
https://doi.org/10.3892/mmr.2021.12155
https://doi.org/10.1073/pnas.2013595117
https://doi.org/10.1038/bjc.2014.567
https://doi.org/10.1186/s40425-019-0610-4
https://doi.org/10.3322/caac.21559
https://doi.org/10.3389/fcell.2021.756340
https://doi.org/10.1186/s40659-019-0243-6
https://doi.org/10.1016/j.canlet.2013.01.036
https://doi.org/10.3389/fonc.2021.675545
https://doi.org/10.3389/fonc.2021.675545
https://doi.org/10.1007/s11427-019-9570-y
https://doi.org/10.1038/nrclinonc.2016.217
https://doi.org/10.1016/j.bbrc.2015.05.128
https://doi.org/10.1016/j.bbrc.2015.05.128
https://doi.org/10.1093/annonc/mdx444
https://doi.org/10.1183/09031936.00065708
https://doi.org/10.18632/genesandcancer.87
https://doi.org/10.1016/j.mce.2015.01.004
https://doi.org/10.1038/nm.3337
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Qian, B.-Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., et al. (2011).
CCL2 Recruits Inflammatory Monocytes to Facilitate Breast-Tumour
Metastasis. Nature 475 (7355), 222–225. doi:10.1038/nature10138

Reinartz, S., Schumann, T., Finkernagel, F., Wortmann, A., Jansen, J. M., Meissner,
W., et al. (2014). Mixed-polarization Phenotype of Ascites-associated
Macrophages in Human Ovarian Carcinoma: Correlation of CD163
Expression, Cytokine Levels and Early Relapse. Int. J. Cancer 134 (1),
32–42. doi:10.1002/ijc.28335

Shivange, G., Urbanek, K., Przanowski, P., Perry, J. S. A., Jones, J., Haggart, R., et al.
(2018). A Single-Agent Dual-Specificity Targeting of FOLR1 and DR5 as an
Effective Strategy for Ovarian Cancer. Cancer Cell 34 (2), 331–345. e311. doi:10.
1016/j.ccell.2018.07.005

Siegel, R. L., Miller, K. D., and Jemal, A. (2020). Cancer Statistics, 2020. CA A.
Cancer J. Clin. 70 (1), 7–30. doi:10.3322/caac.21590

Sun, K.-X., Jiao, J.-W., Chen, S., Liu, B.-L., and Zhao, Y. (2015). MicroRNA-186
Induces Sensitivity of Ovarian Cancer Cells to Paclitaxel and Cisplatin by
Targeting ABCB1. J. Ovarian Res. 8, 80. doi:10.1186/s13048-015-0207-6

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA A. Cancer J. Clin. 71
(3), 209–249. doi:10.3322/caac.21660

Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A.
(2015). Global Cancer Statistics, 2012. CA: a Cancer J. clinicians 65 (2), 87–108.
doi:10.3322/caac.21262

Torre, L. A., Trabert, B., DeSantis, C. E., Miller, K. D., Samimi, G., Runowicz, C. D.,
et al. (2018). Ovarian Cancer Statistics, 2018. CA: a Cancer J. clinicians 68 (4),
284–296. doi:10.3322/caac.21456

Vaidyanathan, A., Sawers, L., Gannon, A.-L., Chakravarty, P., Scott, A. L., Bray, S.
E., et al. (2016). ABCB1 (MDR1) Induction Defines a Common Resistance
Mechanism in Paclitaxel- and Olaparib-Resistant Ovarian Cancer Cells. Br.
J. Cancer 115 (4), 431–441. doi:10.1038/bjc.2016.203

van Vloten, J. P., Matuszewska, K., Minow, M. A. A., Minott, J. A., Santry, L. A.,
Pereira, M., et al. (2022). Oncolytic Orf Virus Licenses NK Cells via cDC1 to
Activate Innate and Adaptive AntitumorMechanisms and Extends Survival in a
Murine Model of Late-Stage Ovarian Cancer. J. Immunother. Cancer 10 (3),
e004335. doi:10.1136/jitc-2021-004335

Vaughan, S., Coward, J. I., Bast, R. C., Berchuck, A., Berek, J. S., Brenton, J. D., et al.
(2011). Rethinking Ovarian Cancer: Recommendations for Improving
Outcomes. Nat. Rev. Cancer 11 (10), 719–725. doi:10.1038/nrc3144

Yan, J., Hedl, M., and Abraham, C. (2017). An Inflammatory Bowel Disease-Risk
Variant in INAVA Decreases Pattern Recognition Receptor-Induced
Outcomes. J. Clin. Invest. 127 (6), 2192–2205. doi:10.1172/jci86282

