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Abstract

Anthropogenic plastic pollution is a global problem. In the marine environment, one of its

less studied effects is the transport of attached biota, which might lead to introductions of

non-native species in new areas or aid in habitat expansions of invasive species. The goal

of the present work was to assess if the material composition of beached anthropogenic

litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple

and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and

attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were

analysed. The macrobiotic community attached to fouled litter items was identified using

genetic barcoding combined with visual taxonomic analysis, and compared between hard

plastics, foams, other plastics and non-plastic items. On the other hand, the material compo-

sition of beached litter was analysed in a standardized area on each beach. From these two

datasets, the expected frequency of several rafting taxa was calculated for the coastal area

and compared to the actually observed frequencies. The results showed that plastics were

the most abundant type of beached litter. Litter accumulation was likely driven by coastal

sources (industry, ports) and river/sewage inputs and transported by near-shore currents.

Rafting vectors were almost exclusively made up of plastics and could mainly be attributed

to fishing activity and leisure/ household. We identified a variety of rafting biota, including

species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryo-

zoan, and hydrozoan colonies attached to stranded litter. Several of these species were

non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas) and the Aus-

tralian barnacle (Austrominius modestus). The composition of attached fauna varied

strongly between litter items of different materials. Plastics, except for foam, had a much

more diverse attached community than non-plastic materials. The predicted frequency of

several taxa attached to beached litter significantly correlated with the actually observed fre-

quencies. Therefore we suggest that the composition of stranded litter on a beach or an

area could allow for predictions about the corresponding attached biotic community, includ-

ing invasive species.
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Introduction

Since plastics have been made available to a broad spectrum of consumers after the Second

World War, their global production has risen to 322×109 kg in 2015 [1]. Although plastic pro-

duction is concentrated in China, Europe, the USA, Canada and Mexico, plastics and recycla-

ble plastic waste, which are not classified as hazardous [2], are exported internationally [1,3,4],

posing a global threat to human health, interests, and ecosystems [2,5]. The pollution by plastic

litter has advanced to such a level that today it is present in virtually every environment and

every location of the Earth [6,7]. The marine environment is especially affected, as it receives

not only direct pollution from sea-based activities, but also land-based plastics [7–9]. Plastic

pollution causes the death of a high number of marine animals, as well as severe damages to

ecosystems and human health and interests, like tourism, fishing, or leisure activities at

beaches [10–13]. Plastics do not degrade naturally but fragment to smaller pieces, which multi-

plies their abundance [6]. In recent decades, campaigns are being conducted to combat the

excessive production and consumption of single-use plastics, for example plastic bags from

supermarkets, microbeads in cosmetic products, or PET (Polyethylene terephthalate) beverage

bottles (e.g. http://storyofstuff.org/, http://www.beatthemicrobead.org/). Policy changes have

been requested after increasing scientific evidence and public awareness about the pollution

problem [14,15].

While research and actions on several aspects of the plastic litter problem are steadily

advancing, there are still many important aspects that have gained little scientific attention so

far. One problem that has received less attention is the role of anthropogenic litter items serv-

ing as artificial rafts for non-native and possibly invasive species. Notably, rafting has been

mentioned in several publications [16] and public media, but at present there is no clear

understanding of the scale and the underlying processes of this phenomenon. Research priori-

ties include an estimation of its global impact, the localization of natural sink areas, and the

identification of high-risk anthropogenic litter items/materials and sources [17].

Rafting of biota on floating objects, like driftwood, macro algae or volcanic pumice has

importantly shaped the species composition of islands [16,18,19]. Floatable litter items of

anthropogenic origin greatly enhance the number of stable rafts, particularly in areas where

natural vectors are scarce. Anthropogenic litter pollution is estimated to double marine rafting

opportunities [16,20] and on some beaches more than 60% of all anthropogenic litter items

carried attached organisms [6]. Although the vast majority of anthropogenic litter used as rafts

are plastic items, there are also cases of macrobiotic rafting on glass, metal, and paper objects

[16]. Notably, a metal gas cylinder encrusted by the stony coral Favia fragum had probably

crossed the Atlantic Ocean from the USA to the Netherlands [21]. Another invading coral,

Oculina patagonica, is commonly found on submerged metal objects [22], while some pelagic

barnacles are frequently recorded on glass and metal objects [23]. Biofouling was also reported

for air-filled glass floats, used in (mainly Japanese) fisheries before plastics became widely

available and still afloat in the world´s oceans nowadays [21,24–26].

Differences between materials in the abundance and composition of the micro fauna in

early stages of biofouling have been found [27,28]. Particularly, polystyrene seems to carry a

higher number of both species and individuals than other types of plastics, which may be due

to its higher surface roughness [27,29]. Settlement of individuals of the invasive species Bugula
neritina was significantly higher on several plastic surfaces [Polyvinylchloride (PVC), Polypro-

pylene (PP), Polycarbonate (PC), Polyethylene terephthalate (PET) and Polystyrene (PS)] than

on glass surfaces, under both field and laboratory conditions, whereas the invasive barnacle

Austrominius modestus settled more on glass than on plastic surfaces (tested under field condi-

tions) [30]. In contrast, no significant differences between biofilm composition on PET and
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glass surfaces were found in another study and object softness, rather than the type of material,

was suggested to be an important factor for biota attachment [31]. On the other hand, labora-

tory experiments and controlled field studies with fixed floaters do not incorporate the buoy-

ancy or floating behaviour of the different materials, which may also influence the biotic

colonization by some taxonomic groups [16,27,29,32]. The ability of items to float over long

distances depends not only on their buoyancy, but also on their stability and shape, with thin-

ner and more flexible plastic items (like plastic bags and packaging material) sinking faster

than thicker and more robust plastic items [33].

