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Abstract

Synthetic oxytocin (sOT) is widely used during labor, yet little is known about its effects on

fetal brain development despite evidence that it reaches the fetal circulation. Here, we

tested the hypothesis that sOT would affect early neurodevelopment by investigating its

effects on neural progenitor cells (NPC) from embryonic day 14 rat pups. NPCs expressed

the oxytocin receptor (OXTR), which was downregulated by 45% upon prolonged treatment

with sOT. Next, we examined the effects of sOT on NPC death, apoptosis, proliferation, and

differentiation using antibodies to NeuN (neurons), Olig2 (oligodendrocytes), and GFAP

(astrocytes). Treated NPCs were analysed with unbiased high-throughput immunocyto-

chemistry. Neither 6 nor 24 h exposure to 100 pM or 100 nM sOT had an effect on viability

as assessed by PI or CC-3 immunocytochemistry. Similarly, sOT had negligible effect on

NPC proliferation, except that the overall rate of NPC proliferation was higher in the 24 h

compared to the 6 h group regardless of sOT exposure. The most significant finding was

that sOT exposure caused NPCs to select a predominantly neuronal lineage, along with a

concomitant decrease in glial cells. Collectively, our data suggest that perinatal exposure to

sOT can have neurodevelopmental consequences for the fetus, and support the need for in

vivo anatomical and behavioral studies in offspring exposed to sOT in utero.

Introduction

Synthetic oxytocin (sOT), marketed in the United States as Pitocin1, is widely used for either

induction and/or augmentation of labor, and to prevent postpartum haemorrhage. Between

1998 and 2007, the incidence of induction of labor alone more than doubled from 9.8% to

23%.[1] The continuous administration of supraphysiological doses of sOT for either induc-

tion or augmentation of labor is strikingly different from the pulsatile pattern of endogenous

oxytocin release that occurs during unmedicated delivery.[2] Though the mechanical effects of
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sOT on the uterus are well-studied and it is clear that maternally administered sOT reaches the

fetal circulation in humans,[3] little is known about whether it affects fetal neurodevelopment.

There is, however, reason to believe it may. In situ hybridization histochemistry reveals that

oxytocin receptor (OXTR) mRNA is present in rat brain as early as embryonic day 13 (E13)[4]

and binding studies show OXTRs in mouse brain by E18.5.[5] Likewise, binding studies show

OXTRs in the posterior dorsal neural tube of fetal rats at E14 [6] and on cultured astroglial

cells isolated from E16 rat fetuses.[7] Furthermore, there is transcriptomic evidence for OXTR

expression in the developing second trimester human brain (Human Brain Transcriptome

Project).[8, 9] Finally, epidemiological evidence suggests an association between labor induc-

tion practices such as oxytocin and the risk of neurodevelopmental disorders.[10–14] Though

causality has not been definitively established and there are more induced labors than children

with neurodevelopmental disorders, it is plausible that sOT is one of several environmental

factors that trigger or unmask underlying genetic susceptibility to neurodevelopmental disor-

ders.[15] However, its contribution is unclear because the impact of maternally administered

sOT on neurodevelopmental events in the fetus has not been systematically examined.

Neural stem/progenitor cells (NPCs) are critical for normal early brain development. NPCs

differentiate into most cell types in the brain including neurons, astrocytes, and oligodendro-

cytes[16–18] and abnormalities in NPC biology are implicated in neurodevelopmental disor-

ders.[19] Proliferation and differentiation of NPCs are genetically programmed, yet these cells

are highly sensitive to environmental, pharmacological, and cerebrospinal fluid (CSF)—guided

cues.[20] This is relevant here because NPCs in neurogenic niches are continually bathed in

CSF and peripherally administered sOT enters the CSF within 10 min and has a half-life in

CSF that is 6-fold longer than in plasma.[21, 22] In addition, sOT influences proliferation and

differentiation of multiple cell lines in vitro and in vivo.[23–30] Based on this information, we

hypothesize that NPCs may be a target of sOT and that exposure to oxytocin alters both prolif-

eration and differentiation of these cells. To test this hypothesis, we first determined if NPCs

express the OXTR, subsequently investigated the effect of prolonged treatment with sOT on

OXTR protein expression in NPCs, and finally evaluated the effect of prolonged sOT treat-

ment on the viability, proliferation, and differentiation of NPCs.

