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Here we review the insights and lessons learned from early clinical trials of T-cell engaging
bispecific antibodies (BsABs) as a new class of biotherapeutic drug candidates with
clinical impact potential for the treatment of multiple myeloma (MM). BsABs are capable of
redirecting host T-cell cytotoxicity in an MHC-independent manner to malignant MM
clones as well as immunosuppressive myeloid-derived suppressor cells (MDSC). T-cell
engaging BsAB targeting the BCMA antigen may help delay disease progression in MM by
destroying the MM cells. T-cell engaging BsAB targeting the CD38 antigen may help delay
disease progression in MM by depleting both the malignant MM clones and the MDSC in
the bone marrow microenvironment (BMME). BsABs may facilitate the development of a
new therapeutic paradigm for achieving improved survival in MM by altering the
immunosuppressive BMME. T-cell engaging BsiABs targeting the CD123 antigen may
help delay disease progression in MM by depleting the MDSC in the BMME and
destroying the MM stem cells that also carry the CD123 antigen on their surface.

Keywords: tumor microenvironment (TME), multiple myeloma (MM), bispecific T-cell engagers (BiTEs), bispecific
antibodies (BsABs), bone marrow microenvironment (BMME), myeloid-derived suppressor cells (MDSC)
MULTIPLE MYELOMA AND DRUG RESISTANCE

MM is a heterogenous hematologic malignancy and relapses due to resistant disease are common
(1–4). Resistance of the malignant clones to multiple drugs hampers a more successful treatment
outcome after contemporary standard of care regimens in MM (1–4). Personalized therapy
platforms have been designed to overcome the drug resistance, including precision medicines,
kinase inhibitors, CAR-T cells, and antibody therapeutics (5–8). Effective treatment of patients with
drug-resistant relapsed disease continues to be an unmet medical need (1–4).
November 2021 | Volume 11 | Article 7603821

https://www.frontiersin.org/articles/10.3389/fonc.2021.760382/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.760382/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.760382/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.760382/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.760382/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:fatih.uckun@aresmit.com
https://doi.org/10.3389/fonc.2021.760382
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.760382
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.760382&domain=pdf&date_stamp=2021-11-10


Uckun Bispecific Antibodies for Multiple Myeloma
IMMUNOSUPPRESSIVE BONE MARROW
MICROENVIRONMENT IN MULTIPLE
MYELOMA
The immunosuppressive bone marrow microenvironment
(BMME) in MM contains cellular elements that facilitate the
immune evasion of malignant MM clones (9–13). These
immunosuppressive cells include MDSCs, an immature
myeloid cell population capable of inhibiting effector cytotoxic
T-cell (CTL) populations as well as natural killer (NK) cells and
contribute to the T-cell exhaustion which is a hallmark of the
BMME in MM patients (4, 14–20). In addition, regulatory T cells
(Tregs), regulatory B-cells (Bregs), and tumor-associated
macrophages (TAM) also contribute to BMME-associated
immunosuppression (20). The immunosuppressive BMME in
MM has been implicated in clonal evolution and immune
evasion of MM cells accelerating disease progression (4, 20).

Expanded populations of MDSC, representing CD33+CD123+

immature myeloid cells within the bone marrow mononuclear cell
fraction contribute to the immunosuppressive BMME by inhibiting
both memory and cytotoxic effector T-cell populations as well as
natural killer (NK) cells, thereby promoting the immune evasion of
MM clones (4, 9–15, 20) (Figure 1). MDSCs along with MM cell
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derived interleukin 10 (IL-10), TGF-b and IL-6 inhibit dendritic cell
(DC) maturation and their antigen-presenting function, which
further aggravates the immunosuppression (6). The abundance of
MDSCs is associated with a higher risk of rapidly progressive disease
and poor survival outcomes inMM (9–11). MDSCs are activated by
exosomes and support the development of Tregs, promote
angiogenesis and growth of MM cells besides inhibiting the
immune effector cells (21–26).