The origin of litter could have an influence in the attached biota. Marine anthropogenic

litter stems from various sources, like households, beach-based leisure activities, sea-

going activities, industries, and sewage [34]. The contribution of each source to anthropo-

genic litter has been investigated at many locations [9,35–37], but the main sources of lit-

ter rafts with biota are less known. For particular items, macroscopic attached biota has

been reported. Examples are lines, ropes, nets and bait pots [38–40], aquaculture and

other buoys [39,41], plastic packaging bands used in Antarctic bases and fishing boats

[42], virgin plastic pellets [43], glass bottles [39], a gas cylinder reported above [21], a plas-

tic spool [40], and tennis shoes and slippers [44], amongst others. Those reports might

point to a higher contribution of litter items originated from sea-based activities such as

aquaculture and fisheries. However, this first impression needs to be investigated in depth

and on a larger geographic scale.

Floating objects displace along with currents and tides, thus their role in the dispersal of

attached species may be important. Rafting on marine litter has been suggested to be

involved in regional dispersal of several invertebrates [23,45,46]. For example, juveniles of

the bivalve Pinctada imbricata and adults of Isognomon bicolor, which are considered inva-

sive in Brazil, were found attached to anthropogenic litter for the first time at the Uru-

guayan coast, where they are regarded as potentially invasive as well [38,44]. In the Spanish

part of the Bay of Biscay, several alien invasive species are registered [47], some of which are

already known to attach to floating anthropogenic litter in other regions [16]. The invasive

pygmy mussel Xenostrobus securis was first reported in the Bay of Biscay in 2012, attached

to natural as well as plastic and metal objects, among others [48]. The invasive Crassostrea
gigas and the exotic Ostrea stentina were also found attached to artificial materials on

regional ports [49]. According to EU Regulation (EU) No 1143/2014 there are about 12,000

alien species in European countries, of which 10–15% are regarded as invasive and pose a

serious threat to the environment and human interests [50]. Such species can be regarded as

ecosystem infestations or epidemics, with the anthropogenic litter carrying it, being infested

vectors.

Given the concern of anthropogenic beach litter our goal was to determine whether the

composition of anthropogenic beach litter can predict macrobiotic communities attached to

stranded litter items in a region. In answering this goal, we had three main objectives. First,

determine which native, non-native, and potentially invasive macroscopic animal species are

present on stranded anthropogenic litter items. Second, determine the principal material and

sources of the infested vectors. Third, test if the occurrence of a certain species/ taxon can be

predicted based on the general litter composition at a beach or a coastal area.

Material and methods

No specific permissions were required for sampling because all the organisms analysed in this

study were obtained from litter items. Those items must be removed from the beaches as they

are not natural substrate. The field studies did not involve endangered or protected species.

Anthropogenic marine litter composition in coastal areas as a predictor of potentially invasive rafting fauna

PLOS ONE | https://doi.org/10.1371/journal.pone.0191859 January 31, 2018 3 / 22

https://doi.org/10.1371/journal.pone.0191859


Sampling area

To address our main research goal and objectives, we evaluated the coast of Asturias region in

the south-central Bay of Biscay (north of Spain). The coast is under the influence of currents

going eastwards [51], with a boundary in Cape Peñas (central cape marked in Fig 1) that

divides the coast into the colder west and the warmer east zone [52]. The sampling sites cover

a wide spectrum of factors that may influence marine litter distribution, like land-use, distance

to human settlements, industry, and geomorphology [53–55]. There are two international

cargo ports in the sampled area (Gijón and Avilés), as well as shellfish aquaculture areas in two

estuaries (Rı́a del Eo and Villaviciosa). There are several villages and two bigger cities, Gijón

and Avilés, along the coastline in Spain (Fig 1). The central area of the region is strongly pol-

luted by industrial activities [56,57], which are mainly based in the area of Avilés. Among the

several rivers discharging into the Cantabrian Sea in the sampling area, the rivers Nalón,

Navia, Sella, and Esva have the largest stream basins (Fig 1).

Fig 1. Map of the sampled area including waterways, national ports, fishing ports and marinas, sewage treatment

plants, and principal industrial sites. Sampling sites are numbered and are specified in Table 1.

https://doi.org/10.1371/journal.pone.0191859.g001

Table 1. Sampled beaches as shown in Fig 1, with geographic position.

Number Beach name Longitude [˚W] Latitude [˚N]

1 Figueras -7.02 43.54

2 Penarronda -6.99 43.55

3 Navia -6.72 43.55

4 Barayo -6.62 43.56

5 Silencio -6.29 43.57

6 Bayas -6.04 43.57

7 Salinas -5.95 43.58

8 Nieva -5.94 43.59

9 Xagó -5.92 43.60

10 Bañugues -5.81 43.63

11 Xivares -5.72 43.57

12 Rodiles -5.38 43.53

13 Sta. Marina -5.07 43.47

14 Poo -4.78 43.43

15 Andrı́n -4.71 43.41

https://doi.org/10.1371/journal.pone.0191859.t001
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Beach litter samplings and analysis

A total of fifteen sandy beaches, covering a linear distance of 190 km along the Cantabrian

coastline in Asturias, Spain, were sampled in a 26-day period between February and March

2016 (Fig 1). Each beach was sampled one day during low tide and daylight. We conducted

two independent surveys: 1) A sampling of fouled beached items along the whole area of each

beach to test if there are material-related differences in the taxonomic composition of the

macro fauna attached to beached litter, and 2) a count and material-based classification of bea-

ched anthropogenic litter in general (both fouled and non-fouled) in a smaller standardized

area. Please see the supporting figure for a graphic sampling scheme (S1 Fig).

