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A B S T R A C T   

This study aimed to identify potential biomarkers for non-small cell lung cancer (NSCLC) and analyze the role of 
immune cell infiltration in NSCLC. R software was used to screen differentially expressed genes (DEGs) from 
NSCLC datasets obtained from the Gene Expression Omnibus (GEO) database, and functional correlation analysis 
was performed. The machine learning algorithms were used to screen the potential biomarkers of NSCLC. The 
diagnostic values were assessed through receiver operating characteristic (ROC) curves. The protein and mRNA 
expression levels of potential biomarkers were verified based on the Human Protein Atlas (HPA) database and 
qRT-PCR. CIBERSORT was used to evaluate the infiltration of immune cells in NSCLC tissues, and the correlation 
between potential biomarkers and infiltrated immune cell was analyzed. Finally, specific siRNAs were utilized to 
reduce the GDF10, NCKAP5, and RTKN2 expression in A549 and H1975 cells. The proliferation ability of A549 
and H1975 cells was detected by MTT assay. A total of 848 upregulated DEGs and 1308 downregulated DEGs 
were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment ana-
lyses showed that the DEGs were mainly related to cell division. Disease ontology (DO) enrichment analysis 
showed that the diseases with these DEGs were mainly lung diseases, including NSCLC. In addition,three po-
tential biomarkers were identified: GDF10, NCKAP5, and RTKN2. Immune cell infiltration analysis showed that 
resting NK cells, activated dendritic cells, and Tregs may be involved in the pathogenesis of NSCLC. Meanwhile, 
GDF10, NCKAP5, and RTKN2 were negatively correlated with Tregs and naïve B cells but were positively 
correlated with activated dendritic cells and resting NK cells. Immunohistochemical staining showed that the 
expression of GDF10, NCKAP5, and RTKN2 in the lung tissue of patients with NSCLC was lower than that of 
normal lung tissue. qRT-PCR also confirmed that the mRNA expression of three biomarkers in NSCLC cell lines 
A549 and H1975 were significantly lower than those in human normal lung epithelial cells BEAS-2B. An MTT 
assay showed that GDF10, NCKAP5, and RTKN2 knockdown significantly promoted the proliferation of A549 
and H1975 cells. The in vitro experiments showed that GDF10, NCKAP5, and RTKN2 played the inhibitory effects 
on NSCLC cell lines proliferation. Hence, GDF10, NCKAP5, and RTKN2 can be used as diagnostic biomarkers for 
NSCLC.   

Introduction 

Approximately 1.8 million people die of lung cancer globally every 
year [1]. Non-small cell lung cancer (NSCLC), the most common type of 
lung cancer, accounts for approximately 85% of all lung cancers [2,3]. In 
the past decade, the 5-year survival rate of patients with metastatic 
NSCLC has been less than 5% [4]. The reason for this low survival rate is 
mainly because most patients have progressed to an inoperable stage 
upon diagnosis; although they have received a series of systematic 

treatments, cure cannot be achieved anymore with the development of 
their condition [5]. Currently, the routine diagnosis of NSCLC is based 
on clinical manifestations and a combination of imaging techniques. 
Because the early symptoms of NSCLC are not obvious, this method 
cannot provide an accurate early diagnosis of the disease. Therefore, 
identifying biomarkers that can enable early diagnosis is very important 
for improving the prognosis of patients with NSCLC. 

In recent years, an increasing number of studies have shown that the 
type, density, and location of immune cells in the tumor 
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microenvironment (TME) play an important role in the occurrence and 
development of diseases. Many types of immune cells infiltrate the lung 
[6–9], ovarian [10], colorectal [11,12], and breast cancers [13]. For 
example, various immune cells have been observed to infiltrate lung 
tissue in NSCLC, including CD4+ and CD8+ T cells [14], B cells [15], M1 
macrophages [16], and NK cells [17]. Therefore, evaluating the infil-
tration of immune cells and determining the differences in the compo-
sition of infiltrating immune cells are of great value for elucidating the 
pathophysiology of NSCLC and developing new targets for 
immunotherapy. 

