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Vascular diseases, particularly atherosclerosis, are associated with high morbidity and

mortality. Endothelial cell (EC) or vascular smooth muscle cell (VSMC) dysfunction

leads to blood vessel abnormalities, which cause a series of vascular diseases. The

mitochondria are the core sites of cell energy metabolism and function in blood vessel

development and vascular disease pathogenesis. Mitochondrial dynamics, including

fusion and fission, affect a variety of physiological or pathological processes. Multiple

studies have confirmed the influence of mitochondrial dynamics on vascular diseases.

This review discusses the regulatory mechanisms of mitochondrial dynamics, the key

proteins that mediate mitochondrial fusion and fission, and their potential effects on ECs

and VSMCs. We demonstrated the possibility of mitochondrial dynamics as a potential

target for the treatment of vascular diseases.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death worldwide (1). Vascular diseases,
particularly atherosclerosis, are initiated at an early stage in life and remain asymptomatic for a long
period until they reach advanced stages (2). Among vascular diseases, atherosclerosis is a pathologic
process of lipid accumulation, scarring, and inflammation in the vascular wall, particularly the
subendothelial (intimal) space of arteries, which leads to vascular wall thickening, luminal stenosis,
and calcification (3). Endothelial cell (EC) activation or dysfunction is an early symptom of
vascular diseases that occur at the lesion-prone sites of arterial blood vessels, where ECs display
pro-inflammatory and prothrombotic phenotypes and reduced barrier function. Notably, ECs are
extremely sensitive to oxidative stress and respond rapidly to altered environments, such as changes
in oxygen levels, pathogen stimulation, and damaging endogenous stimuli (4). In addition, the
direct contact between ECs and circulating immune cells triggers immune reactions (5). Another
substance that plays an important role in blood vessel function is nitric oxide (NO). NO is a
signaling molecule in the vascular system, in which blood vessels control blood flow by sending
signals to the vessels to vasodilate. NO could also slow the deposition of atherosclerotic plaque on
the blood vessel wall (6).

Other mechanisms and stimuli also affect the function of blood vessels. Blood flow promotes
the production of adhesive molecules, which recruit inflammatory cells (7). Besides, the migration
of vascular smooth muscle cells (VSMCs) also facilitates atherosclerosis progression (5). Several
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vascular diseases ultimately lead to myocardial infarction, stroke,
and peripheral artery disease (8). The etiology of vascular
diseases is complex; thus, several risk factors may contribute
to their progression, including dyslipidemia, diabetes, smoking,
hypertension, oxidative stressors, angiotensin II, systemic
infection, and inflammation (9). Nonetheless, an effective cure
for vascular diseases still lacks partially because of the complex
etiology of the diseases in spite of recent advances (4).

The occurrence of vascular diseases is related to the loss
of energy metabolism; notably, the mitochondria are the core
sites of cell energy metabolism (10). The mitochondria are
important in endothelial and smooth muscle function (11, 12).
Mitochondria are composed of a central mitochondrial matrix
surrounded by two inner and outer mitochondrial membranes,
and eukaryotic mitochondrial respiratory chain is composed
of complex. Compounds I, II, III, IV and complex V (ATP
synthase), ubiquinone, coenzyme Q and cytochrome C are
located in the inner membrane of mitochondria. Mitochondrial
respiratory chain oxidative phosphorylation is responsible
for more than 90% of oxygen consumption and provides
more than 95% of body energy. Supply, the mitochondrial
matrix is the main site of the tricarboxylic acid cycle and
fatty acid β oxidation. Apart from its capacity for ATP
production, the mitochondria also modulate reactive oxygen
species (ROS) generation, calcium regulation, cell death, and
survival (13, 14). The function of the mitochondria is affected
by mitochondrial dynamics, including fusion and fission,
interaction with the endoplasmic reticulum (ER), and mitophagy
(Figure 1). Mitochondrial dysfunction leads to cell senescence,
inflammation, and apoptosis, which are characteristics of
vascular diseases (15). In addition, mitochondrial dysfunction
can be triggered by DNA damage, which is closely related
to several risk factors of CVDs (16). In this review, we
summarize the correlation between vascular diseases and
mitochondrial dynamics with emphasis on the detailed function
of mitochondrial dynamics in specific vascular disease forms and
the potential therapeutic approach of mitochondrial dynamics in
vascular diseases.

REGULATION OF MITOCHONDRIAL
DYNAMICS

More and more evidences indicate the role of mitochondrial
dynamics in vascular function and the pathogenesis of vascular
diseases. The mitochondria are highly dynamic organelles
whose structure and distribution affect metabolism despite
being recognized as isolated organelles (17). The nature of
the dynamic network depends on the proper balance between
mitochondrial fusion and fission (18). Its balance can be
destroyed by environmental stimuli, developmental status, and
cellular metabolic demands. The recently identified molecular
mediators of mitochondrial fusion and fission, as well as
post-translational modification (PTM) by an extensive set of
kinases, phosphatases, and ubiquitination mediators, bring a
new slight on the mechanism of mitochondrial dynamics
(Table 1) (19).