Survey 1: The whole area of each beach was searched for anthropogenic litter items with

attached macrofauna (visible fauna). Each of the items found was photographed with a Motor-

ola Moto G3 camera (resolution 13 MP) next to a size reference (a finger or any other object of

known dimensions) and given an identification code. The type of object (e.g. buoy, fragment,

rope; Table 2), type of material and colour was noted down for each item. We did not only

classify the fouled items by material as plastic and non-plastic (e.g. metal, paper, glass; abbrevi-

ated NPl), but moreover separated plastic items in three categories, based on their stability and

surface roughness: Hard plastics (abbreviated HPl), synthetic foams (e.g. Polystyrene; abbrevi-

ated foams), and other plastics (abbreviated OPl). Litter items found on the beaches were asso-

ciated to three sources: Sewage, Fishing/Aquaculture and Household/Leisure. All objects or

fragments that were not identifiable or not attributable to one of the categories above were

classified as N/A (not attributable; Table 2).

Attached biota was visually assigned to the most specific distinguishable taxonomic group

based on morphology and the number of individuals (colonies for bryozoans and hydrozoans)

was counted and noted down for each group. A representative number of individuals (� 50)

of each morphotype was detached from each litter item using forceps and a scraper. They were

stored in commercially available hard plastic sampling pots in 50–500 ml (depending on the

size and number of stored individuals) of ethanol 80% for further analysis and labelled with

the identification code of the corresponding litter item. Some smaller litter items and items of

complex shapes were stored in plastic bags and taken to the laboratory for measurement, while

the dimensions of bigger items and of items with a simple shape were estimated based on the

photos, and the surface area was calculated for each item. The native distribution area and the

potential invasive capacity of each attached species were examined from relevant current liter-

ature [49,58–62] and databases, namely the global invasive species database (GISD, http://

www.issg.org/database) and World Register of Marine Species [63].

Table 2. Categories of beach litter sources and associated litter objects.

Sewage Fishing/Aquaculture HH/Leisure N/A

Cotton buds Buoys Sandals Fragments

Menstrual hygiene Netfloats Cosmetics container Unknown objects

products + packaging Cage nets Shoes Boxes

Wet wipes Jerrycans Shoe soles Bottles

Nets Cigarette stubs Buckets

Ropes Lighters Lids

Paper and carton Beverage crates

Textiles

Drinking straws

HH = household, N/A = not attributable.

https://doi.org/10.1371/journal.pone.0191859.t002
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Survey 2: A standardized quantification and characterization of anthropogenic beach lit-

ter (not restricted to fouled objects) was done at all beaches, except for Figueras, Silencio,

and S. Juan de Nieva (for location of the beaches see Fig 1). On the other 12 beaches, of sim-

ilar sandy granulation, standardized litter counts were conducted in 2 horizontal transects

at every beach, each consisting of four adjoined quadrats of 3×3m2 each. The two transects

were placed parallel to the water line, the upper transect along the most recognizable higher

tideline, and the lower transect along the most recognizable lower tideline, to account for

possible differences in litter composition with shore height [64] and to include both recently

stranded litter (lower tide line) and litter stranded less recently (most recognizable high tide

line). The area for the counts was defined at every beach after visual inspection, where accu-

mulation of flotsam (both natural and anthropogenic) was representative of the whole

beach (i.e. neither exceptionally high, nor exceptionally low, relating to the rest of the

beach). This method was chosen over a random approach to avoid bias due to the small

transect area (36 m2 per transect) and the limited number of replicates (two transects per

beach), as anthropogenic litter and other flotsam is often distributed heterogeneously along

the beach [64,65].

The sampling quadrats were defined with a tape measure and their outlines were marked

in the sand using a stick. In each quadrat all macro litter (items and fragments bigger than

1.5 cm) was inspected and sorted by object type (e.g. lid, drinking straw, fragment) and

material. Then the number of items of each combination of object type and material (e.g.

hard plastic lids, metal lids, paper fragments; Table 2) was counted and noted down for each

quadrat in situ. All items and fragments were then assigned to a source category. The mate-

rial categories and source categories used for classification were the same as described

above for Survey 1.

Genetic barcoding

DNA was extracted from a small piece of tissue (about 2×2 mm) using Chelex (Bio Rad BT

Chelex1 100 Resin). For DNA extraction from very small individuals with non-tissue

parts, like shells (e.g., molluscs), the complete individual was treated with E.Z.N.A1 Mol-

lusc DNA Kit. PCRs were performed with the universal primers detailed in Table 3. When

necessary, the PCR product was purified using EURx1 Gene Matrix Agarose Out DNA

Purification Kit. DNA sequencing was performed by Macrogen Europe, Amsterdam,

Netherlands.

Sequence editing and alignment was done using the freeware BIOEDIT Version 7.2.5 [66].

From the DNA Barcode the species was assigned using the BLAST database [67] and the best

match with the maximum hit score (minimum 97% nucleotide identity). Phylogenetic trees

for confirming species assignation were built with MEGA 7 [68] from the sequences obtained

in this study and reference sequences of voucher specimens taken from GenBank (https://

www.ncbi.nlm.nih.gov/nucleotide/), based on the maximum likelihood reconstruction

method, with 500 bootstraps.

Table 3. Primers used for DNA amplification in different taxa.

Taxon Primers Sequence

Molluscs, Arthropods jgLCO1490

jgHCO2198

5’TITCIACIAAYCAYAARGAYATTGG3’
5’TAIACYTCIGGRTGICCRAARAAYCA3'

Polychaetes 18s EukF

18s EukR

5’WAYCTGGTTGATCCTGCCAGT3’
5’TGATCCTTCYGCAGGTTCACCTAC3’

Bryozoans

Hydrozoans

16s HF

16s HR

5’ATAACACGAGAAGACCCT3’
5’CCCRCGGTCGCCCCAAC3’

https://doi.org/10.1371/journal.pone.0191859.t003
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Statistical analysis

Analysis of rafting fauna was done at regional level after confirming large dispersal capacity of

the species found. Comparison among materials for the attached biotic community was done

using the number of individuals per object as a standardized unit. To compare among commu-

nities we classified biota as goose barnacles, acorn barnacles, bryozoan and hydrozoan colo-

nies, decapods, molluscs and polychaetes.