In this study, four Gene Expression Omnibus (GEO) datasets for 
NSCLC were downloaded, including data on cancer tissue samples from 
113 patients with NSCLC and adjacent normal tissue samples from 69 
patients with NSCLC. Three GEO datasets (GSE29249, GSE74706, and 
GSE101929) were combined into one dataset, and the DEGs were 
identified in NSCLC and adjacent tissue samples. Least absolute 
shrinkage and selection operator (LASSO) regression and support vector 
machine-recursive feature elimination (SVM-RFE) were used to screen 
potential diagnostic biomarkers for NSCLC. The diagnostic biomarkers 
obtained were validated using a validation dataset (GSE116959). Ac-
cording to the immune cell gene expression profiles provided in public 
databases, the immune cell types were identified using the cell-type 
identification by estimating relative subsets of RNA transcript (CIBER-
SORT) algorithm, and the proportion of immune cells in all samples was 
quantified. The relationship between potential biomarkers and infil-
trating immune cells was further evaluated via Spearman correlation 
analysis. The protein and mRNA expression levels of potential bio-
markers were verified using the HPA database and qRT-PCR. Addi-
tionally, the effects of potential biomarkers on NSCLC cell lines 
proliferation was determined by in vitro experiments. 

Materials and methods 

Microarray data acquisition and processing 

The data used in this study were obtained from the public domain. 
Four mRNA microarray datasets GSE29249 [18], GSE74706 [19], 
GSE101929 [20] and GSE116959 [21] from cancer tissues and adjacent 
normal tissues of patients with NSCLC were downloaded from the Na-
tional Biotechnology Information Center (NCBI) GEO database (htt 
p://www.ncbi.nlm.nih.gov/geo/). The GPL10558 (Illumina 
HumanHT-12 v 4.0, expression beadchip), GPL13497 (Agilent-026,652 
Whole Human Genome Microarray 4 × 44 K v2), GPL570 
([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array), 
and GPL17077 (Agilent-039494 SurePrint G3 Human GE v2 8 × 60 K 
Microarray 039381) as detection platforms, and data from 113 NSCLC 
tissues and 69 adjacent normal tissues were collected from four mRNA 
microarray databases (Table 1). The expression matrix of each probe 
was matched with its platform annotation and each probe ID was con-
verted into a corresponding gene symbol. All expression data were 

normalized and log2-transformed. If a gene had more than one probe 
expression data, the average value was used for further analysis. Then, 
the GSE29249, GSE74706, and GSE101929 datasets were preprocessed 
using the “SVA” package of R software (v.4.0.4) and then merged into a 
data matrix [22] to eliminate the heterogeneity caused by different 
experimental platforms and batches. GSE116959 was used as the veri-
fication dataset. 

DEG screening and functional enrichment analysis 

DEGs in NSCLC tumor tissues and adjacent normal tissues were 
identified using the “LIMMA” package [23]. The P-values were adjusted 
using the false discovery rate (FDR) method [24]. The mRNAs that met 
the cut-off criteria (adjusted P-value < 0.05 and |log2fold change (FC)| 
> 1) were identified as DEGs. Then, the “pheatmap” and “ggplot2” 
packages were used to draw heatmaps and volcano plots, respectively, to 
depict DEGs. In order to further explore the potential biological mech-
anism of the DEGs in NSCLC and which specific diseases are mainly 
enriched with these DEGs, we used the “ClusterProfiler” package and 
“org.Hs.eg.db” for Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and Disease Ontology (DO) enrichment analysis, 
respectively. Adjusted P-values < 0.05 were considered statistically 
significant. 

Screening and verification of candidate diagnostic biomarkers 

LASSO regression and SVM-RFE algorithm were used for feature 
selection to screen candidate diagnostic biomarkers in NSCLC. The three 
datasets (GSE29249, GSE74706, and GSE101929) preprocessed using 
the “SVA” package to eliminate the batch effect were merged into an 
independent dataset. This dataset was then used to verify the joint 
diagnosis efficiency of the candidate diagnostic biomarkers. LASSO 
regression analysis was performed using the “glmnet” package. SVM- 
RFE is a machine learning method based on a support vector machine 
that finds the best variable by deleting the feature vector generated by 
the SVM. The support vector machine model can be established through 
the “e1071” package of R software to determine the diagnostic value of 
these biomarkers in NSCLC. Finally, we combined the candidate bio-
markers obtained from the LASSO and SVM-RFE algorithms for further 
analysis. p < 0.05 was regarded statistically significant on a two-sided 
basis. Upon further verification using the GSE116959 dataset, p <
0.05 was also considered statistically significant. 

Diagnostic value of candidate biomarkers in NSCLC 

A receiver operating characteristic (ROC) curve was constructed to 
investigate the predictive value of the candidate biomarkers. The area 
under the curve (AUC) was calculated to determine the differential 
diagnosis validity of the DEGs between NSCLC and control samples that 
were further verified using the GSE116959 dataset. 