Materials and methods

All animal experiments were approved by IACUC and conducted according to regulations set

forth by the Harvard Medical Area Standing Committee on Animals (Boston, MA).

NPC culture

Neural stem/progenitor cells were harvested from timed pregnant embryonic day 14 Sprague

Dawley rats (Harlan Sprague Dawley, Indianapolis, IN) as previously described.[31, 32]

Briefly, embryonic NPCs were isolated from the telencephalon of unborn fetuses of 26 Sprague

Dawley rats on day 14 of gestation (E14) after 100% CO2 euthanasia. The harvests were done

sequentially such that at any given point in time, only NPCs from that particular culture were

used for experiments. NPCs were cultured in B27 medium, which consists of Dulbecco’s Mod-

ified Eagle Medium/F12 high glucose (Invitrogen), supplemented with glutamine (1:200, Invi-

trogen), Fungizone1 antimycotic (1:100, Invitrogen), penicillin-streptomycin (1:100,

Invitrogen), B27 supplement without vitamin A (1:50, Invitrogen), and mitogenic growth fac-

tors FGF-2 and EGF (Peprotech). For experimental consistency, all experiments were per-

formed in healthy-appearing cultures 24 hours after the second passage which typically

occurred on the 8th day in vitro (DIV). After the second passage, 104 NPCs in 100μl of

medium was added to the inner 60 wells of a 96-well poly-L-ornithine/laminin coated
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microplate (BD BioCoat, BD Biosciences, San Jose, CA) using a multichannel pipette (Eppen-

dorf, Westbury, NY), and placed in a humidified cell culture incubator at 37˚C with 5% CO2

overnight prior to treatment the next morning. The outer wells lining the plate were not used

for the experiments because of significant evaporation of the medium over time, especially in

experiments > 24 h (i.e., the ‘edge effect’). These wells were filled only with 100μl of medium

without the NPCs. Plates were randomly assigned to experiments, and all treatments within an

experiment were carried out in the same plate to eliminate the effect of inter-plate variability.

Oxytocin treatment

We initially selected three concentrations of sOT (10 pM, 100 pM, and 100 nM) for our studies

because they closely reflect the typical plasma levels of oxytocin observed during pregnancy.

[33] A 100 pM concentration reflects a plasma oxytocin level of approximately 100 pg/mL

(molar mass of oxytocin = 1007 g/moL). Because we noted no differences in NPC death, apo-

ptosis, proliferation, and differentiation between the 10 and 100 pM in initial experiments, we

eliminated the 10 pM concentration from subsequent experiments to accommodate all treat-

ment conditions (control, 100 pM and 100 nM) within the same experimental plate. Oxytocin

(1 mg, Phoenix Pharmaceuticals Inc., Burlingame, CA) was freshly solubilized in 1 mL B27

medium on the day of the experiments (1 mM stock solution) and subsequently diluted to the

required concentrations with B27 medium.

Detection of OXTR

We first investigated if NPCs express OXTRs using both immunocytochemistry and western

blotting. For OXTR immunocytochemistry, 5 x 104 NPCs were seeded overnight on Corn-

ing1 BioCoat™ Poly-D-Lysine/Laminin 12 mm coverslips, permeabilized, incubated over-

night with 2μg/ml of mouse anti-nestin (EMD Millipore) and 10μg/ml of goat anti-rat OXTR

antibody (Acris Antibodies Inc.) and visualized with species-matched Alexa-Fluor1 second-

ary antibodies. The presence of OXTR was also confirmed with Western blot using the Protein

Simple Wes™ automated Western blotting system with 1.5 μg of total protein.[34] Goat anti-

OXTR antibody (Acris antibodies) was used at a dilution of 1:10 and human uterus lysate

(Abcam, ab44038) was used as positive control.

Effect of sOT on OXTR

Next, we determined if prolonged treatment with sOT affected the expression of OXTR pro-

tein. 5x105 NPCs were seeded overnight in a 6-well poly-L-ornithine laminin coated plate and

then were treated with 100 nM sOT for 24h. Immediately after treatment, the NPCs were

washed twice with ice-cold PBS, lysed with a protease-phosphatase cocktail, and followed by

extraction of total protein. Western blot was performed as described with goat anti-OXTR

antibody (Acris; 1:10 dilution) and GAPDH as the loading control.