Mitochondrial Fusion Proteins
Mechanically, mitochondrial fusion at the outer mitochondrial
membrane is controlled by the transmembrane GTPases, MFN
1 and MFN2, and fusion at the inner membrane is controlled
by optic atrophy protein 1 (OPA1) (20, 21). Besides, fission is
regulated by DRP1 and fission-1 (FIS1) (22, 23). Mitochondrial
fusion is regulated by the coordinated action of conserved
GTPase proteins, including MFN1 and MFN2, and these
transmembrane GTPases located in the outer membrane of
the mitochondria are responsible for the regulation of the
mitochondrial fusion by forming homodimeric or heterodimeric,
antiparallel, coiled-coil linkages between adjacent mitochondria
and C-terminal domains (24) (Figure 2). MFN1 and MFN2
deficiencies lead to a remarkable decrease in mitochondrial
fusion (25). Additionally, MFN2 mediates cell apoptosis and
mitochondrial autophagy (26). OPA1, a dynamin-related GTPase
embedded in the inner membrane or intermembrane of the
mitochondria, is involved in mitochondrial intima fusion and
mitochondrial cristae remodeling (20). OPA1 harbors two forms
(i.e., long and short OPA1 proteins) with distinguished functions
(27). The long form of OPA1 located in the inner membrane,
which is responsible for intimal fusion, can be cleaved into short
form under the digestion of the intestinal peptidase, OMA1, and
the i-AAA proteolytic enzyme, YME1L, to induce mitochondrial
fragmentation and fission in the membrane space (19).

Mitochondrial Fission Proteins
Mitochondrial fission in mammalian cells is manipulated
by DRP1, FIS1, mitochondrial fission factor (MFF), and
mitochondrial dynamic proteins of 49 and 51 kDa (MiD49/51)
as shown in Figure 2 (24). DRP1, a GTPase located in
the cytoplasm, mediates mitochondrial fission at the outer
membrane (28). DRP1 is encoded by the DNM1L gene and
contains a GTPase region, an intermediate region, a polytropic
region, and a GTPase effector region from the N-terminal to
the C-terminal, which are involved in the physical constriction
of the mitochondria (the early step of fission) (29). Notably,
DRP1 needs to bind with other receptor proteins, such as FIS1,
to embed on the outer membrane of the mitochondria because
of its lack of lipid-interacting hydrophobic transmembrane
domain (30). However, FIS1 depletion has minimal effect on
the transfer of DRP1 to the mitochondria in mammalian cells
(31). A multitude of receptors is involved in the recruitment of
DRP1 to the mitochondria to trigger fission (32). Mid49/51 are
involved in DRP1 translocation in this fission machinery (30). In
addition, DRP1 activity is regulated by PTMs, such as acetylation
and phosphorylation (32). DRP1 activity is modulated by two
serine phosphorylation sites with opposing functions; that is,
DRP1 activity can be activated by phosphorylation at serine
616 but inhibited by phosphorylation at serine 637 (33). Each
serine phosphorylation is catalyzed by a different kinase and
phosphatase; thus, mitochondrial fission is linked to key cellular
processes (Table 1). For instance, the DRP1 phosphorylation
at serine 616 mediated by the mitotic initiator, cyclin B1–
cyclin-dependent kinase (CDK1), links mitochondrial fission to
cell division (34). The phosphorylation mediated by calcium-
calmodulin-dependent kinase (CamK) coordinates fission to
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FIGURE 1 | Mitochondrial life cycle and contribution of mitochondrial dynamics and mitophagy to quality control. Mitochondrial dynamics include biogenesis, fusion

for mass increase, fission for number increase, interaction with ER, and mitophagy.

FIGURE 2 | Mechanisms underlying the regulation of mitochondrial fusion and fission and their roles in modulating mitochondrial morphology. MFN1, MFN2, and

OPA1 mediate mitochondrial fusion, whereas DRP1 interacts with FIS1, MFF, and MiD49/51 to participate in mitochondrial fission. DRP1 could be modified by

phosphorylation, ubiquitination, and SUMOylation by corresponding enzymes to promote its binding with FIS1, MFF, and MiD49/51. Mitochondrial fusion is

accompanied by membrane diffusion, matrix exchange, and DNA complementation, and fission is accompanied by the degradation of non-reusable mitochondrial

material, oxidative stress, and mitosis.

intracellular calcium (35). The serine ratio between the 616 and
637 sites modulates DRP1 activity and reflects the polymerized
influence of several kinases and phosphatases (36). DRP1 activity
is also modulated by the ubiquitin ligases, membrane-associated
RING-CHprotein 5 and small ubiquitin-likemodifier type 1 (37).
DRP1 acetylation regulates the activity of itself and contributes to

metabolic stress-associated cardiomyocyte death and dysfunction
(38). Previous studies depicted that DRP1 forms a dimer or
tetramer under basic conditions and further self-assembles into
a larger polymer structure in the fission process.