Analysis of immune cell infiltration 

To analyze the proportion of 22 types of infiltrating immune cells in 
cancer tissues and adjacent normal tissues of patients with NSCLC, the 
gene expression matrix data were uploaded to the CIBERSORT 
(http://cibersort.stanford.edu/) online platform. Significantly different 
samples (p < 0.05) were screened for further analysis, and bar plots and 
heatmaps were drawn to visualize the infiltration rate of immune cells in 
different samples [25]. Then, the “corrplot” package was used to draw a 
correlation heatmap to visualize the correlation of 22 kinds of infil-
trating immune cells in NSCLC or normal tissues. The Wilcoxon 
rank-sum test was used to evaluate the differences in the composition of 
infiltrating immune cells between cancerous and adjacent normal tissues 
of patients with NSCLC patients, and the “vioplot” package was used for 
visualization. Finally, the relationship between differentially infiltrating 

Table 1 
Basic information on the microarray datasets from the GEO database.  

GEO Datasets  
GEO 
accession 

Platforms Organism Samples (lung 
tissues), n 

NSCLC 
patients 

Controls 

Meta-data 
cohort 

GSE29249 GPL10558 Homo 
sapiens 

6 6 

GSE74706 GPL13497 Homo 
sapiens 

18 18 

GSE101929 GPL570 Homo 
sapiens 

32 34 

Validation 
cohort 

GSE116959 GPL17077 Homo 
sapiens 

57 11  
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immune cells and the candidate diagnostic biomarkers was evaluated 
using Pearson’s correlation analysis. 

Cell culture and RNA extraction 

NSCLC cell lines (A549 and H1975) and the normal human lung 
epithelial cell line BEAS-2B were purchased from the cell bank of the 
Chinese Academy of Sciences (Shanghai, China). All cells were cultured 
in RPMI-1640 medium (Gibco, USA) containing 10% fetal bovine serum 
(Gibco, USA) at 37 ℃ in an atmosphere containing 5% CO2. To further 
confirm the differential expression of the potential diagnostic bio-
markers in NSCLC and adjacent normal tissues, the cells were trans-
ferred to six-well plates to continue growing. Total RNA was extracted 
from the cells that grew on the six-well plates according to the manu-
facturer’s protocol (RNAsimple Total RNA Kit; TIANGEN, China). The 
RNA concentration was assessed using a NanoDrop 2000 spectropho-
tometer (Thermo Scientific, Waltham, MA, USA). 

Cell transfection 

A549 and H1975 cells in logarithmic phase were evenly inoculated 
in the 6-well plates at 4 × 103 / well. Transfection was performed when 
the cells reached 70% - 80% confluency. Before transfection, the cells 
were washed with phosphate-buffered saline (PBS) twice and 750 μL 
OPTI-MEM (Invitrogen, USA) was added to each well. The synthetic NC- 
siRNA, GDF10-siRNA, NCKAP5-siRNA and RTKN2-siRNA (Table 2) were 
transferred into A549 and H1975 cells by transfection reagent lip-
ofectamine™2000 (Invitrogen, USA). After 6 h, cells were washed with 
PBS and then cultured in complete medium for 24 to 48 h before further 
experiments. The reduction efficiency of GDF10, NCKAP5, and RTKN2 
in A549 and H1975 cells was detected by RT-qPCR. The specific siRNA 
duplexes is synthesized by Gene Pharma Co., Ltd. (Suzhou, China). 

MTT assay 

After transfecting for 24 h, cells were inoculated in the 96-well plates 
at 5 × 103 cells / well. After inoculation for 1, 2, 3, 4, and 5 days, 10 μL 
MTT solution (Beyotime, China) was added to each well and incubated 
for 4 h. Finally, 100 μL Formazan dissolution solution (Beyotime, China) 
was added to dissolve the crystallization. The OD value was measured at 
570 nm wavelength and the cell growth curves were plotted. 

Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) 

The extracted total RNA was reverse-transcribed to synthesize cDNA 
using a commercial kit (All-in-one 1st Strand cDNA Synthesis SuperMix 
[gDNA Purge], Novoprotein, China) according to the manufacturer’s 
protocol. A SYBR qPCR SuperMix Plus (Novoprotein,China) was then 
used to amplify the synthesized cDNA for quantitative PCR. Using 
β-actin as the reference gene, the relative expression of mRNA was 
analyzed using the 2− △△Ct method. The primers used in this study are 
listed (Table 3). 

Expression of candidate diagnostic biomarkers in human NSCLC tissues 

The protein expression of the candidate diagnostic biomarkers in the 
tumor tissues of patients with NSCLC and healthy lung tissues was 
extracted from the Human Protein Atlas (http://www.proteinatlas.org). 
The intensity of antibody staining indicated the protein expression of 
diagnostic biomarkers. 