NPC viability

Finally, we studied the effect of sOT on NPC viability, proliferation, and differentiation. For

viability experiments, NPCs were plated overnight in poly-L-ornithine/laminin coated 96-well

plates at a density of 5 x 103 cells/well before treatment with B27 medium with or without 100

pM or 100 nM sOT for either 6 or 24h. Viability was assessed by both propidium iodide (PI)

and activated caspase-3 (CC3) immunocytochemistry. PI staining was performed by adding

100μL of 1:100 propidium iodide (2mg/mL stock, Invitrogen) in B27 medium to each well

after completion of exposure and allowed to incubate for 5 min prior to fixation with 4% PFA.

Oxytocin and neural progenitor cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0191160 January 18, 2018 3 / 18

https://doi.org/10.1371/journal.pone.0191160


For CC3 immunocytochemistry, NPCs were fixed at the end of exposure and processed as pre-

viously described.[31]

NPC proliferation

We assessed the effect of sOT exposure and withdrawal on NPC proliferation using a similar

experimental paradigm. Proliferation was quantified with the established markers ethynyl

deoxyuridine (EdU), an exogenous thymidine analogue that incorporates into the DNA dur-

ing the S-phase of cell division, and Ki-67, an endogenous marker that labels cells in all phases

of the cell cycle except G0.[35] For the 6h exposure, EdU (10μM) was added at the same time

as the sOT, whereas in the 24h sOT exposure group it was added 6h before cessation of expo-

sure. In the withdrawal experiments, the medium was replaced with proliferation medium

(B27 + growth factors) at the end of sOT exposure. Subsequently, EdU (10μM) was added 18h

later for the last 6h of the experiment. NPCs were then fixed and processed for Click-iT chem-

istry (Life Technologies, Carlsbad, CA) as previously described by us.[31, 32] For Ki67 immu-

nocytochemistry, NPCs were fixed and processed at the same time points as for the EdU

experiments using a high throughput image analysis system (see below).

NPC differentiation

To investigate the effect of sOT on differentiation and cell fate selection, NPCs were plated

overnight in poly-L-ornithine/laminin coated 96-well plates at a density of 1.5 x 103 cells/well

and were then exposed to sOT (100 pM and 100 nM) or vehicle in B27 medium for 24 h. Expo-

sure was terminated by replacing the medium with maintenance B27 medium without growth

factors in order to induce spontaneous NPC differentiation. The medium was then replaced

every other day for 14 days and on day 14 the cells were fixed and phenotyped as neurons

(Neu N), oligodendrocytes (Olig2), or astrocytes (GFAP) with commercially available antibod-

ies. The various antibodies used and their concentrations are listed in Table 1. Secondary anti-

bodies were always species-specific, wavelength compatible Alexa-Fluor1 antibodies at a final

concentration of 10 μg/ml in 3% BSA.

Imaging and analysis

Viability, proliferation, and differentiation were assessed in 9 images per well using an auto-

mated, unbiased imaging system (IN Cell Analyser 2000, GE Healthcare, Piscataway, NJ).[32]

For identification and analysis of EdU, PI and CC3 positive cells, we used a two-step filtering

process. In the first step, nestin-negative cells were excluded; in the second, threshold setting

was used to determine the number of EdU, PI, and CC3 positive cells. Thus, only nestin-reac-

tive cells were analysed and included in the final analysis. Imaging parameters were set based

on the control wells stained with the fluorophore or antibody of interest and the same

Table 1. List of primary antibodies.

Primary Antibody Target/Event Reactivity Host Concentration/ Dilution Manufacturer

Anti-Nestin MAB353 NPC Rat, Mouse Mouse 2 μg/ml EMD Millipore

Anti-OXTR AP22376PU-N Oxytocin Receptor Rat, Human Goat 4 μg/ml Acris Antibodies, Inc

Anti-CC3 9661S Cleaved-caspase 3 Rat, Mouse, Human, Monkey Rabbit 1:400 Cell Signalling Technology

Anti-Ki67 Ab 16667 Proliferation Rat, Mouse, Human, Marmoset Rabbit 10 μg/ml Abcam