Several strategies are being explored to overcome the
immunosuppressive cellular elements of the BMME in MM
patients, including the use autologous hematopoietic stem cell
transplantation (AHSCT) (4, 20, 27–29) to remodel the BMME
by establishing a more favorable ratio between effective MM-
specific CTLs versus Tregs and other immunosuppressive cells.
Treatment strategies aimed at further enhancing the anti-MM
immunity can be employed as post-AHSCT interventions,
including MM- or MDSC-directed monoclonal antibodies
(MoAb) (20, 27, 28). New generation multi-parameter minimal
residual leukemia (MRD) detection techniques provide a unique
opportunity to evaluate the effect of new treatment modalities
that are applied as part of AHSCT or post-AHSCT on the quality
and length of complete remission in both newly diagnosed high-
risk MM as well as RR MM (29, 30).
FIGURE 1 | Targeting the Immunosuppressive TME in MM. MM stem cells (MMSC) express BCMA, CD38, CD307 and CD123 antigens on their surface. MDSCs
express CD38 and CD123 antigens on their surface.
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DUAL TARGETING OF MM CELLS
AND MDSCS

Dual targeting of MM cells and MDSCs using biotherapeutic agents
has emerged as a very promising new therapeutic platform with a
particularly high clinical impact potential. For example CD38
antigen is present on MM cells as well as MDSCs (4, 20, 31–34).
Daratumumab, a complement-activating anti-CD38 MoAb capable
of causing antibody‐dependent cellular cytotoxicity (ADCC) and
apoptosis in MM cells, showed significant single agent activity in
relapsed MM patients and improved the survival outcome when
used in combination with other active anti-MM agents such as
bortezomib and dexamethasone or lenalidomide and
dexamethasone (4, 20, 31–34). Similar results were obtained using
alternative anti-CD38 MoAbs, such as Isatuximab (4, 20).
Daratumumab has been shown to expand the immunoreactive
CTL populations via depletion of CD38+ immunosuppressive
cellular elements of the BMME (33). The immunomodulatory
effects of Daratumumab improved the clinical responses of
previously resistant MM patients to standard combination
therapy (4, 20). Unfortunately, increased expression levels of
complement inhibitors CD55 and CD59 as well as decreased cell
surface expression levels of CD38 on MM cells may decrease the
clinical activity of anti-CD38 antibodies (4, 35).
CLINICAL IMPACT POTENTIAL OF
BISPECIFIC T-CELL ENGAGERS

BsABs capable of redirecting host T-cell cytotoxicity in an MHC-
independent manner to malignant clones as well as
immunosuppressive MDSCs (14–20, 35–39) are being explored as
a new class of drug candidates in various hematologic malignancies
Frontiers in Oncology | www.frontiersin.org 3
(40). Bispecific CD3xBCMA antibodies targeting the B-cell
maturation antigen (BCMA; CD269/TNFRS17) on MM cells, such
as EM801, REGN5458 (NCT03761108) and AMG 420
(NCT03836053) showed single agent activity in relapsed/refractory
MM patients (41–46) (Figure 2). CD3xBCMA BsABs, Elranatamab
(PF-06863135) and Teclistamab are being evaluated in R/R MM
patients (NCT04649359 and NCT03145181/NCT04557098). In the
MajesTEC-1 Phase 1 study of the BCMAxCD3BsABTeclistamab in
R/RMM (NCT03145181), both intravenous and subcutaneous (s.c)
administration schedules were evaluated, and the recommended
phase 2 dose was identified as 1.5 mg/kg administered s.c. once a
week. At this dose level, the overall response rate was 65%. Grade 3-4
neutropeniawasobserved in40%andGrade1-2CRSwasobserved in
70% of the patients (47). The second-generation CD3xBCMA BsAB
AMG701 that has an Fc domain to extend its half-life (48) is being
evaluated in an Phase 1/2 clinical study (NCT03287908). TNB-383B
has been designed to reduce the risk of the class-specific AE cytokine
release syndrome (CRS) (49). TeneoBio has shown that TNB-383B
causes significantly lower cytokine release from activated T-cells. A
clinical proof of concept study (Clinicaltrials.gov identifier:
NCT0302577) was designed to study the effects of reducing the
levels of g-secretase cleaved solubleBCMA inMMpatients by using a
g-secretase inhibitor because soluble BCMA interferes with the
mechanism of action of BCMA-targeting bispecific antibodies.