Multiple PTMs of human mitochondrial proteins, such as
phosphorylation (in MFN1, MFN2, and OPA1), acetylation
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TABLE 1 | Mediators involved in the regulation of mitochondria fission and fusion.

Mediator Function in mitochondrial dynamics Role of mediator in vascular diseases

Fusion mediators

Mitofusin-1 GTPase in outer mitochondrial membrane that tethers adjacent mitochondria Atherosclerosis

Mitofusin-2 GTPase in outer mitochondrial membrane that tethers adjacent mitochondria Pulmonary arterial hypertension, arterial

restenosis, and atherosclerosis

Optic atrophy 1 GTPase in inner mitochondrial membrane that mediates fusion

Fission mediator: DRP1 Cytosolic GTPase that translocates to the outer mitochondrial membrane when

activated

Patent ductus arteriosus, pulmonary

arterial hypertension, and atherosclerosis

Fusogenic and fissogenic lipids

Phosphatidic acid Generated by mitochondrial phospholipase D; promotes assembly of fusogenic

mediators

Diacylglycerol Lipin-1, a protease that hydrolyzes phosphatidic acid, generates diacylglycerol,

which promotes fission

Transcription factors

PGC-1α Mediator of mitochondrial biogenesis and transcriptional coactivator of

mitofusin-2

Pulmonary arterial hypertension

HIF1α Hypoxic transcription factor that also promotes DRP1 activation and fission Pulmonary arterial hypertension

Post-translational regulators of DRP1

Cyclin B–cyclin-dependent kinase1 Serine–threonine kinase that initiates mitosis and also activates DRP1 by

phosphorylation of DRP1 serine 616

Pulmonary arterial hypertension

Aurora A kinase Serine-threonine kinase, regulating mitotic entry, chromosomal segregation, and

DRP1 activation

Calcium-calmodulin–dependent kinase Activates DRP1 Patent ductus arteriosus

Calcineurin Serine-threonine protein phosphatase that activates DRP1 by dephosphorylating

DRP1 serine 637

Protein kinase A Causes cyclic AMP–dependent phosphorylation of DRP1 at serine 637, which

inhibits fission

SENP5 Moves to the mitochondria during mitosis and desumoylates DRP1, which leads

to the activation of DRP1

(in MFN1, MFN2, and OPA1), methylation (in MFN1 and
OPA1), and ubiquitination (in MFN1, MFN2, and OPA1) have
been detected by mass spectrometry-based proteomics (39).
However, the modulation of PTM in mitochondrial fusion
proteins is largely uncharacterized compared with that in
DRP1. For instance, the PTMs of MFN2 (phosphorylation and
ubiquitination) are observed in hearts with cardiomyopathy.
PINK1-dependent MFN2 phosphorylation induces Parkin
translocation to the outer mitochondrial membrane upon
membrane depolarization, which subsequently promotes Parkin-
mediated MFN2 ubiquitination in adult cardiomyocytes (40).
Also, Parkin-mediated MFN2 ubiquitination leads to MFN2
degradation, which results in the selective removal of damaged
mitochondria by mitophagy in adult cardiomyocytes (41).

Mitochondrial miRNAs
Apart from proteins, mitochondrial miRNAs (mitomiRs)
modulate the translational activity of the mitochondrial genome
and mitochondrial function (42). Mitochondrial fission/fusion
can also be regulated by mitomiRs. Notably, miR-146a, miR-
34a, and miR-181a may regulate mitochondrial dynamics by
targeting Bcl-2 (42). Other mitomiRs can also directly target
mitochondrial fusion/fission proteins. miR-484 suppresses FIS1-
mediated fission and apoptosis in cardiomyocytes by decreasing

FIS1 expression. Mitochondrial fission is also suppressed by the
miR-30-mediated downregulation of DRP1 and p53 (43).

Regulators of Mitochondrial Dynamics
Mitochondrial fusion and fission can also be mediated by
peroxisome proliferator-activated receptor γ co-activator 1α
(PGC-1α), which is a modulator of mitochondrial fusion by
acting as a transcriptional coactivator of MFN2 (44, 45).
The assembly of fission apparatus also needs the assistance
of the ER directly in contact with the mitochondria to
form a microdomain that facilitates the assembly of DRP1,
MEF, and proapoptotic proteins (46). The lipids produced by
mitochondrial phospholipase D, especially phosphatidic acid,
guide mitochondrial dynamics (47).