Anti-Neu N MAB377 Neuron Rat Mouse 5 μg/ml EMD Millipore

Anti-Olig 2 sc-48817 Oligodendrocyte Rat, Mouse, Human Rabbit 1:400 Santa Cruz

Anti-GFAP MAB360 Astrocyte Human, Rat, Mouse, Chicken, Rabbit Mouse 1:500 EMD Millipore

https://doi.org/10.1371/journal.pone.0191160.t001

Oxytocin and neural progenitor cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0191160 January 18, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0191160.t001
https://doi.org/10.1371/journal.pone.0191160


parameters were used to image all treated wells on the plate (Table 2). In these experiments,

images were acquired with a 20x objective from 12–18 wells per exposure condition per assay

per time point. For cellular phenotyping with specific markers, custom thresholds were set to

identify NeuN+, GFAP+, and Olig2+ cells. Imaging and analysis were performed by two sepa-

rate investigators, but true blinding was not possible because of the necessity to label the expo-

sure condition on the plate to minimize errors.

Placental transfer of oxytocin

The question whether sOT crosses the placental barrier is not fully resolved because of species

differences in placental structure, particularly, the anatomical type of placenta and the thick-

ness of the placental barrier.[36–38] Animal studies, therefore, reveal conflicting results, with

studies in sheep showing minimal to no transfer,[39, 40] and those in guinea pigs, baboons,

and rats suggesting transplacental transfer of oxytocin. [41–43] Human studies have been con-

flicting as well, with clinical studies suggesting minimal oxytocin transfer across the placenta,

[44] while placental perfusion studies suggesting otherwise.[3] To ensure that our model is

internally consistent, we administered varying bolus doses of intravenous sOT (0, 100 mcg/kg,

1 mg/kg) through a 22g tail vein catheter in pregnant Sprague Dawley rats at E20 under brief

2% isoflurane anesthesia. Pooled fetal cardiac blood samples were collected at 15 min after

injection with the dam still under isoflurane anesthesia, centrifuged for 3000 rpm for 15 min,

and plasma was stored at -80˚C. Samples were C-18 extracted, lyophilized, and assayed for

oxytocin in duplicate using a fluorescent enzyme immunoassay kit (#FEK-051-01, Phoenix

Pharmaceuticals, Inc.).

Statistical analysis

We designed our experiments based on previous experience with this in vitro system,[31, 32]

where a sample size of 3 biologically independent NPC cultures provided at least 80% power to

detect a difference between groups at a significance level of 0.05 for a two-sided test. Because

of the need to include positive controls for apoptosis and cell death in the same plate, these

experiments were conducted on 12 wells/ exposure condition, whereas all other experiments

had a minimum sample size of 18 wells/ condition. Western blot data were analysed with Stu-

dent’s t-test. Experiments with 3 treatment conditions (control, 100 pM, 100 nM) and 2 time

points (6h and 24h, or 24h after either a 6 or 24h exposure) were analyzed with 2-way ANOVA

followed by post-hoc Bonferroni correction to compare treatments with control group. All

other data were analysed using 1-way ANOVA followed by Dunnett’s multiple comparison

tests against control exposure if it passed Bartlett’s test for equal variances. Data that did not

pass equal variance testing were analysed with Kruskal-Wallis test followed by Dunn’s testing

for multiple comparisons. Data are represented as mean ± S.E.M from 3 biological replicates.

Data analysis was performed with Prism 5 for MAC OS X software (Graphpad Software, Inc,

La Jolla, CA). A two-tailed P value� 0.05 was accorded statistical significance.

Table 2. Threshold settings for image analysis.

Marker Target/Event Parameter Threshold

PI cell death nuclear/cellular intensity ratio > 2

CC3 apoptosis nuclear/cellular intensity ratio > 2.5

EdU S-phase nuclear intensity coefficient of variation (CV) > 0.25

Ki67 proliferation nuclear/cellular intensity ratio > 1.5

https://doi.org/10.1371/journal.pone.0191160.t002
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Results

NPCs express OXTR

Our culture conditions yielded approximately 98% pure NPCs, defined by the expression of

the neural progenitor cell marker nestin, as reported previously.[32] OXTR was detectable by

fluorescence immunocytochemistry (Fig 1) confirming that NPCs express the OXTR.