Composition and sources of beach litter found along the main accumulation lines (from

standardized samplings) were compared to composition and sources of the litter items used as

rafts, employing the PERMANOVA function of PRIMER 6 software [69,70]. PERMANOVA

results were regarded as statistically significant at a p-value of� 0.05. The contribution of each

litter source to the differences was tested by SIMPER (= similiarity percentage) analysis. Both

analyses were based on Bray- Curtis similarities.

The abundance of anthropogenic litter was compared between and within beaches

using boxplots, showing the mean value, quartiles and variability for each beach. Hetero-

geneity in composition and abundance of anthropogenic beach litter in general, and of

items used as artificial rafts by biota, were tested using PERMANOVA, based on Euclidean

distances. Multidimensional scaling (MDS) based on Bray-Curtis similarities was used to

graphically represent the grouping of the sampled beaches, based on dominant litter mate-

rial: beaches dominated by hard plastics (termed HPl–dominant), beaches dominated by

other plastics (termed OPl-dominant), and beaches with mixed litter composition and less

than 25 litter items in the standardized sampling area (> 0.35 items×m2; termed Mix).

These analyses were done for the subsample of beaches where standardized litter analysis

was carried out.

Since litter composition and litter with rafting biota in a beach were independent datasets, a

correlation approach was followed to determine if rafting biota in a beach area can be inferred

from litter composition. Biota expectation from litter composition was estimated for 12

beaches based on the characteristic community profile of the beaches’ litter materials. The

goodness of adjustment between estimated and observed taxa was tested using a correlation

approach, based on Spearman´s rank correlation coefficient and the linear correlation was

graphically illustrated in a scatter plot.

We calculated the expected number of individuals by taxa at each of the twelve beaches as:

TBðxÞ ¼
Pn

i¼1
fMðiÞ � fTBMði; rÞ � NtðxÞ ð1Þ

Where TB (x) is the expected number of individuals for taxon B on beach x, fM(i) is the fre-

quency of litter material i (HPI, OPI, Foams or NPI) found on beach x, fTBM (i, r) is the fre-

quency of taxon B on material i in the region r and Nt (x) is the total number of rafting biota

found on beach x.

Results

Standardized quantification and categorization of anthropogenic beach

litter

All the sampled beaches were polluted with anthropogenic litter. The mean abundance of

anthropogenic litter ranged from 0.17 ± 0.21 items×m-2 (Barayo) to 5 ± 3.95 items×m-2

(Xivares). The abundance of anthropogenic litter varied strongly, not only between beaches,

but also between quadrats within beaches, indicating a patchy distribution (Fig 2). The compo-

sition of beached litter in the region was not significantly different of the composition of litter

rafts with biota (Table 4: PERMANOVA 1).
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The highest pollution levels were found in direct proximity to the coastal region´s main

industrial and populational centers, Gijón (Xivares beach: 5 ± 3.95 items×m-2) and Avilés

(Salinas and Xagó beaches: 2 ± 1 items×m-2 and 2.7 ± 1.9 items×m-2, respectively) both of

which have a national port and a sewage treatment plant, as well as at the river mouth of the

Navia river, in proximity to a fishing port and a marina (Navia beach: 4.3 ± 4 items×m-2, see

map in Fig 1). The abundance of beach litter at the other sampled beaches along the Canta-

brian coastline seems to reflect the geomorphology of the coastline and its exposure to the pre-

vailing eastward surface current, with a maximum peak in the northernmost Cape Peñas:

Pollution rose from Barayo eastwards up to Xagó, situated on the western side of Cape Peñas,

which is more exposed to the eastward surface current, and subsequently declined on the east-

ern side of the cape, which is more protected from the prevailing currents (Fig 1, Fig 2).

Fig 2. Abundance of anthropogenic litter, counted in a standardized area at the sampled beaches. Data are presented in a box-and whisker plot, with the middle

box representing 50% of the values and the upper and lower whiskers representing the values outside of the 50% range. The median and outliers are indicated by a

middle line and a circle (◦), respectively. Litter items were counted in a standardized area at each beach.

https://doi.org/10.1371/journal.pone.0191859.g002
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Plastics (including foams) made up the highest share of anthropogenic litter on all beaches

(75% to 100%), except at Andrı́n beach, where non-plastic litter was more abundant (55%;

Table 5). The sampled beaches differed significantly from each other regarding both abun-

dance and composition of anthropogenic litter (Table 4: PERMANOVA 2). Beaches were clas-

sified based on the prevalent litter material, forming three groups in the sampling area that

significantly differed from each other (Table 4: PERMANOVA 3) and could be graphically dis-

tinguished by multidimensional scaling (MDS; Fig 3). The treatment of beaches in categories

facilitated further analyses.

Most anthropogenic litter items found on the sampled beaches could not be attributed to a

source, as many of them were small fragments. For the objects that could be likely assigned to

a source, most were sewage-related. At Xagó and Penarronda fishing and aquaculture activities

were also important sources of beached litter (Table 5).

Anthropogenic litter items used as rafts

A total of 94 litter objects with attached fauna were found on the surveyed beaches (Fig 4).

High prevalence of hard plastics and plastics in general (71 ± 30% and 98 ± 6%, respectively),

was found among rafting vectors, while the share of non-plastic objects was very low (2 ± 6%,

Table 5). In fact, only five non-plastic objects with attached fauna were found on three beaches:

three glass bottles (one with a metal cap), one piece of processed wood, and one sandal, which

was counted as nonplastic as the attached organism was found on its textile part. Within the

plastics the share of other plastics tended to be less abundant in rafting vectors than in general

beach litter (17 ± 24% versus 27 ± 26%), while the share of foams was rather similar in rafting

vectors and general litter (9 ± 12% and 9 ± 8%, respectively). The standard deviation between

beaches however was high (Table 5).