The cooperation of mitochondrial fusion and fission
maintains the fundamental integrity and normal functioning of
themitochondria, including energymetabolism, ROS generation,
and apoptosis regulation (48). Fusion favors mitochondrial
interconnection, mitochondrial DNA mixing, signal
transduction, and metabolite exchange (49). Mitochondrial
fission facilitates the elimination of damaged mitochondria
by dividing the mitochondria into daughter mitochondria
to maintain the normal function of the mitochondria (50).
However, the perturbation of mitochondrial fusion and fission
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breaks their balance and consequently leads to the accumulation
of damaged and non-functional mitochondria (48).

Mitochondrial dynamics play an important role in the
morphology, function, and distribution of mitochondria. Fusion
and fission regulate mitochondrial shape, length, and number.
The balance between mitochondrial fusion and fission controls
mitochondrial morphology. Mitochondrial shape affects the
ability of cells to distribute their mitochondria to specific
subcellular locations. Fusion and fission allow the mitochondrial
exchange of lipid membranes and intramitochondrial content,
which is crucial for maintaining the health of a mitochondrial
population (51). For instance, MFN1 and MFN2 ablation
in fibroblasts induce reduced respiratory capacity and
great heterogeneity in mitochondrial shape and membrane
potential (52).

ENDOTHELIAL FUNCTION AND THE
MITOCHONDRIA

The proper function of the mitochondria in the arterial wall is
critical in all atherogenesis-related key cell types, including ECs,
VSMCs, and macrophages, which are responsible for massive
lipid storage via phagocytosis, as well as pro-inflammatory
status maintenance in a lesion (53). Normal endothelium is a
dynamic organ that regulates vascular tone by balancing the
production of vasodilators and vasoconstrictors in response to
a variety of stimuli (54). The endothelial mitochondria act as
critical signaling organelles that play a crucial role in endothelial
function, including subcellular location, dynamics, biogenesis,
mitophagy, autophagy, ROS; therefore, mitochondrial
dysfunction facilitates atherosclerosis development (55, 56).
Endothelial dysfunction is a pathological condition characterized
by an imbalance between substances with vasodilating,
antimitogenic, and antithrombogenic properties (endothelium-
derived relaxing factors) and substances with vasoconstricting,
prothrombotic, and proliferative characteristics (endothelium-
derived contracting factors) (57). ECs play important roles
in the maintenance of vascular homeostasis by modulating
vasodilation, platelet activation, and leukocyte adhesion (58).
Therefore, the dysfunction of EC leads to increased vascular
tension and atherosclerosis, followed by systemic hypertension,
and increased incidence of ischemia and stroke. Moreover,
mitochondrial dysfunction is involved in the formation of
oxidative stress conditions in atherosclerosis, which facilitate
inflammatory response and lesion development (59).

In pulmonary ECs, DRP-1 activation, which induces
mitochondrial fission, stimulates angiogenesis by promoting
cell proliferation and migration and inhibiting apoptosis (60).
Endothelial dysfunction contributes to the development of
nearly all vascular diseases (10). Even though ECs have low
mitochondrial content, mitochondrial dynamics act as a pivotal
orchestrator of EC homeostasis under normal conditions;
damage in mitochondrial dynamics participates in endothelial
dysfunction and diverse vascular diseases. Endothelial
dysfunction leads to altered mitochondrial morphology,

reduced network extent, and increased FIS1 protein expression
compared with ECs from healthy volunteers (61).

VASCULAR SMOOTH MUSCLE CELL
FUNCTION AND THE MITOCHONDRIA

VSMCs are themain constitutive stromal cells of the vascular wall
that engage in a variety of different structural and physiological
functions (62). VSMCs are crucial components of blood vessels
and the major determinants of vasotone (62). This critical and
tightly regulated function is granted by the contractile phenotype
of VSMCs. VSMCs can switch to a synthetic dedifferentiated
phenotype characterized by increased proliferative andmigratory
capabilities in response to certain cues. The VSMC phenotypic
switch is implicated in the pathogenesis of vascular diseases (63).
During the progression of atherosclerosis, VSMCs are subjected
to a phenotype switch that can internalize atherogenic LDL
particles, such as oxidized LDL or desialylated LDL, for lipid
accumulation to migrate to lesion sites (64, 65). Cells with
lipid particle accumulation are recognized as “foam cells” and
manifest as atherosclerotic plaques (66). The association between
VSMCs and mitochondrial dysfunction in atherosclerosis has
been discussed before.