Prolonged exposure to sOT downregulates OXTR

Compared to a vehicle control, a 24h exposure to 100 nM sOT downregulated OXTR protein

expression in NPCs by approximately 45% as revealed by Western blot (�P = 0.01 by Student’s

t test; Fig 2).

sOT does not affect NPC viability

Neither 6 nor 24 h exposure to 100 pM or 100 nM sOT had an effect on NPC viability as

assessed by either PI (Fig 3) or CC-3 immunocytochemistry (Fig 4). However, the overall

Fig 1. NPCs express OXTR. A 60x photomicrograph showing co-expression of OXTR (green) both in the cytoplasm

as well as the plasma membrane of nestin+ NPCs (red). Imaging was performed in Olympus confocal FV1000

microscope and processed with Adobe Photoshop. Scale bar as noted.

https://doi.org/10.1371/journal.pone.0191160.g001
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proportion of PI+ NPCs were significantly lower at the 24 h compared to the 6 h time point (F
(1, 12) = 14, ��p = 0.003, η2 = 0.49)

sOT has minimal effect on NPC proliferation

A 6 h exposure to sOT had no effect on NPC proliferation as assessed by either EdU incorpo-

ration (F (2, 12) = 0.044, p = 0.96, η2 = 0.0008) or Ki-67 immunoreactivity (F (2, 12) = 0.94,

p = 0.42, η2 = 0.013) (Figs 5 & 6). Similarly, a 24 h exposure to sOT had no effect either on

NPC proliferation as assessed by either EdU incorporation (F (2, 12) = 0.48, p = 0.63, η2 =

Fig 2. Oxytocin downregulates OXTR in NPCS. 1.5 μg of total protein was analyzed with Protein Simple Wes™
automated Western blotting system. Goat anti-OXTR antibody was used at a dilution of 1:10. Human uterus lysate was

used as positive control. Cropped representative pseudo-blots show the expression of OXTR (60 kDa), with GAPDH as

the loading control (Fig 2A). Full-length pseudo-blots are presented in Supplementary S1 Fig. Compared to control

treatment, 24 h of 100 nM oxytocin significantly downregulated OXTR protein by approximately 45% (�P = 0.01 by

Student’s t test) (Fig 2B). Data expressed as mean ± S.E.M from three biologically independent NPC cultures.

https://doi.org/10.1371/journal.pone.0191160.g002

Fig 3. No difference in NPC death at the end of oxytocin treatment. Scatter plots showing the proportion of dead

NPCs after treament with either 0, 100 pM, or 100 nM oxytocin for either 6 or 24 h, as noted. NPC death was quantified

with PI staining. 2-way ANOVA analysis did not show a difference either with oxytocin treatment (F (2,12) = 0.59,

p = 0.58, η2 = 0.04) or a treatment�time interaction (F (2, 12) = 0.66, p = 0.53, η2 = 0.04). However, there was a

significant effect of time (F (1, 12) = 14, �p = 0.003, η2 = 0.49) with a lower rate of NPC death at 24h compared to 6h.

Data are expressed as mean ± S.E.M from three biologically independent NPC cultures.

https://doi.org/10.1371/journal.pone.0191160.g003

Oxytocin and neural progenitor cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0191160 January 18, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0191160.g002
https://doi.org/10.1371/journal.pone.0191160.g003
https://doi.org/10.1371/journal.pone.0191160


0.025) or Ki-67 immunoreactivity (F (2, 12) = 0.10, p = 0.90, η2 = 0.005). However, there was a

significant effect of time, with NPC proliferation significantly higher in the 24 vs. 6 h exposure

for both EdU incorporation (F (1, 12) = 23, p = 0.0005, η2 = 0.65) and Ki-67 immunoreactivity

(F (1, 12) = 130, p< 0.0001, η2 = 0.90). There were no significant differences in the treat-

ment�time interaction in either 6 or 24 h exposures to sOT. This pattern continued even 24 h

after withdrawal of sOT from the medium, except that Ki-67 immunoreactivity was lower at

24 compared to 6 h (F (1, 12) = 33, p< 0.0001, η2 = 0.72). No significant differences were

observed with EdU incorporation except for a higher rate in the 24x24 group compared to the

6x24 group (F (1, 12) = 24, p = 0.0004, η2 = 0.61). Neither treatment nor treatment�time inter-

actions achieved statistical significance for EdU incorporation or Ki-67 immunoreactivity.