The main sources of fouled litter items were significantly different from the main sources of

other non-fouled beach litter (Table 5, Table 4: PERMANOVA 4). SIMPER showed that the

source category with the highest contribution to the differences (after unidentified litter NA,

contribution: 37%) was Fishing and Aquaculture (contribution: 34%; Table 6). This

Table 4. Detailed results of PERMANOVA analyses.

PERMANOVA Variable Factor df SS MS Pseudo-F P(perm) Unique perms

1 Material composition General litter vs Rafts 1 809.71 809.71 2.6639 0.073 998

Residuals 22 6687 303.96

Total 23 7496.7

2 Litter abundance, Beaches 11 382.66 34.788 8.7906 0.001 998

composition Residuals 84 332.42 3.9574

Total 95 715.08

3 Litter abundance, Beach groups 2 224.28 112.14 21.2500 0.001 999

composition Residuals 93 490.8 5.2774

Total 95 715.08

4 Litter source General litter vs Rafts 1 5573.5 5573.5 6.1282 0.003 995

Residuals 22 20009 909.49

Total 23 25582

5 Attached biota Raft material 3 30743 10248 2.7185 0.001 998

Residuals 87 3.2795E5 3769.5

Total 90 3.5869E5

Df = degrees of freedom, SS = sum of squares, MS = mean sum of squares, Pseudo-F = F value by permutation, perm = permutation.

https://doi.org/10.1371/journal.pone.0191859.t004
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particularly important role of fishing/aquaculture related litter for the rafting of biota in the

sampling area was especially noticeable at the beaches of Xagó, Navia and Rodiles, where all

the identifiable items with attached biota were from this source (Table 5). Leisure and house-

hold-related items also had a high share in rafting vectors. Items from this source were found

on six beaches and consisted of 20 shoes/sandals and one cosmetic container. Leisure and

household was the main litter source for Andrı́n beach (Table 5). On the other hand, sewage-

related litter made up to 11% (mean) of all anthropogenic beach litter, although none of the

biota rafts was related to this source (Tables 5 and 6).

Fauna attached to anthropogenic rafts

More than 3300 individuals (or colonies for bryozoans and hydrozoans) were found attached

to the litter objects found in the beaches surveyed (Table 7). With genetic analyses, more than

400 DNA barcodes were obtained, identifying 23 species of attached animals from four phyla

(Fig 5, Table 7). The Barcodes were submitted to GenBank database, where they are available

with the Accession Numbers KY607884-KY607909, KY614195-KY614223, KY628986,

KY661434-KY661534, KY683467-KY683511, KY944812-KY944984, KY963587-KY963595,

KY986731-KY986745, MF037237-MF037246, MF043915. Crustaceans (Phylum Arthropoda)

such as Lepadidae (Goose barnacles), Balanidae and Verrucidae (Barnacles), and the amphi-

pod Caprella andreae were the most abundant animals in this study (> 1000 individuals;

Table 7), followed by annelids, which all belonged to the family Serpulidae (~700 individuals).

Table 5. Composition and likely source of anthropogenic beach litter from standardized beach litter counts (in white, at left), and fouled litter items along the

whole beach area (in grey, at right).

Anthropogenic beach litter (from standardized sampling in

quadrats)

Fouled items (from whole beach area)

MATERIAL [%] SOURCE [%] MATERIAL [%] SOURCE [%]

Beach

group

Beach Litter

[items
�m-2]

HPl OPl Foam NPl ∑Pl S F HH N/A Fouled

vectors

[total]

HPl OPl Foam NPl ∑Pl S F HH N/A

Mix Andrı́n 0.31 23 5 18 55 45 0 0 0 100 5 40 40 20 0 100 0 20 60 20

Mix Sta. Marina 0.22 44 6 31 19 81 6 0 13 81 2 50 50 0 0 100 0 0 50 50

Mix Barayo 0.17 58 17 0 25 75 0 8 8 83 5 40 20 40 0 100 0 40 0 60

OPl-dom Xagó 2.68 18 74 8 0 100 34 24 0 41 4 75 0 25 0 100 0 75 0 25

OPl-dom Penarronda 1.25 43 54 2 0 100 3 42 0 54 20 75 10 10 5 95 0 25 10 65

OPl-dom Bayas 1.15 41 45 10 5 95 8 4 2 86 7 71 14 14 0 100 0 33 0 67

OPl-dom Navia 4.25 26 68 1 6 94 17 5 6 72 1 100 0 0 0 100 0 100 0 0

HPl-dom Salinas 1.50 80 11 7 2 98 13 3 3 81 25 48 20 20 12 88 0 4 12 84

HPl-dom Xivares 5.00 89 3 8 1 99 18 2 0 80 4 75 25 0 0 100 0 25 25 50

HPl-dom Bañugues 1.03 72 14 12 3 97 9 7 5 78 2 100 0 0 0 100 0 0 0 100

HPl-dom Rodiles 0.47 71 21 6 3 97 9 6 3 82 8 88 0 13 0 100 0 75 0 25

HPl-dom Poo 0.50 78 11 8 3 97 19 3 6 72 1 100 0 0 0 100 0 0 0 100

X Silencio x x x x x x x x x x 4 100 0 0 0 100 0 25 0 75

X Nieva x x x x x x x x x x 1 100 0 0 0 100 0 0 0 100

X Figueras x x x x x x x x x x 5 0 80 0 20 80 0 0 20 80

MEAN 54 27 9 10 90 11 9 4 76 71 17 9 2 98 0 28 12 60

ST. DEV. 24 26 8 16 16 10 12 4 15 30 24 12 6 6 0 32 19 32

x = no data available. dom = dominant, HPl = Hard plastics, OPl = Other plastics, NPl = Nonplastic, S = Sewage, F = Fishing and aquaculture, HH = Household and

leisure, N/A = Not attributable, ST. DEV = Standard deviation.

https://doi.org/10.1371/journal.pone.0191859.t005
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Hydrozoan and bryozoan colonies were also very numerous (~400) and might be underesti-

mated in this study, due to the difficulty of counting them individually. As most of the colonies

were dried out and in a state of advanced degradation, DNA was degraded in most cases and

Fig 3. Multi-dimensional plot of the sampled beaches, based on abundance and composition of anthropogenic litter counted in a standardized area at each beach.