Statistical analysis 

R software (version 4.0.4) was used for bioinformatics analysis. 
GraphPad Prism 9 and SPSS 25.0 software were used to analyze the 
experimental results. The t-test was used to compare two groups, while 
single-factor analysis of variance was used to compare multiple groups. 
Statistical significance was set at p < 0.05. 

Results 

Identification of DEGs in NSCLC 

As shown in Table 1, 56 NSCLC tissue samples and 58 adjacent 
normal tissue samples from three GEO databases were retrospectively 
analyzed. After excluding the batch effect, all the data were analyzed 
using the “LIMMA” package. According to the cut-off criteria, 2156 
DEGs (Fig. 1A) were identified (Supplementary Table 1), including 848 
upregulated DEGs and 1308 downregulated DEGs (Fig. 1B). 

Functional enrichment analysis 

To obtain the terms and approaches related to NSCLC, we performed 
GO, KEGG, and DO enrichment analyses of the obtained DEGs. GO 
analysis mainly includes three components: biological processes, mo-
lecular functions, and cellular components. GO analysis showed that the 
DEGs were mainly related to unclear mitotic division, sister chromatid 
segregation, and mitotic sister chromatid separation (Fig. 1C). KEGG 
analysis showed that the DEGs were mainly related to the cell cycle, 
ECM-receptor interaction, TNF signaling pathway, and IL-17 signaling 
pathway (Fig. 1D). DO analysis showed that the main diseases enriched 
with these DEGs were lung disease, non-small cell lung cancer, chronic 
obstructive pulmonary disease, and pulmonary hypertension (Fig. 1E). 

Identification and verification of candidate diagnostic biomarkers 

Twenty-eight biomarkers from the DEGs identified using the LASSO 
regression algorithm (Supplementary Table 2) and forty biomarkeres 
identified using the SVM-RFE algorithm (Supplementary Table 3) were 
deemed candidate diagnostic biomarkers for NSCLC (Fig. 2A-2B). 
Through joint analysis of the genes obtained from the two algorithms, 
three common genes were obtained: growth differentiation factor 10 
(GDF10), NCK-associated protein 5 (NCKAP5), and rhotekin 2 (RTKN2) 
(Fig. 2C), all of which were downregulated genes. GSE116959 was used 
as a verification dataset to verify the expression of these genes. The 
results showed that the gene expression levels of GDF10, RTKN2, and 
NCKAP5 in the lung tissue of patients with NSCLC were significantly 

Table 2 
Primer sequences for transfection.  

Gene Sequence(5ʹ− 3ʹ) 

NC-siRNA human, sense: 5ʹ-UUCUCCGAACGUGUCACGUTT-3ʹ 
human, antisense: 5ʹ-ACGUGACACGUUCGGAGAATT-3ʹ 

GDF-10-siRNA human, sense: 5ʹ-CCAUGCAAGACUCGGAAAUTT-3ʹ 
human, antisense: 5ʹ-AUUUCCGAGUCUUGCAUGGTT − 3ʹ 

NCKAP5-siRNA human, sense: 5ʹ-GCAUUUGCAGGAUUUCUUATT-3ʹ 
human, antisense: 5ʹ-UAAGAAAUCCUGCAAAUGCTT − 3ʹ 

RTKN2-siRNA human, sense: 5ʹ-GCUAUUAGAGAGAUUGAAATT − 3ʹ 
human, antisense: 5ʹ-UUUCAAUCUCUCUAAUAGCTT − 3ʹ  

Table 3 
Primer sequences for qRT-PCR.  

Gene Sequence(5ʹ− 3ʹ) 

GDF10 human, Forward: 5ʹ-ACAGCACTTCCACAAGCACCAG-3ʹ 
human, Reverse: 5ʹ-GCCCTTCTTCCTGCGGTCTTTG-3ʹ 

NCKAP5 human, Forwards: 5ʹ-TTCCGTGGCTGTGAACAAGTCTAAG-3ʹ 
human, Reverse: 5ʹ-AACTGCCCTGTGCTTGTGAATCC-3ʹ 

RTKN2 human, Forward: 5ʹ-TGGAAACTCCTTTCTCTGAGCACTC-3ʹ 
human, Reverse: 5ʹ-AGTCGAGCATTGCACACCATGAG-3ʹ 

β-actin human, Forward: 5ʹ-GCACTCTTCCAGCCTTCCTTCC-3ʹ 
human, Reverse: 5ʹ-GCGGATGTCCACGTCACACTTC-3ʹ  
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Fig. 1. Identification of DEGs in NSCLC and functional enrichment analysis of DEGs. (A) Heatmap for DEGs between NSCLC tissues and adjacent normal tissues. (B) 
Volcano plot for DEGs. (C) GO analysis of DEGs. (D) KEGG analysis of DEGs. (E) DO analysis of DEGs. Con: adjacent normal tissue, Treat: NSCLC tissue. 
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lower than those in the adjacent normal tissue (p < 0.05) (Fig. 2D-2F). 