Finally, there was no change in the proportion of nestin positive NPCs 24 h after withdrawal

from a 24 h exposure to 100 pM or 100 nM sOT (P = 0.21 vs. control by 1-way ANOVA; Fig

7), indicating that prolonged exposure to sOT does not decrease the NPC pool.

Prolonged exposure to sOT enhances neuronal but impairs astrocytic and

oligodendrocytic differentiation

Exposure to sOT for 24 h increased the number of NeuN+ neurons (���P = 0.0005 by Kruskal-

Wallis test) 2 weeks later but decreased the number of both GFAP+ astrocytes (���P = 0.0009

by 1-way ANOVA) and Olig2+ oligodendrocytes (�P = 0.04 by 1-way ANOVA) (Fig 8). The

proportion of nestin+ NPCs (approximately 30%) was unchanged from control (P = 0.97 by

Kruskal-Wallis test), indicating that sOT-induced neuronal differentiation is not due to ampli-

fication of the progenitor pool. Representative photomicrographs are presented in Fig 9.

Dose-dependent increase in fetal plasma oxytocin

Maternal sOT administration increased fetal plasma oxytocin in a dose-dependent manner,

especially at the dose of 1 mg/kg (Fig 10).

Fig 4. No difference in NPC apoptosis at the end of oxytocin treatment. Scatter plots showing the proportion of

apoptotic NPCs after treament with either 0, 100 pM, or 100 nM oxytocin for either 6 or 24 h, as noted. Apoptosis of

NPCs was quantified with cleaved caspase-3 immunocytochemistry. 2-way ANOVA analysis did not show a significant

difference either with oxytocin treatment (F (2,12) = 0.21, p = 0.81, η2 = 0.03), time (F (1, 12) = 2, p = 0.18, η2 = 0.14) or

a treatment�time interaction (F (2, 12) = 0.043, p = 0.96, η2 = 0.006). Data are expressed as mean ± S.E.M from three

biologically independent NPC cultures.

https://doi.org/10.1371/journal.pone.0191160.g004
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Discussion

Our results demonstrate that neural progenitor cells express the oxytocin receptor and that

expression of the receptor is downregulated with prolonged exposure to clinically relevant

concentrations of oxytocin. Exposure to oxytocin increased neuronal fate selection and

decreased the generation of astrocytes and oligodendrocytes. However, oxytocin had no effect

on NPC proliferation and viability. Collectively, these data suggest that exposure to oxytocin

could have consequences during neurodevelopment.

OXTRs are present during early development both in neural and non-neural tissues sug-

gesting that oxytocin is intricately involved in modulating facets of early development.[4, 5, 7,

8, 23, 45–49] Here, we show for the first time that NPCs express the OXTR, similar to astro-

cytes and glial cells in the developing brain.[7] OXTR immunoreactivity was detectable both

in the cytoplasm as well as in the periphery of NPCs suggestive for its presence within the

plasma membrane. This, however, requires verification and analysis with higher resolution

Fig 5. Oxytocin treatment has minimal effect on NPC proliferation. Scatter plots showing the proportion of proliferating NPCs treated with either 100 pM or 100 nM of

oxytocin for 6 or 24 h, and after 24 h following removal of oxytocin from the medium. Proliferation was quantified with EdU incorporation and Ki67 immunocytochemistry.

There were no differences in NPC proliferation with oxytocin treatment either at 6 or 24 h, though the overall rate of proliferation was significantly higher in the 24 vs the 6 h

group for both EdU incorporation and Ki-67 immunoreactivity. There were no significant treatment�time interactions for either EdU incorporation or Ki-67 immunoreactivity.

The results were very similar in the oxytocin withdrawal experiments, except that Ki-67 immunoreactivity was significantly lower in the 24 compared to the 6 h group. Data are

expressed as mean ± S.E.M from three biologically independent NPC cultures.

https://doi.org/10.1371/journal.pone.0191160.g005
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methods. Prolonged exposure to a clinically relevant concentration of sOT decreased OXTR

protein expression by almost 45%. This was expected because sOT is known to cause receptor

desensitization and downregulation in other tissues such as the uterus.[50–53] We cannot say

whether this is an enduring phenomenon, but it raises the possibility that maternally adminis-

tered sOT may alter the availability and responsiveness of OXTRs to endogenous oxytociner-

gic signalling in vivo. This could have functional consequences for the fetus because sOT shifts