Mitochondrial dysfunction characterized by decreased
oxidative phosphorylation is a striking phenotype of VSMCs
isolated from atherosclerosis (13). In addition, a multitude
amount of energy and oxygen-free radicals are required for the
impairment of nuclear and mitochondrial DNAs in VSMCs,
which further promotes DNA damage, genomic instability, and
mitochondrial damage (67). Mitochondrial fission and fusion
also affect VSMC function (68). Mitochondrial fission is an
integral process in cell migration, and controlling mitochondrial
fission can limit VSMC migration and pathological intimal
hyperplasia by altering mitochondrial energetics and ROS levels
(69). For instance, mitofusin (MFN) 2 is an important suppressor
of VSMC proliferation (70). In addition, the link between
mitochondrial dynamics and VSMC senescence can be mediated
by Krüppel-like factor 5 (Klf5), an essential transcriptional factor
of cardiovascular remodeling. Klf5 downregulation induces
VSMC senescence through eIF5a depletion and mitochondrial
fission (71).

MACROPHAGE AND MONOCYTE
FUNCTION AND THE MITOCHONDRIA

Macrophage mitochondrial fission is essential for the continued
removal of apoptotic cells and plays a protective role in
advanced atherosclerosis (72). In macrophage-enriched murine
atherosclerosis lesion areas, the level of dynamin-related
protein-1 (DRP1) is downregulated and MFN2 is upregulated
as the lesion progresses. Inhibiting macrophage mitochondrial
fission results in a dramatic increase in the necrotic core
area and the accumulation of apoptotic cells in the advanced
stage of atherosclerosis; thus, macrophage mitochondrial
fusion/fission could be a potential therapeutic target to
prevent lesion necrosis and stabilize advanced plaques (73).
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Human CD14+ monocytes exhibit reduced mitochondrial
fission and increased mitochondrial fusion for metabolic
adaptation upon lipopolysaccharide stimulation. Notably,
mitochondrial dynamics affect the inflammatory responses of
CD14+monocytes.

MITOCHONDRIAL DYNAMICS
IMBALANCE

Many studies have pointed out the beneficial effects
of mitochondrial fusion in oxidative phosphorylation.
Mitochondrial fusion maintains normal mitochondrial function
by protecting from mitochondrial DNA loss and maintaining
the synthesis of mitochondrial proteins (74). In addition,
mitochondrial fusion events can attenuate the damage of DNA
and protein contents and restore damaged mitochondria by
“functional complementation” (75). Mitochondrial fusion
damage can lead to increased mitochondrial fission and
fragmentation, which induce oxidative phosphorylation and
cell apoptosis attenuated by mitochondrial division (76).
For example, DRP1 gene mutation in mice can damage
mitochondrial function and induce mitophagy, which contribute
to heart enlargement and failure (77). Mitochondrial division
inhibitor 1 (Mdivi-1) is a selective cell-permeable inhibitor
of mitochondrial division DRP1 and mitochondrial division
dynamin I. Mdivi-1 attenuates mitophagy and enhances
apoptosis. Also, DRP1 inhibition with Mdivi-1 protects the
injured heart and brain from ischemia (78, 79). Mitochondrial
fission seems harmful in this perspective; however, the deletion
of myocardial DRP1 gene can lead to division disorders, which
result in dysfunctional mitochondria and ultimately lead to
heart failure and death (80). Mitochondrial dynamics proteins
have been genetically alerted in vascular cells. For example, in
VSMCs, the overexpression of the phospho-deficient mutation,
MFN2-S442A, increases the inhibitory effects of MFN2 on cell
proliferation, as well as neointimal hyperplasia and restenosis, in
rat carotid artery balloon injury model (70).

Excessive mitochondrial fragmentation often occurs in most
vascular diseases and thus could be a promising therapeutic target
for these diseases (81). The promotion of mitochondrial fusion
and the inhibition of mitochondrial fission guide the different
fates of the heart (82). MFN2 upregulation, besides DRP1
downregulation, maintains mitochondrial function through the
elimination of excessive mitochondrial fragmentation (83).
Mitochondrial fusion promoter,M1 (2mg/kg), as an intervention
in rat ischemia–reperfusion (I/R), reduces infarct size and exerts
a beneficial effect toward ischemia (84). This result demonstrated
that increased mitochondrial fusion brings about a beneficial
impact on myocardial I/R injury.

However, excessive mitochondrial fusion causes serious
diseases (85). Point mutation in mitochondrial carrier protein,
SLC25A46, promotes the protein’s rapid degradation and the
stable recruitment of MFN2 and MFN1 complexes to the
mitochondria and ultimately leads to over-fusion and the
phenotype of cerebellopontine hypoplasia (86). Additionally,
excessive mitochondrial fusion results in elevated oxidative

stress and abnormal Ca2+ homeostasis, which eventually cause
arrhythmia, particularly atrial fibrillation (87). Therefore, the
balance between mitochondrial fusion and fission plays a vital
role in the normal function of the vascular system.