Diagnostic value of the candidate biomarkers in NSCLC 

ROC curves were used to test the diagnostic efficiency of GDF10, 
NCKAP5, and RTKN2. The AUC was calculated to determine the dif-
ferential diagnostic validity of these candidate biomarkers in NSCLC. 
The results showed that these biomarkers showed good diagnostic value 
in distinguishing NSCLC. The AUC values of GDF10, NCKAP5, and 
RTKN2 were 0.991 (95% CI: 0.978–1.000), 0.979 (95% CI: 
0.949–1.000), and 0.981 (95% CI: 0.955–1.000), respectively. The AUC 
reached 0.995 (95% CI: 0.986–1.000) when all three biomarkers were 
combined (Fig. 3A). A pairwise combination of the three biomarkers 
showed that the AUC value of GDF10 combined with NCKAP5 was 0.996 
(95% CI: 0.988–1.000), the AUC value of GDF10 combined with RTKN2 
was 0.995 (95% CI: 0.986–1.000), and the AUC value of RTKN2 com-
bined with NCKAP5 was 0.985 (95% CI: 0.963–1.000) (Fig. 3B). To 
further verify the accuracy of the above results, we used the GSE116959 
dataset for verification. The results showed that the AUC value of GDF10 
was 0.998 (95% CI: 0.993–1.000), that of NCKAP5 was 0.981 (95% CI: 
0.954–1.000), and that of RTKN2 was 1. When the three markers were 
detected together, the AUC reached 1 (Fig. 3C). The AUC value of GDF10 
combined with NCKAP5 was 0.998 (95% CI: 0.993–1.000), and the AUC 
values of GDF10 combined with RTKN2 and RTKN2 combined with 
NCKAP5 were 1 (Fig. 3D), showing high diagnostic efficiency. There-
fore, the results showed that GDF10, NCKAP5, and RTKN2 have good 
potential applications in diagnosing NSCLC. 

Composition of infiltrating immune cells in NSCLC 

The CIBERSORT algorithm was used to calculate the composition of 
22 types of immune cells in 56 NSCLC tissues and 58 adjacent normal 
samples. The infiltration results were visualized using a bar plot 
(Fig. 4A) and a heatmap (Fig. 4B). The relationships between these 22 
types of immune cells were also analyzed. The results showed a negative 
correlation between M1 and macrophages M2 (R = − 0.19). Activated 
NK cells were positively correlated with T cells CD8 (R = 0.15). Acti-
vated DCs showed a negative correlation with macrophages M1 (R =
− 0.64) and a positive correlation with macrophages M2 (R = 0.08). 
Activated NK cells were negatively correlated with macrophages M1 (R 
= − 0.07) and positively correlated with macrophages M2 (R = 0.09). A 

positive correlation was observed between activated mast cells and 
neutrophils (R = 0.33). Tregs were positively correlated with macro-
phages M1 (R = 0.23) but were negatively correlated with macrophages 
M2 (R = − 0.01) (Fig. 4C). Next, the differences in the proportion of 
infiltrating immune cells between cancer tissue and adjacent normal 
tissue in patients with NSCLC were analyzed and the results were 
screened according to the CIBERSORT criteria (p < 0.05). The pro-
portions of CD4 memory resting (p < 0.001), resting NK cells (p <
0.001), monocytes (p < 0.001), macrophages M2 (p < 0.001), activated 
dendritic cells (p < 0.001), resting mast cells (p < 0.001), eosinophils (p 
< 0.001), and neutrophils (p < 0.001) were significantly lower in cancer 
tissues than in adjacent tissues. In contrast, the proportions of naïve B 
cells (p = 0.035), memory B cells (p = 0.015), plasma cells (p < 0.001), 
activated CD4 memory cells (p < 0.001), follicular helper T cells (p =
0.017), regulatory T cells (Tregs) (p = 0.009), gamma delta T cells (p <
0.001), and macrophages M1 (p < 0.001) were significantly higher in 
cancer tissues than in adjacent tissues (Fig. 4D). 