HPl = hard plastics, OPl = Other plastics, Mix = beaches with mixed litter composition and less than 25 litter items in the standardized sampling area (> 0.35 items×m2).

https://doi.org/10.1371/journal.pone.0191859.g003

Fig 4. Examples of fouled litter items. a) Hard plastic object with oyster, polychaetes and acorn barnacles b) PET

bottle with goose barnacles c) float of fishing net with bryozoan colonies and polychaetes, d) shoe sole with oyster, snail

and acorn barnacles, e) duct tape with goose barnacles.

https://doi.org/10.1371/journal.pone.0191859.g004
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Table 6. Contributions of several litter sources to the differences between the general beach litter counted in a standardized area (group General) and litter used as

biota raft (group Rafts), calculated by SIMPER analysis.

Groups General & Rafts

Average dissimilarity = 44.61

General Rafts

Litter source Abundance Abundance Dissimilarity Diss. / SD Contribution [%] Cumulative [%]

Not identified 75.83 53.83 16.67 1.45 37.37 37.37

Fishing/Aquaculture 8.67 33.08 15.36 1.06 34.44 71.81

HH / Leisure 3.83 13.08 6.90 0.77 15.47 87.28

Sewage 11.33 0.00 5.68 1.22 12.72 100.00

HH = household, Diss. = Dissimilarity, SD = standard deviation

https://doi.org/10.1371/journal.pone.0191859.t006

Table 7. Overview of species attached to stranded litter, identified in the present study.

Visual identification N Phylum/ Subphylum Class Order Family Genetic identification Barcodes Geographic
origin

Goose barnacles 676 Arthropoda/

Crustacea

Maxillopoda Pedunculata Lepadidae Lepas anatifera 170 COS

Lepas anserifera 2

Lepas pectinata 44

Dosima fascicularis 3

Acorn barnacles 308 Arthropoda/

Crustacea

Maxillopoda Sessilia

Balanidae

Austrominius
modestus�

57 Australia, NZ

Chthamalus stellatus 30 NAT

Chthamalus montagui 26

Balanidae sp.,

(Perforatus perforatus)
2

Verrucidae Verruca stroemia 4

Caprellids 75 Arthropoda/

Crustacea

Malacostraca Amphipoda Caprellidae Caprella andreae 10 COS

∑ ARTHROPODS 1059

Mytilidae 70 Mollusca Bivalvia Mytiloida Mytilidae Mytilus edulis 5 NAT

Mytilus
galloprovincialis�

1

Mytilus sp. 10 x

Ostreidae 21 Mollusca Bivalvia Ostreoida Ostreidae Crassostrea gigas� 16 NE-Pacific

Ostrea stentina 1 S-Atlantic, Med

Gastropods 2 Mollusca Gastropoda x Trochidae Gibbula umbilicalis 2 NAT

∑ MARINEMOLLUSCS 93

Polychaetes 699 Annelida Polychaeta Canalipalpata Serpulidae Spirobranchus triqueter 3 NAT

Spirobranchus
taeniatus

17

Serpula columbiana 1 N-Pacific

Neodexiospira sp. 1 S-Atlantic

Spirobranchus sp. 3 x

∑ ANNELIDS 699

Hydrozoan and Bryozoan
colonies

396 Cnidaria Hydrozoa Anthoathecata Bougainvilliidae Bougainvillia muscus 1 NAT

Leptomedusae Campanulariidae Obelia dichotoma 1 COS

∑ HYDROZOANS
+ BRYOZOANS

396

Gastropod, terrestrial 4 Mollusca Gastropoda x Helicidae Helix aspersa aspersa� 4 NAT

N = total number of individuals found, NAT = native, COS = cosmopolitan distribution, N = North, S = South, Med = Mediterranean sea. Non-native species are

marked by bold writing.

� = Species (both native and non-native to study area) listed in the global invasive species database (GISD, http://www.issg.org/database).

https://doi.org/10.1371/journal.pone.0191859.t007
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only two species of Cnidarians were identified from genetic techniques: Bougainvillia muscus
and Obelia dichotoma. The animals found in the present study were morphologically diverse

and it is possible that the hydrozoan and bryozoan colony group actually included more spe-

cies and taxa. Around 100 molluscs were found attached to anthropogenic litter items, with

the majority of them belonging to the genus Mytilus, followed by the oysters Crassostrea gigas
and Ostrea stentina. Moreover, we found two species of gastropods: the marine species Gibbula
umbilicalis, and the land snail Helix aspersa. For the latter, which is terrestrial, taking into

account its common occurrence in the sampled area, it seems likely it did not arrive on the

beach by rafting but from the land.

Most of the rafting animals were native to the study region or recognized as cosmopolitans

(Lepadidae). Five species were not native: Crassostrea gigas, Ostrea stentina, Austrominius mod-
estus, Serpula columbiana, and Neodexiospira sp. C. gigas and A. modestus are listed in the

global invasive species database (GISD, http://www.issg.org/database). The native M. gallopro-
vincialis and the terrestrial species H. aspersa are included in GISD as well. The species identifi-

cation provided by BLAST was confirmed from phylogenetic analysis after clustering analyses

including voucher species references from GenBank (Fig 5).