PATHOGENESIS OF VASCULAR DISEASES

Structurally, the normal artery is composed of three layers
(88). The inner layer lined by a monolayer of ECs is closely
contacted with blood; the middle layer composed of VSMCs
is located at the complex extracellular matrix; and the outer
layer of arteries is composed of mast cells, nerve endings, and
microvessels (89). Direct contact with bloodmakes ECs especially
vulnerable to damages caused by molecules (90). ECs act as ideal
protection because they sense alterations in external stimuli and
directly respond or transmit signals; EC dysfunction leads to
the pathogenesis of almost all types of vascular diseases (91).
Despite the low mitochondrial content of ECs, mitochondrial
dynamics is a key endothelial homeostasis coordinator under
normal conditions (10).

Atherosclerosis is the leading cause of vascular diseases and
responsible for almost 50% of all cardiovascular deaths, and
the mechanism of atherosclerosis has been well studied. Its
pathogenesis comprises respective mechanisms during different
disease stages (8). It is initiated through atherosclerotic lesion
formation with a phenotype of endothelial dysfunction (92).
The endothelium provides the functional link between blood
circulation and the vessel wall. Local disturbance to the
arterial endothelium leads to cell activation, which promotes
the recruitment of circulating immune cells and increases
permeability for circulating lipoprotein particles (93). Low-
density lipoprotein (LDL), especially in its modified atherogenic
form, is the main source of lipids that accumulate in the
arterial wall (94). Several studies have confirmed the close
association between the mitochondria and the different stages of
atherosclerosis (95).

MITOCHONDRIAL DYNAMICS AND
VASCULAR DISEASES

Multiple factors are responsible for vascular diseases, including
the infiltration, differentiation, and transformation of monocytes
to active lipid foam cells, as well as VSMCmigration to the intima
(96). ROS production in the mitochondria is a key factor in
vascular diseases (97).

Mitochondrial dynamics plays an important role in the
progression of vascular diseases (Figure 3). Mitochondrial
fragmentation and FIS1 expression are increased in patients
with type 2 diabetes (98). DRP1 and FIS1 accumulate in human
aortic ECs after high glucose treatment (99). Alterations in
mitochondrial dynamics are correlated with the production of
mitochondrial ROS, which affects the pathogenesis of vascular
diseases (100). FIS1 and DRP1 inhibition can block the
production of mitochondrial ROS and mitochondrial network;
hence, mitochondrial fission has a vital role in vascular
diseases (37).
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FIGURE 3 | Mitochondrial fusion and fission proteins and vascular diseases. Fission and fusion imbalances are related to multiple vascular abnormalities, including

MFN2 decrease and PTM, DRP1 inhibition and phosphorylation, and dysregulated FIS1 and DRP1 (70, 99, 104, 106, 114, 118, 122). The effects of proteins involved

in the pathogenesis of vascular diseases are included.

TABLE 2 | Role of mitochondrial dynamics protein in vascular diseases.

Mediator Cellular phenotype Vascular disease involving abnormalities of mitochondrial dynamics

Fusion mediators

Mitofusin-1 VSMC proliferation and migration Atherosclerosis

Mitofusin-2 VSMC proliferation and migration, proliferation of pulmonary artery

smooth muscle cells,

Pulmonary arterial hypertension, arterial restenosis, Atherosclerosis, arterial

restenosis

Optic atrophy 1 Hypertension

Fission mediator

DRP1 VSMC proliferation, phenotypic alterations of VSMCs, apoptosis Patent ductus arteriosus, pulmonary arterial hypertension, Atherosclerosis,

FIS1 Increased FIS1 in Endothelial dysfunction,

The coordination of mitochondrial fusion and fission is
essential for the maintenance of mitochondrial quantity and
quality. Mitochondrial fragmentation occurs in vascular diseases
(Table 2). Functional ductus arteriosus closure, initially induced
by oxygen-dependent vasoconstriction shortly after birth, is
dependent on mitochondrial fission (97). DRP1 perturbation is
associated with endothelial dysfunction (101). DRP1-mediated

mitochondrial fission exerts a critical function in the acute
constriction of the ductus arteriosus to O2 and participates in
the subsequent anatomic closure of the ductus arteriosus (102).
Mitochondrial fission also seems indispensable for angiogenesis
in ECs (103). The loss of protein disulfide isomerase active 1
in ECs induces mitochondrial fragmentation and mitochondrial
ROS elevation by increasing Cys644 sulfenylation and DRP1
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activity, which impair endothelium-dependent vasorelaxation
and angiogenesis (104). DRP1 depletion in mice also leads to
defective efferocytosis and has pathologic consequences in the
thymus after dexamethasone treatment and in the advanced
atherosclerotic lesions of fat-fed LDLR−/− mice (105). DRP1
overexpression or MFN2 inhibition also leads to endothelial
dysfunction and the inhibition of VSMC proliferation (106).
The decreased expression of MFN1 and MFN2 promotes
atherosclerosis in animal models (107).