Analysis of the correlation between GDF10, RTKN2, and NCKAP5 
expression and infiltrating immune cells 

Pearson correlation analysis showed that GDF10, NCKAP5, and 
RTKN2 expression were negatively correlated with plasma cells (p <
0.05), macrophages M1 (p < 0.05), CD4 memory activated T cells (p <
0.05), Tregs (p < 0.05), naïve B cells (p < 0.05), and gamma delta T cells 
(p < 0.05). In contrast, they were positively correlated with T cells CD4 
memory resting (p < 0.05), macrophages M2 (p < 0.05), neutrophils (p 
< 0.05), resting mast cells (p < 0.05), activated dendritic cells (p <
0.05), monocytes (p < 0.05), resting NK cells (p < 0.05), and eosinophils 
(p < 0.05). In addition, GDF10 and NCKAP5 were negatively correlated 
with follicular helper T cells (p < 0.05) and memory B cells (p < 0.05), 
but were positively correlated with T cells CD4 naïve (p < 0.05). A 
positive correlation was observed between RTKN2 and mast cell acti-
vation (p < 0.05) (Fig. 4E-4H). 

External verification of candidate diagnostic biomarkers 

Verified using an external database (HPA), the results showed that 
the protein expression of GDF10, NCKAP5, and RTKN2 (Fig. 5A-5D) was 
downregulated in NSCLC, which was confirmed via immunohisto-
chemistry. At the same time, qRT-PCR results showed that the mRNA 

Fig. 2. Identification and verification of candidate diagnostic biomarkers. (A) Identification of biomarkers using the LASSO regression algorithm. (B) Identification of 
biomarkers using the SVM-RFE algorithm. (C) Venn diagram showing the intersection of candidate diagnostic biomarkers obtained using the two algorithms. (D-F) 
The expression of GDF10, NCKAP5 and RTKN2 in the GSE116959 dataset. Abbreviations: GDF10, growth differentiation factor 10; NCKAP5, NCK associated protein 
5; RTKN2, rhotekin 2. 
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Fig. 2. (continued). 
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expression of GDF10, NCKAP5, and RTKN2 (Fig. 5E-5G) in the human 
NSCLC cell lines A549 and H1975 was significantly lower than that in 
the human normal lung epithelial cell line BEAS-2B (p < 0.05). 

GDF10, NCKAP5, and RTKN2 knockdown promotes cell proliferation of 
NSCLC 

To further prove the reliability and accuracy of this bioinformatics 
analysis, three potential diagnostic genes were selected for further bio-
logical experiments analysis. The reduction efficiency was determined 
by siRNA knockdown of GDF10, NCKAP5, and RTKN2, followed by RT- 
qPCR (Fig. 6A-6C). The MTT experiments demonstrated that the pro-
liferative rate of A549 and H1975 cells was significantly increased upon 
GDF10, NCKAP5, and RTKN2 knockdown (Fig. 6D-6I). These results 
suggested the inhibitory effect of GDF10, NCKAP5, and RTKN2 in 
NSCLC cell lines proliferation. 

Discussion 

Lung cancer is currently the deadliest cancer in the world. More than 
85% of lung cancer cases are classified as NSCLC and the predicted 5- 
year survival rate of patients with this disease is only 15.9% [26]. Due 

to a lack of early manifestations of cancer and early diagnostic in-
dicators, most patients with NSCLC are diagnosed at an inoperable stage, 
one of the reasons for the high mortality rate in NSCLC. In addition, 
studies have shown that immune cell infiltration plays an important role 
in the occurrence and development of NSCLC [27]. In solid tumor tissues 
such as lung cancer and breast cancer, the type of immune cell infil-
tration is strongly related to the clinical characteristics of these solid 
tumors, and immune cell infiltration can be used for tumor risk strati-
fication [28–30]. Therefore, identifying specific diagnostic biomarkers 
and analyzing the patterns of immune cell infiltration in NSCLC can 
provide a new research perspective for the diagnosis and treatment of 
NSCLC. With the rapid development of modern science and technology, 
bioinformatics has become highly efficient and convenient for screening 
specific molecules from a large data matrix. At the same time, CIBER-
SORT tools also provide convenience for analyzing disease immune cell 
infiltration patterns [31]. In this study, we aimed to identify new diag-
nostic biomarkers for NSCLC and determine the composition of infil-
trating immune cells in NSCLC tissues to explore their relationship to 
improve the diagnosis, treatment, and management of patients with 
NSCLC. 