Regarding the type of material carrying each species, differences occurred in this region

between taxonomic groups. While molluscs like Mytilus and Crassostrea were found on all

types of anthropogenic litter, Polychaetes were exclusively found on hard plastic and other

plastic items. Barnacles, like Austrominius, were found on all materials except foams, but were

most important on hard plastic items. Therefore, each type of litter seemed to exhibit a particu-

lar profile of attached biota (Fig 6). Foams carried almost exclusively goose barnacles (99%)

and, to a much lesser extent, molluscs (1%). Non-plastic items contained a similar biota pro-

file, with an additional small share of barnacles (2%). Hard plastic and other plastic objects on

the other hand carried a broad spectrum of attached taxa. On hard plastic items the main

share of attached biota were barnacles (37%), polychaetes (31%) and bryozoan colonies (18%).

They also carried goose barnacles, molluscs, and decapods (7%, 4%, and 2%, respectively). On

other plastics, the main share of attached biota was made up of polychaetes (66%) and goose

barnacles (23%), while barnacles, bryozoan colonies, and molluscs were less common (5%, 5%,

Fig 5. Phylogenetic trees reconstructed from sequences obtained in this study and reference sequences from

GenBank database (bold style). a) molluscs, b) crustaceans, c) polychaetes, d) hydrozoans. Frame = Species not native

to the study area; � = Species listed in the invasive species database; + = Terrestrial species; # = reference without

species voucher.

https://doi.org/10.1371/journal.pone.0191859.g005
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and 2%, respectively). Differences between materials regarding the biota profile were indeed

highly statistically significant (Table 4: PERMANOVA 5).

Inference of litter-related biotic community from beach litter composition

We tested if the composition of an area´s macrobiotic communities attached to stranded litter

items can be predicted based on its composition of anthropogenic beach litter, using the data

of the 12 beaches where standardized litter counts have been conducted. The predicted fre-

quency of attached biota of several taxa, estimated from litter composition significantly corre-

lated with the actually observed frequencies on both sides of cape Peñas (Western side:

Spearman‘s rank correlation coefficient (R) = 0.498; p = 0.002; Eastern side: R = 0.629;

p = 0.027), as well as for the whole sampling area (R = 0.565; p< 0.001; Fig 7). For the exact fig-

ures of estimated and observed biota, please see the Supporting table (S1 Table).

Discussion

In this study six rafting species were recorded for the first time on anthropogenic beach litter:

Verruca stroemia, Ostrea stentina, Gibbula umbilicalis, Spirobranchus taeniata, Serpula
columbiana, and Neodexiospira sp. Although many rafting species have been documented on

anthropogenic marine litter during the last years [16] and the recent discovery of 289 living

Fig 6. Particular profile of attached biota for each litter material.

https://doi.org/10.1371/journal.pone.0191859.g006
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marine species, which had crossed the Pacific Ocean on objects detached by a tsunami, showed

the importance of floating marine litter as a rafting vector [71], many rafting species are not

known or reported yet and knowledge of the actual dimension and impact of marine litter raft-

ing is still far from complete. The finding of Perforatus perforatus on anthropogenic litter is

particularly interesting, as large numbers of this species, probably originating from NW Spain,

have been found on beach litter in Wales [72]. A similar range expansion might also occur for

invasive barnacles, such as Austrominius modestus.
Besides the species listed above, most of the taxa found in our study are known rafters and

have already been found on anthropogenic litter (floating or stranded) in other regions [16].

The predominance of cosmopolitan stalked barnacles among marine rafters is a common phe-

nomenon, with the small and light-weight species L. pectinata and D. fascicularis being espe-

cially suited for the colonization of smaller rafts [16,23]. Lepas barnacles may influence the

rafting community on plastic debris: the ratio Lepas cover /surface area was found positively

correlated with the diversity of mobile rafters, while negatively with sessile rafters’ diversity, in

a study by Gil and Pfaller (2016). Our results were concordant with this study, since the debris

dominated by goose barnacles contained a very low diversity of other sessile rafting species

(only molluscs and acorn barnacles), while materials with a lower share of goose barnacles

exhibited a relatively diverse attached community (Fig 6). Another common rafter found in

this study was the amphipod Caprella andreae. The genus Caprella is generally adapted to raft-

ing because of their reduced abdominal appendages, and C. andreae is the only known obligate

rafter in its genus [60].

Two non-native oysters were found on Figueras beach, close to the region´s only active site

of mollusc aquaculture. While C. gigas is a recognized invasive species and quite common

along the Asturian coast, O. stentina has only been reported in the region once before, in the

Fig 7. Correlation between expected and observed numbers of individuals of several taxa, calculated from data of 12 Asturian beaches.

https://doi.org/10.1371/journal.pone.0191859.g007
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port of Avilés [49]. These two findings with a linear distance of less than 100 km may indicate

that this species is already established in the region, and may use anthropogenic litter for dis-

persal beyond the range of its propagules. The results show a link between the composition of

anthropogenic beach litter in an area and the frequency of several taxa of fauna attached to

stranded litter objects. This finding should be valid for a broad range of coastal regions, as it is

based on taxa composition and general litter materials, rather than on particular species and/

or litter items, which may vary more strongly between regions.

The strong prevalence of (hard) plastic rafts confirms the results of previous studies [73].

The very low share of non-plastic rafts may be due to the fact that the majority of these items

are not buoyant and/or of very little persistence. Plastic foams, despite being highly buoyant

and having rather rough surfaces, which facilitate initial colonization [16], are less stable and

persistent than hard plastics [29]. This may explain their low share amongst rafting vectors.