The functions of MFN1 and MFN2 in ECs have also
been addressed (108). Interestingly, the expression of MFNs
could be stimulated in ECs when exposed to the angiogenic
mitogen, vascular endothelial growth factor (VEGF) (109). The
knockdown of MFN1 and MFN2 prevents the endothelial
migration and differentiation induced by VEGF (110).
Additionally, the diverse roles of MFNs in ECs were measured
(111). MFN2 inhibition exclusively attenuates the production of
basal and stress-induced ROS (96). MFN1 ablation particularly
blocks VEGF signal transduction and suppresses NO production
(23). Interestingly, the role of MFNs in vascular pathology is
tightly related to metabolic stress (112).

Mitochondrial fission is indispensable for VSMC proliferation
and migration, as well as pathophysiological processes, such as
the premature closure of open arterial ducts and pulmonary
hypertension (113). On the occasion of oxidative stress and
angiotensin II stimulation, activated protein kinase C δ

phosphorylates DRP1, which leads to mitochondrial fission
and ROS-stimulated VSMC proliferation and migration (114).
Therefore, the pharmacological inhibition of DRP1 could be used
as a therapeutic target.

Emerging evidence implied that alteration in mitochondrial
dynamics is accompanied by acute I/R. Several researches have
observed that reduced OPA1 and MFN2 and increased DRP1
in cardiomyocytes simulate I/R. I/R stimulation in HL-1 cells
induces mitochondrial fission through DRP1; the transfection of
the fusion protein or DRP1 dominate-negative mutant protects
from I/R injury (115). Moreover, OPA1 mild overexpression
transgenicmice are resistant tomuscular atrophy and I/R damage
in the heart and brain. In spite of the well-known impact of
mitochondrial fission and fusion balance on cardiac I/R injury,
no study has shown a direct indication of their potential role in
ischemic myopathy in peripheral artery disease.

Mitochondrial fusion and fission are also implicated in the
abdominal aortic aneurysm (AAA). Angiotensin II stimulation
(one of the main methods to induce AAA) in cultured rat aortic
VSMCs induces mitochondrial fission. DRP1 expression was
enhanced in human AAA samples compared with age-matched
healthy controls (116). Furthermore, DRP1 inhibition protects
from AAA development, as assessed by the diameters of the
abdominal aorta as well as histological observation. Protection
against AAA by DRP1 inhibition is accompanied by reduced
stress response and senescence. Therefore, DRP1-mediated
mitochondrial fission potentially stimulates the proinflammatory
phenotypic alterations of VSMCs and contributes to the
pathogenesis of AAA development.

As an impeditive vascular disease, pulmonary arterial
hypertension is induced by several factors, including disordered

FIGURE 4 | Summary of key mitochondrial dynamic regulatory proteins and

major pharmacological agents that target these proteins for the treatment of

vascular diseases. The targeting agents of mitochondrial fusion and fission

proteins, such as DRP1 and MFN1, protect from vascular diseases, including

pulmonary arterial hypertension, atherosclerosis, and ductus arteriosus

closure.

oxygen sensing and dysregulated mitochondrial dynamics
in pulmonary artery smooth muscle cells (117). Pulmonary
arterial hypertension is believed to be contributed by excessive
cell proliferation and impaired apoptosis accompanied by
vasoconstriction, inflammation, and thrombosis (92). Pulmonary
arterial hypertension is accompanied by reduced MFN2 and
excessive DRP1 caused by increased hypoxia inducible factor
1 alpha (HIF-1α) activation and decreased PGC-1α activity
(118). MFN2 mediates the proliferation of pulmonary artery
smooth muscle cells in hypoxic pulmonary hypertension via
the PI3K/Akt pathway (119). HIF-1α activation induces DRP1-
dependent mitochondrial fission and an imbalance in fusion and
fission in normal pulmonary artery smooth muscle cells (120).
The decrease in MFN2 in pulmonary arterial hypertension leads
to mitochondrial fragmentation and proliferation (121).

DRP1 inhibition represses the ductal constriction triggered
by oxygen (122). Oxygen induces the PTM of DRP1 mediated
by cyclin B1-CDK1 and CamK to trigger mitochondrial fission
(123). Although the continuous inhibition of DRP1 impedes
structural closure in an in vitro model of human open ductus
arteriosus, the previous study still has not elucidated whether
damaged mitochondria result in spontaneous patent ductus
arteriosus (122).