GABAA receptor activity from excitation to inhibition during labor and delivery, an effect that

is mediated by the OXTR.[43, 54] In addition, early life manipulation of the OXTR system

alters social and sexual behavior in mice and prairie voles.[46, 47, 55–57] Whether this occurs

Fig 6. Representative photomicrographs showing EdU and Ki67 immunocytochemistry. 20x images of EdU and Ki67 immunoreactivity from

control wells are shown in A and B, respectively. Approximately 35% of NPCs were positive for EdU and approximately 60% were positive for Ki67

immunoreactivity. Scale bar as noted.

https://doi.org/10.1371/journal.pone.0191160.g006

Fig 7. Prolonged treatment with oxytocin does not decrease the neural stem cell pool. A bar graph showing the

proportion of NPCs 24 h after treatment with either 100 pM or 100 nM of oxytocin for 24 h. NPCs were phenotyped

with nestin immunocytochemistry. There were no differences in the overall proportion of nestin-positive NPCs/well at

24 h after treatment with both concentrations, compared to control treatment. Data are expressed as mean ± S.E.M

from three biologically independent NPC cultures.

https://doi.org/10.1371/journal.pone.0191160.g007
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in vivo during maternal administration is not known, but our findings make a case for preclin-

ical studies to investigate neurobehavioral outcomes following prenatal sOT exposure.

The most prominent effect of oxytocin was a change in the cell fate selection of NPCs, with

exposure to oxytocin increasing generation of neurons and decreasing production of oligoden-

drocytes and astrocytes. This is consistent with evidence that oxytocin affects differentiation in

other cell types including mesenchymal stem cells, cardiomyocytes, myoepithelial cells, and

SH-SY5Ycells, where it promotes neuronal growth.[27, 30, 49, 58] Furthermore, systemic

administration of oxytocin enhances differentiation of adipocytes and myoepithelial cells in

rodents in vivo.[26, 30] The mechanisms by which oxytocin exerts these effects are unclear,

but in the case of NPCs, it may involve oxytocin-driven changes in cellular excitability. Cellular

excitation is sufficient to induce neurogenesis.[59] Furthermore, GABAergic excitation is criti-

cal for neuronal differentiation,[60] and considering that oxytocin modulates GABAergic exci-

tation,[43, 54] it is not surprising that oxytocin has such a profound effect on NPC

differentiation. Our data corroborate these results, albeit for the first time in a neural cell line.

The functional significance of increased neuronal and decreased glial cell generation are

Fig 8. Prolonged exposure to oxytocin enhances neuronal but impairs astrocytic and oligodendrocytic differentiation. Bar graphs showing the proportion of

neurons (Neu N), astrocytes (GFAP), oligodendrocytes (Olig2), and nestin+ NPCs, two weeks after treatment with 100 nM oxytocin for 24 h followed by mitogen

withdrawal. Treatment with oxytocin increased the number of NeuN+ neurons (���P = 0.0005 by Kruskal-Wallis test), but decreased the number of both GFAP+

astrocytes (���P = 0.0009 by 1-way ANOVA) and Olig2+ oligodendrocytes (�P = 0.04 by 1-way ANOVA). These changes were not accompanied by a change in the overall

proportion of nestin+ NPCs (approximately 30%) (P = 0.97 by Kruskal-Wallis test).

https://doi.org/10.1371/journal.pone.0191160.g008
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unknown but increased neuronal density in specific brain regions,[61, 62] and altered white

matter connectivity,[63] are both associated with autism spectrum disorders.

Compared to its effect on differentiation, sOT had negligible effect on NPC proliferation.

We did not observe a change on NPC proliferation with either 6 or 24 h of sOT treatment.

However, 24 h after removal of sOT from the medium, EdU incorporation was higher in the

24 compared to the 6 h treatment group, while Ki-67 immunoreactivity revealed a decrease in

the 24 h treatment group. The exact reason for this conflicting result with the two methods is

unclear but none of these effects of sOT on NPCs were accompanied by altered cell death or

apoptosis. Collectively, we conclude that the major effect of sOT is on NPC differentiation

rather than proliferation. Finally, our proof-of-principle experiments show that fetal plasma

oxytocin increases in a dose-dependent manner after maternal sOT administration. However,

it must be noted that oxytocin is administered as a continuous infusion in clinical practice and

our results may not be directly applicable to that setting. Determining whether this increase in

fetal plasma oxytocin influences the oxytocin content in the fetal brain is an additional chal-

lenge because the fetal brain produces endogenous oxytocin, and commercially available ELI-