The three NSCLC datasets downloaded from the GEO database were 
merged into a single meta-dataset, and a total of 848 upregulated and 

Fig. 3. Diagnostic value of the candidate biomarkers in NSCLC. (A) ROC curve of GDF10, NCKAP5, and RTKN2 in the metadata cohort. (B) ROC curve of GDF10 +
NCKAP5, GDF10 + RTKN2, and GDF10 + RTKN2 in the metadata cohort. (C) ROC curve of GDF10, NCKAP5, and RTKN2 in the validation dataset (GSE116959). (D) 
ROC curve of GDF10 + NCKAP5, GDF10 + RTKN2, and GDF10 + RTKN2 in the validation dataset (GSE116959). 
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Fig. 4. Comparison of immune cell components between NSCLC and normal tissues and their correlation with the three candidate diagnostic biomarkers. (A) The 22 
immune cell fractions represented by various colors in each sample are shown in the barplot. (B) Heatmap of the distributions of immune cells between NSCLC and 
control samples. (C) Comparison of 22 immune cell subtypesbetween the NSCLC and Control groups. (D) Violin diagram of the proportions of the 22 types of immune 
cells. (E-H) Correlation between GDF10, NCKAP5, RTKN2, and infiltrating immune cells. 
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1308 downregulated DEGs were identified. The results of GO enrich-
ment analysis showed that the DEGs were mainly related to unclear 
mitotic division, sister chromatid segregation, and mitotic sister chro-
matid separation. KEGG enrichment analysis showed that DEGs were 

significantly enriched in the cell cycle. These results are consistent with 
the view reported by EvanGI et al. that cancer is a disease characterized 
by uncontrolled cell proliferation [32]. At the same time, DO enrichment 
analysis showed that the main diseases rich in these DEGs were lung 

Fig. 5. (A-D) GDF10, NCKAP5, and RTKN2 protein expression in NSCLC tissues as determined using HPA. qRT-PCR analysis of GDF10 (E), NCKAP5 (F), and RTKN2 
(G) mRNA expression in the indicated cell lines. NC: Normal tissue; Ca: Lung cancer tissue. * p < 0.05, ** p < 0.01, and * p < 0.001. 
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disease, non-small cell lung cancer, and chronic obstructive pulmonary 
disease, among others. The above results are consistent with the analysis 
data, showing that the results of this study are accurate. 

Combined with the LASSO regression and SVM-RFE algorithms, 
GDF10, NCKAP5, and RTKN2 were identified as candidate diagnostic 
biomarkers for NSCLC. To further verify the diagnostic accuracy of these 
candidate biomarkers, their expression levels and diagnostic efficiency 
were verified using the GSE116959 datasets. The results showed that 
GDF10, NCKAP5, and RTKN2 were feasible diagnostic markers of 
NSCLC. GDF10, also known as BMP-3b, is an atypical member of the 
TGF-β superfamily that can inhibit osteoblast differentiation by antag-
onizing osteogenesis mediated by BMP-2 and BMP-4 [33]. GDF10 plays 
an important role in the occurrence and development of cancer. For 
example, Du et al. found that the upregulation of GDF10 can inhibit 
proliferation and promote apoptosis in prostate cancer cells [34]. Zhou 
et al. [35] found that GDF10 inhibited proliferation and 
epithelial-mesenchymal transformation (EMT) in breast cancer. Cheng 
et al. [36] found that GDF10 can induce chemotherapy resistance and 
EMT in oral squamous cell carcinoma. Li X et al. [37] found that the 
expression of GDF10 can inhibit the proliferation of LUAD cells. Dai, Z. 
et al. [38] found that GDF10 silencing promoted the development of 

lung cancer. Therefore, following these reports, we believe that GDF10 
is involved in the pathogenesis of NSCLC. 

At present, there are only a few studies that investigated the rela-
tionship between NCKAP5 and cancer, but some have found that 
NCKAP5 is related to manic-depressive psychosis and schizophrenia 
[39]. RTKN2 is a Rho effector protein that plays a carcinogenic role by 
promoting NF-κB signal transduction in various human malignancies 
[40,41]. For example, Liu et al. found that the overexpression of RTKN2 
can induce a series of NF-κB-regulated anti-apoptotic genes to resist 
apoptosis in gastric cancer cells [42]. At the same time, some studies 
have shown that RTKN2 can affect the proliferation of NSCLC cells [43]. 
Therefore, we speculated that RTKN2 might play an essential role in the 
progression of NSCLC. In the Kaplan-Meier Plotter database [44], bio-
informatics analysis showed that GDF10 and NCKAP5 were positively 
correlated with the prognosis of NSCLC (p < 0.05). GDF10 and NCKAP5 
were poorly expressed in the tumor tissues, and a high expression of 
GDF10 and NCKAP5 was associated with a better prognosis. However, 
RTKN2 was not associated with NSCLC prognosis (p > 0.05). Therefore, 
GDF10 and NCKAP5 are also important for studying the pathology 
mechanism of NSCLC. 