MiRNA expression alteration contributes to ischemic heart
disease by regulating the expression of various key mitochondrial
elements involved in cell survival and death. MiR-762 and miR-
210 are elevated whereas miR-1 is downregulated in myocardial
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infarction. miR-762 knockdown alleviates myocardial I/R injury
in mice. The upregulation of miR-15/16 and miR-195 modulate
cardiomyocyte survival and myocardial infarction by inhibiting
ATP levels and inducing mitochondrial fusion. In addition, miR-
15 inhibition protects against I/R injury in vivo by targeting
pyruvate dehydrogenase kinase 4 and serum/glucocorticoid-
regulated kinase 1, which are responsible for mitochondrial
function and apoptosis, respectively (124). miRNAs also regulate
foam cell formation and subsequent plaque formation. miR-
302a suppresses foam cell formation, which would aggravate
atheromatic plaque by increasing the activity of ABCA1, which
induces the efflux of cholesterol out of macrophages.

MITOCHONDRIAL DYNAMIC
REGULATORY PROTEINS AS
THERAPEUTIC TARGETS

Supporting materials relate mitochondrial fusion and fission
to vascular diseases; emerging studies elucidated the protective
effects of mitochondrial fusion and fission modulators on
vascular diseases (Figure 3) (125). The pharmacological
inhibition of DRP1 relieves plaque formation and lessens the
accumulation of macrophages in the plaques of the ApoE−/−

mouse model of carotid artery injury induced with wire (126).
DRP1 seems to be a promising novel therapeutic target for
atherosclerosis (106). As a selective cell-permeable inhibitor
of mitochondrial division, Mdivi-1 treatment can dramatically
reduce atherosclerotic lesion formation in streptozotocin-
induced diabetic ApoE−/− mice (127). Mdivi-1 inhibits VSMC
proliferation and migration through the attenuation of ROS
production and DRP1 phosphorylation (128). Moreover, the
anti-proliferation effect of Mdivi-1 is dependent on G2/M cell
cycle arrest and independent on cyclin B1/CDK1-mediated
DRP1 phosphorylation in arterial smooth muscle cells (118).
Another example is ilexgenin A, a novel pentacyclic triterpenoid
that exerts anti-atherosclerotic activity to reduce atherosclerosis
in apolipoprotein E-deficient mice. Ilexgenin A hinders
mitochondrial fission and induces DRP1 degradation dependent
on Nrf2-induced proteasome subunit beta 5 in ECs, which
contribute to the restraint of mitochondrial fission and thus
relieve endothelial dysfunction (129). These findings provide
the theoretical basis for the future development of ilexgenin
A as a potential agent for atherosclerosis treatment. Mdivi-1
or congeners could also be used to maintain ductus arteriosus
patency in infants awaiting congenital heart surgery (120).
In addition, Mdivi-1 administration facilitates premature
senescence and destroys the angiogenic function of human
umbilical cord vein ECs by promoting the production of
mitochondrial ROS and reducing autophagy flux (78). Therefore,
DRP1 may be a promising therapeutic target for vascular repair
(Figure 4).

CONCLUDING REMARKS

Mitochondrial dynamics is associated with the pathogenesis
of various vascular diseases and provides potential therapeutic

targets (12, 56, 97, 98). Further identification prior to trial on
potential therapeutic agents related to mitochondrial dynamics
is indispensable to determine proper molecular targets and
definitions and confirm the optimal and effective doses for
mitochondrial fusion and fission modulators (130, 131). Extra
modulators for mitochondrial fusion and fission are required
(121, 132). For example, a recently designed inhibitor, P110, can
inhibit DRP1 activation and fission by blocking the interaction
between DRP1 and FIS1 (133).

In spite of the development of pharmacological agents that
target fusion and fission for the prevention and treatment
of vascular diseases, several obstacles remain to be solved to
achieve this goal (87, 103, 104). First, the therapeutic agent
needs to have specificity to target the organ and ascertain the
duration time (134). Second, mitochondrial fusion and fission
are vital for the proper functioning of the mitochondria and
normal cells; hence, the manipulation of fusion and fission
might have detrimental effects on normal cells. Besides, the
application of such therapeutic agents is limited to temporary
acute conditions rather than chronic conditions. Moreover, off-
target effects should also be minimized. The off-target effects of
these pharmacological agents are often caused by the recognition
of the binding sites of the drug by other biomacromolecules,
including receptors, enzymes, ion channels, transporters, and
genes. This occurrence is still an important issue in the study of
vascular related inhibitors.

In addition to energy metabolism, the mitochondria
have multidimensional influence on cells and the vascular
system. For example, the regulation of mitochondrial
calcium homeostasis and mitophagy can affect vascular
development and functional maintenance, but related molecular
mechanisms still need further theoretical support (71, 105, 106).
Whether mitochondrial homeostasis can cooperate with other
mitochondrial functions to jointly affect vascular development
and disease, as well as how key proteins play roles in this dynamic
interaction process, needs further study. Mitochondrial dynamic
regulatory proteins, such as FIS1, have a variety of functions.
Their effects on vascular function still need to be studied in
depth if these proteins will be used as therapeutic targets for
vascular diseases.
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