For the potential sources of litter with rafting biota, there was a high share of unidentified

items but still some important conclusions may be drawn from our results. Firstly, rafting vec-

tors could be identified and attributed to a source much more frequently than other items of

anthropogenic beach litter. The reason is probably that small plastic fragments whose source

cannot be identified, which are quite common in beach litter in general, are too small for serv-

ing as rafts. Fazey and Ryan (2016) proposed size and buoyancy as predictors of dispersal dis-

tance for floating debris [74]. Given that biofouling reduces an item´s buoyancy, smaller items

will sink faster than bigger items and travel much smaller distances [75]. This phenomenon

may also explain why sewage litter, although quite abundant on beaches, was never found as a

rafting vector. Rafting vectors from fishing and aquaculture, as well as other sea-based activi-

ties, have been reported in other studies [41,76]. An explanation for the high occurrence of

items from these sources among rafts may be their buoyancy, stability, size and persistence. 12

of the 23 fishing/aquaculture-related rafting vectors were buoys or netfloats, which are obvi-

ously highly buoyant and seven were grids or cages made from stable plastic wire, which are

big items with a rather small surface/volume ratio. The other four rafts were rather big items

(min. 10x2x2 cm3) made from hard plastics. Leisure and household-related litter is quite diffi-

cult to define, because many of the items which might stem from this source might as well

stem from sea-based sources (e.g. PET bottles). These items have not been assigned to a source

category, so perhaps the actual contribution of this source was higher. Shoes and sandals,

clearly sourced household or leisure, are known to be able to float over large distances and

have already been reported as rafting vectors [44,77–79].

The patchy abundance of beach litter, with high variances both within and between beaches

was congruent with the situation reported in many other studies [7,9,80]. Although compari-

sons of abundance between different locations, observers, and studies with different approaches

(regarding for example transect size, choice of strand lines and/or ground between strand lines

sampled, minimum size of items counted, biological material present in the sampled area etc.)

are rather difficult [7,65,81], the abundance of beach litter found in this study falls within the

same range as reported for many other sampling sites around the globe. As this study focuses

on stranded litter which had already been at sea, the litter counts were conducted in transects

targeting tidelines, where natural and anthropogenic litter is deposited by the sea. Targeting

areas of litter accumulations, the results are likely overestimating the total litter abundances of

the sampled beaches, and are not representative for the whole area of the beaches. They do how-

ever allow for comparisons of stranded litter abundances between the beaches sampled during

this study, where the same method was used for all beaches.

Plastics (including plastic foams) are reported as the main constituents of beach litter in

most studies [7]. According with that, the share of plastics found on beaches along the Can-

tabrian coast (present study) was rather high. Source attribution of the stranded litter items
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was a difficult task because the majority of items could not be clearly related to a litter cate-

gory, either because the item could stem from several sources, or because the item was not

identifiable (i.e. fragments). Notwithstanding it, our results indicate that sewage-related lit-

ter is a problem in the sampled area. In fact, waste-water discharging pipelines and accumu-

lations of preproduction pellets in the sand below such pipelines were noted on several of

the sampled beaches (personal observation SR), but did not enter in the present study due

to their small size. Fishing and aquaculture have also been identified as important litter

sources in the sampling area. This finding is consistent with the fact that pollution by lost or

discarded fishing gear is a common problem in the world’s seas (including the benthos) and

on beaches [37,82–84]. There is a high activity of small-scale fishery, with 19 fishing ports

along Asturias coastline and a large area of fishing grounds near- and off-shore, plus one

active site of mollusc aquaculture (mainly oysters) near Figueras, and several crustacean

ponds (http://www.sigmarinoasturias.es/).

The exposure to the prevalent currents may make the sampling area a sink for anthropo-

genic floating litter and attached biota from other areas. In fall and winter, the sampling area is

dominated by a warm poleward surface current, referred to as ‘Navidad’, which enters near

Cape Finisterre and moves eastward along the Cantabrian shelf and slope [51]. As the sam-

plings presented in this study were conducted from mid-February to mid-March, it could be

assumed that the overall accumulation pattern, particularly the increase of litter abundances

from more western beaches towards the tip of Cape Peñas, was driven by this current. On the

eastern side of cape Peñas, sediments are transported from the coastal currents to the beaches

[85]. This transport may explain the observed abundances of litter on these beaches, which are

not directly exposed to the prevalent current. Apart from this main driver, there seems to be

an effect of rivers in the area, contributing to the high litter abundance on the beaches Navia

and Xivares. Both are situated at the mouth of rivers (Rio Navia and Rio Aboño, respectively).

Riverine influence was also reflected in the relatively high share of sewage-linked litter on both

beaches.

Although the present study clearly showed the relation between anthropogenic beach litter

composition and attached fouling biota in a coastal area, it had some limitations. The sam-

plings were restricted to one geographic area (the south-central Bay of Biscay) and season (feb-

ruary to march), and each beach was sampled only once. Moreover, our study concentrated on

stranded anthropogenic litter and did not include litter which was still floating in the water.

Thereby we ensured to sample only taxa/species which are still present after a beaching event

and might therefore pose a risk of invasion. On the other hand, it should be considered that

the biota found on beach litter in this study probably do not represent the complete macrobi-

otic rafting community of the respective items before the beaching event, as beached litter is

often biased towards sessile biota [16].

In summary, the results presented here give several important insights in the mecha-

nisms on biota rafting on anthropogenic marine litter. Plastic items, except for foams,

house a much more diverse biota community than non-plastic items and foams, which may

be due to their stability and buoyancy. Several non-native and invasive species were present

on litter items along the sampled beaches. Aquaculture and fishing activities were a major

source of biota rafts, while sewage discharge was the most important source of all anthropo-

genic beach litter in the study region. We found that the frequency of a specific taxon of

rafting biota in a coastal area may be predicted based on each litter material’s characteristic

biota profile and the beaches’ litter composition. This approach, after refined and tested

from more regions, could serve as a simple and cost-efficient tool for risk assessment in the

future.
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