Yan, S., Fang, J., Chen, Y., Xie, Y., Zhang, S., Zhu, X., et al. (2020). Comprehensive
Analysis of Prognostic Gene Signatures Based on Immune Infiltration of
Ovarian Cancer. BMC Cancer 20 (1), 1205. doi:10.1186/s12885-020-07695-3

Zhang, A., and Hu, H. (2022). A Novel Blood-Based microRNA Diagnostic Model
with High Accuracy for Multi-Cancer Early Detection. Cancers 14 (6), 1450.
doi:10.3390/cancers14061450

Zhang, Y., Li, J., Dong, X., Meng, D., Zhi, X., Yuan, L., et al. (2020). PSAT1
Regulated Oxidation-Reduction Balance Affects the Growth and Prognosis of
Epithelial Ovarian Cancer. Ott 13, 5443–5453. doi:10.2147/ott.S250066

Zhang, Z., Xu, Z., and Yan, Y. (2021). Role of a Pyroptosis-Related lncRNA
Signature in Risk Stratification and Immunotherapy of Ovarian Cancer. Front.
Med. 8, 793515. doi:10.3389/fmed.2021.793515

Zhao, C., Xiong, K., Zhao, F., Adam, A., and Li, X. (2022). Glycosylation-Related
Genes Predict the Prognosis and Immune Fraction of Ovarian Cancer Patients
Based on Weighted Gene Coexpression Network Analysis (WGCNA) and
Machine Learning. Oxidative Med. Cell Longevity 2022, 1–23. doi:10.1155/
2022/3665617

Zhao, E., Xie, H., and Zhang, Y. (2020). Predicting Diagnostic Gene Biomarkers
Associated with Immune Infiltration in Patients with Acute Myocardial
Infarction. Front. Cardiovasc. Med. 7, 586871. doi:10.3389/fcvm.2020.586871

Zheng, M. J., Li, X., Hu, Y. X., Dong, H., Gou, R., Nie, X., et al. (2019). Identification
of Molecular Marker Associated with Ovarian Cancer Prognosis Using
Bioinformatics Analysis and Experiments. J. Cell Physiol. 234 (7),
11023–11036. doi:10.1002/jcp.27926

Zhou, H.-H., Chen, X., Cai, L.-Y., Nan, X.-W., Chen, J.-H., Chen, X.-X., et al.
(2019). Erastin Reverses ABCB1-Mediated Docetaxel Resistance in Ovarian
Cancer. Front. Oncol. 9, 1398. doi:10.3389/fonc.2019.01398

Zhu,W., Xu, Z., Huang, M.,Wang, X., Ren, X., Cai, Y., et al. (2021). Downregulated
ADARB1 Facilitates Cell Proliferation, Invasion and Has Effect on the Immune
Regulation in Ovarian Cancer. Front. Bioeng. Biotechnol. 9, 792911. doi:10.
3389/fbioe.2021.792911

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liu, Liu, Antwi, Luo and Liang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 85846612

Liu et al. Diagnostic Genes of Ovarian Cancer

https://doi.org/10.1038/nature10138
https://doi.org/10.1002/ijc.28335
https://doi.org/10.1016/j.ccell.2018.07.005
https://doi.org/10.1016/j.ccell.2018.07.005
https://doi.org/10.3322/caac.21590
https://doi.org/10.1186/s13048-015-0207-6
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21262
https://doi.org/10.3322/caac.21456
https://doi.org/10.1038/bjc.2016.203
https://doi.org/10.1136/jitc-2021-004335
https://doi.org/10.1038/nrc3144
https://doi.org/10.1172/jci86282
https://doi.org/10.1186/s12885-020-07695-3
https://doi.org/10.3390/cancers14061450
https://doi.org/10.2147/ott.S250066
https://doi.org/10.3389/fmed.2021.793515
https://doi.org/10.1155/2022/3665617
https://doi.org/10.1155/2022/3665617
https://doi.org/10.3389/fcvm.2020.586871
https://doi.org/10.1002/jcp.27926
https://doi.org/10.3389/fonc.2019.01398
https://doi.org/10.3389/fbioe.2021.792911
https://doi.org/10.3389/fbioe.2021.792911
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Identification and Validation of the Diagnostic Characteristic Genes of Ovarian Cancer by Bioinformatics and Machine Learning
	Introduction
	Materials and Methods
	Datasets
	Differential Expression
	Functional Enrichment Analysis
	Machine Learning
	Immune Analysis
	Prognostic Analysis and Protein Expression Analysis

	Results
	Screening of Predictive Genes
	Enrichment Analysis
	Validation Group Difference Analysis
	Immune Cell Infiltration
	Prognostic Analysis and Protein Expression Analysis

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


