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ABSTRACT In this report, we describe eight nearly complete genome sequences of
rabies virus strains collected in the Democratic Republic of the Congo from domestic
carnivores in 2017 and 2018. All of them clustered into a specific phylogroup among
the Africa 1b lineage in the Cosmopolitan clade.

Rabies is the prototype of a neglected and tropical zoonotic disease, affecting poor and
rural areas in Asia and Africa. To date, nearly 59,000 human cases of rabies are esti-

mated worldwide each year, mainly due to transmission from dogs (1). Rabies virus (RABV)
is the principal etiological agent of rabies, an acute and almost always fatal form of enceph-
alomyelitis which can affect potentially all mammalian species. This virus belongs to the
prototype species Rabies lyssavirus within the genus Lyssavirus, family Rhabdoviridae (order
Mononegavirales) (2). Dog rabies is endemic in the Democratic Republic of the Congo
(DRC), similarly to other sub-Saharan countries (3, 4). However, data available about the
genetic diversity of RABV strains circulating in this country still remain extremely limited (5).

In this study, brain samples were collected from seven dogs and one cat suspected of
being infected with rabies that originated from different health sanitary zones of Kongo
Central Province in the DRC in 2017 and 2018 (Table 1). All these samples were confirmed
positive by direct fluorescence antibody test (FAT) (6) at the Institut National de Recherche
Biomédicale (INRB) in Kinshasa. Total RNA was extracted from one brain biopsy sample
(approximatively 0.5 cm3) from each animal using the Direct-zol RNA miniprep kit (Zymo
Research), following the manufacturer’s instructions and performed in the rabies laboratory
of INRB in Kinshasa. The RNA was then purified using Agencourt RNAClean XP beads
(Beckman Coulter) at a ratio of 1:1.8, following the manufacturer’s instructions, without the
last resuspension step in nuclease-free water for half of these samples (Table 1). For the
other half, RNA was eluted in 30 to 50 mL of nuclease-free water, and 20 mL was deposited
in a 96-well plate (RNAstable; Biomatrica), before overnight air-drying in a laminar flow
hood, following the manufacturer’s instructions (Table 1). Dried RNAs in an RNAstable 96-
well plate or on beads were shipped to Institut Pasteur, Paris, France, at ambient and cold
temperature with ice packs, respectively, and resuspended in 30mL nuclease-free water. The
eight RNA samples were processed for next-generation sequencing (NGS) as previously
described (7–9). Briefly, an rRNA depletion step was first carried out using Terminator 59-
phosphate-dependent exonuclease (Epicentre Biotechnologies), following the instructions of
the manufacturer. After purification, the depleted RNA was reverse transcribed into cDNA
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using random primers and Superscript III reverse transcriptase (Invitrogen), according to the
manufacturer’s instructions, and double-stranded DNA (dsDNA) was synthesized as already
described (7–9). Finally, dsDNA libraries were constructed using the Nextera XT kit (Illumina)
and sequenced using a 2 � 150-nucleotide (nt) paired-end strategy on the NextSeq 500
platform (7–9). NGS data were analyzed using de novo assembly and mapping (both using
CLC Assembly Cell, Qiagen), with a dedicated workflow built on the Institut Pasteur Galaxy
platform (7–10). Contig sequences were assembled to produce the final consensus genome
using Sequencher 5.2.4 (Gene Codes Corporation). The quality and accuracy of the final ge-
nome sequences were checked after a final mapping step of the original cleaned reads and
visualized using Tablet (11). Maximum likelihood (ML) phylogenetic analysis was performed
on the nearly complete genome sequences (11,786 to 11,807 nt) of the eight RABV strains
and different representative African strains using PhyML (12), after a multiple alignment step
performed using ClustalW 2.1 (13), implemented in the Institut Pasteur Galaxy platform (10).
The ML phylogenetic tree was visualized using FigTree (http://tree.bio.ed.ac.uk/) (Fig. 1). All
tools were run with default parameters unless otherwise specified.

FIG 1 Phylogenetic analysis of the eight RABV strains from the Democratic Republic of the Congo and different representative African strains. The tree was
based on the nearly complete genome sequences (11,786 to 11,807 nt) and constructed using the maximum-likelihood approach based on the generalized
time-reversible model proportion of invariable sites plus the gamma-distributed rate heterogeneity (GTR 1 I 1 C4), utilizing subtree pruning and regrafting
(SPR) of branches, as estimated using PhyML 3.0 (12) with Smart Model Selection (http://www.atgc-montpellier.fr/phyml-sms/). The robustness of individual
nodes was estimated using 100 bootstrap replicates. Only bootstrap values of $90 are indicated. The scale bar indicates nucleotide substitutions per site.
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The genome sequences presented the five canonical genes encoding the nucleoprotein
(N; 1,353 nt, 450 amino acids [aa]), phosphoprotein (P; 894 nt, 297 aa), matrix protein (M;
609 nt, 202 aa), glycoprotein (G; 1,575 nt, 524 aa), and RNA polymerase (L; 6,384 nt, 2,127
aa) (Table 1). The leader and trailer sequences, when complete, were 58 and 70 nucleotides
long, respectively (checking done after alignment with genetically close and available com-
plete genomes [Fig. 1]) (Table 1). The transcription initiation (TI) signal AACA and the tran-
scription termination polyadenylation (TTP) sequences TGA7 were observed for all the
genes, except for the G gene, which presented the AGA7 motif for TTP. The nucleotide
identity between the eight genome sequences, determined using Ident and Sim software
implemented in the Sequence Manipulation Suite (https://www.bioinformatics.org/sms2/
ident_sim.html) (14), was high (.98.9%), and genetic analysis confirmed that they clus-
tered together in lineage Africa 1b within the Cosmopolitan clade (Fig. 1) (15).

Data availability. The nearly complete genome sequences of the eight rabies viruses
from the Democratic Republic of the Congo were deposited at GenBank under the acces-
sion numbers OK317992 to OK317999 and the BioProject accession number PRJNA767799.
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