Next, we used the CIBERSORT algorithm to explore the role of 

Fig. 6. GDF10, NCKAP5, and RTKN2 Knockdown Promotes Cell Proliferation of NSCLC. (A-C) Successes of GDF10, NCKAP5, and RTKN2 knockdown in A549 and 
H1975 cells following transfection with the specific-siRNAs, as examined by qRT-PCR assay. (D-I) GDF10, NCKAP5, and RTKN2 knockdown accelerated cell pro-
liferation of A549 and H1975 cells, as examined by MTT assay . * p < 0.05, ** p < 0.01, and * p < 0.001. 
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immune cell infiltration in NSCLC. We found that the increased infil-
tration of naïve B cells, B cell memory, plasma cells, and Tregs and the 
decreased infiltration of resting NK cells, activated DCs, and neutrophils 
may be related to the genesis and development of NSCLC. Schoenhals 
et al. found fewer B cells and Tregs in normal lung tissues and the 
opposite in cancer tissues [45]. Some studies have also shown that the 
percentage of NK cells is relatively low in NSCLC tumor tissues [46], and 
that the infiltration of NK cells into tumor tissues is related to a good 
prognosis in lung cancer [47]. Get et al. found that a high density of 
mature DC was associated with T cell infiltration, immune-related gene 
expression, and increased survival in 458 NSCLC cases [48]. At the same 
time, the correlation between GDF10, NCKAP5, RTKN2, and immune 
cells was analyzed. We found that GDF10, NCKAP5, and RTKN2 were 
negatively correlated with naïve Tregs and B cells but were positively 
correlated with T cells CD4 memory resting, neutrophils, activated DCs, 
and resting NK cells. Therefore, we speculate that the downregulated 
expression of GDF10, NCKAP5, and RTKN2 increased the infiltration of 
B cells and Tregs and decreased the infiltration of NK cells and DC cells 
to participate in the occurrence and development of NSCLC. However, 
further experimental studies are required to clarify the relationship 
between diagnostic biomarkers and immune cells. 

In addition, we verified the protein and mRNA levels of GDF10, 
NCKAP5, and RTKN2 using immunohistochemical staining and qRT- 
PCR, respectively. Based on the immunohistochemistry results pro-
vided by the HPA database, the protein expression levels of GDF10, 
NCKAP5, and RTKN2 in the lung tissues of patients with NSCLC were 
significantly decreased. Moreover, the qRT-PCR results showed that the 
mRNA expression of GDF10, NCKAP5, and RTKN2 in human NSCLC cell 
lines A549 and H1975 were significantly lower than those in the normal 
human lung epithelial cell line BEAS-2B. The experimental results are 
consistent with the above results. In the present study, the down-
regulation of the GDF10, NCKAP5, and RTKN2 expressions implied 
inhibitory effects of these genes in occurrence and development of 
NSCLC. To further test this hypothesis, we suppressed the GDF10, 
NCKAP5, and RTKN2 expression in NSCLC cell lines A549 and H1975 
cells through specfic siRNAs and then performed the in vitro experi-
ments to clarify the effects of GDF10, NCKAP5, and RTKN2 on cell 
proliferation of NSCLC. The experimental results showed that GDF10, 
NCKAP5 and RTKN2 knock-down can significantly enhance the cell 
proliferation capacities in NSCLC. 

Therefore, these three biomarkers may become auxiliary diagnostic 
markers and immunotherapy targets for patients with NSCLC. However, 
our research also has some limitations since our results mainly came 
from the mining and analysis of published data. Although the results of 
the data and experimental verification were consistent with the analysis 
results, the reliability of the results reported in this study requires 
further experimental verification. 

Conclusions 

We conclude that GDF10, NCKAP5, and RTKN2 may be diagnostic 
biomarkers for NSCLC. We also found that B cells, plasma cells, Tregs, 
activated dendritic cells, and neutrophils may participate in the occur-
rence and development of NSCLC. Moreover, our results revealed that 
GDF10, NCKAP5, and RTKN2 were significantly correlated with acti-
vated B cells, Tregs, neutrophils, and dendritic cells. Further studies of 
these immune cells and diagnostic biomarkers may determine the tar-
gets of NSCLC immunotherapy, thus improving the prognosis of patients 
with NSCLC. 
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