SAs do not reliably distinguish between the two. However, there is ample evidence from other

animal studies that peripherally administered oxytocin crosses both the mature blood brain

barrier (BBB) of the adult,[21, 64, 65] as well as the immature BBB of the developing brain.[54,

66]

Fig 9. Representative photomicrographs of spontaneously differentiating NPCs after oxytocin exposure (100

nM). A panel showing 10x photomicrographs of neuronal (A), astrocytic (B), and oligodendrocytic (C) differentiation

as labeled by Neu N, GFAP, and Olig2, respectively, in control (left) and oxytocin (right) treated NPCs. Nuclei

counterstained with DAPI. Scale bar as noted.

https://doi.org/10.1371/journal.pone.0191160.g009
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Our study has limitations. First, being an in vitro study, caution is required before extrapo-

lating our results to the in vivo situation. Likewise, without a neurodevelopmental endpoint,

the biological significance of the changes in cell fate selection is unclear. Second, the CSF con-

centration of sOT achieved during maternal administration for augmentation of labor is not

known. However, we chose concentrations based on CSF levels of oxytocin achieved during

pregnancy and labor[67–69] and it is likely that CSF oxytocin levels are even higher when sOT

is given exogenously. Third, though EdU is widely used as a proliferative marker, its incorpo-

ration reflects ongoing DNA synthesis and, therefore, can also change in conditions unrelated

to cell proliferation such as DNA repair and abortive cell cycle re-entry. It is for this reason

that we used Ki67, an endogenous marker that captures proliferative cells at all stages of the

cell cycle except G0, as an independent marker—with similar results at both 6 and 24 h after

sOT. Fourth, we cannot rule out the possibility that sOT can affect neurogenesis through mod-

ulation of non-OXTR calcium signalling mechanisms.[70, 71] In addition, there is also a

potential possibility for interaction between anesthetic agents and sOT especially in the setting

of emergent general anesthesia for fetal distress during labor. Finally, we used pharmaceutical

grade sOT for our experiments but clinically available oxytocin contains 0.5% chlorobutanol

(mol. wt 177.45 g/moL) as preservative. It remains to be seen if this preservative has any direct

impact or modulates the effects of sOT on NPCs, but at concentrations < 10 μg/mL chlorobu-

tanol does not appear to have an embryotoxic effect.[72]

Conclusions

In summary, our in vitro data provide the first evidence that NPCs express the oxytocin recep-

tor, that receptor expression decreases in these cells upon exposure to clinically relevant con-

centrations of sOT, and that exposing NPCs to sOT generates more neurons but fewer glia.

The clinical ramifications of these results are unknown but in vivo studies to determine the

Fig 10. Dose-dependent transfer of sOT across the placenta. Fetal plasma oxytocin level was quantified in pooled

fetal cardiac blood samples from dams treated with either saline, 100 mcg/kg, or 1 mg/kg of sOT. Fetal plasma oxytocin

increased in the 1 mg/kg dose group (�p = 0.02 by one-way ANOVA; mean ± S.E.M), suggesting that sOT can cross the

placenta.

https://doi.org/10.1371/journal.pone.0191160.g010
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morphologic and neurobehavioral consequences of maternal oxytocin therapy on the fetus

seem warranted.

Supporting information

S1 Fig. Supplementary figure for western blot. Full-length uncropped pseudo-blots confirm-

ing the presence of oxytocin receptor (OXTR) as a 60 kDa band in neural progenitor cells

(NPC) and its downregulation upon 24h treatment with 100 nM oxytocin (1A). Because we

could not identify GAPDH in uterus lysate, our positive control, we used ß-actin (shown as a

46 kDa band in lanes 2 and 3 in 1B) during our initial experiments to validate the OXTR anti-

body (lane 1 in 1B). For quantitative experiments comparing untreated vs. oxytocin treated

NPCs, we used GAPDH (shown as a 40 kDa band) as our loading control because ß-actin was

poorly expressed in NPCs (1C). Here, we used lysates of MCF-7 cells, which are known to

express OXTR, as our positive control. All experiments were performed in the Protein Simple

Wes™ automated Western blotting system.

(PDF)
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