Bispecific CD3xCD38 antibodies have also been developed (50,
51) and entered clinical trials in patients with relapsed or refractory
MM, such as AMG424 (NCT0344566) (51) and GBR1342
(NCT0330911). A CD38-reactive tri-specific antibody targeting
CD3 and CD28 co-receptors on T-cells has also been developed
to achieve augmented and sustained T-cell activation via CD28
engagement (52). A bispecific T-cell engaging CD3xCD307
antibody, named BFCR4350A, was developed targeting the
FcRH5/CD307 antigen (53) on MM cells and it is currently being
evaluated in a Phase 1 clinical trial (NCT03275103) (54).
FIGURE 2 | Bispecific Antibodies targeting MM cells. BsAB, bispecific antibody.
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Talquetamab is a GPRC5DxCD3 BsAB targeting the orphan G
protein-coupled receptor GPRC5D that is abundantly expressed on
MM cells. In a Phase 1 study in R/R MM patients testing both IV
and SC administration schedules (NCT03399799), the RP2D was
identified as 405 mcg/kg administered SC on a weekly basis (55).
The RP2D level was well tolerated and exhibited promising activity
with an overall response rate of 63%. CRS (79%), neutropenia
(64%), anemia (57%) and dysgeusia (57%) were the most common
treatment-emergent AEs. Furthermore, 7% of patients developed
neurotoxicity and 32% developed infections. The overall response
rate at the RP2D was 63% (55).
TARGETING CD123 ON MDSC

The a-chain of the IL-3 receptor, also known as the CD123 antigen,
is abundantly expressed onMDSC (20). Furthermore, CD123 is also
expressed on plasmacytoid dendritic cells (PDCs) that contribute to
the growth of MM cells as well as cancer stem-like cells and
osteoclast progenitors (56). Several biotherapeutic agents targeting
CD123 have been developed, including the CD123-directed
recombinant human IL3 fusion toxin Tagraxofusb (SL-401),
MoAbs, BsABs targeting CD123 antigen, such as bispecific T-cell
engagers (BiTEs), dual-affinity retargeting antibodies (DARTs),
bispecific killer cell engagers, and tri-specific killer cell engagers
(40, 57–59).

Targeting the BMME in MM with SL-401 has been shown to
reduce the viability of PDCs and inhibit PDC-induced MM cell
growth, impair the viability of CD123+ MM stem cells, and prevent
osteoclastogenesis in preclinical model systems (60). SL-401 is being
assessed in combination with standard of care in a clinical study
(NCT02661022) in relapsed/refractoryMMpatients with promising
early evidence of clinical activity (61, 62). Seroproteomics analysis of
MM patient serum samples reportedly showed a reduction of PDC-
derived soluble proteins in SL-401 treated patients (63).

CD123-targeting, CD3-engaging BsAB, such as Flotetuzumab
(59) and APVO436 (64) bring cytotoxic T-cells (CTLs) within close
vicinity of target CD123+ cells to create “cytolytic synapses” as a
short bridge between target cells and CTLs, triggering CTL
activation and destruction of targeted cells (Figures 2, 3). These
dual-function anti-MM drug candidates are currently in clinical
trials for treatment of CD123-expressing hematologic malignancies
with early clinical proof of concept for their ability to destroy CD123
+ malignant clones, including CRs in relapsed or refractory AML
patients (NCT02152956, NCT03647800). However, the clinical
potential of a CD123xCD3 bispecific antibody in MM therapy
may be limited as the bulk population of MM cells lack CD123 and
depletion of CD123+ MM stem cells alone is unlikely to be an
effective strategy for monotherapy. Therefore, clinical feasibility and
efficacy studies of combinations of CD123 targeting BsAB with
active anti-MM drugs such as pomalidomide that appeared to have
augmented activity in the presence of the anti-CD123 fusion toxin
tagraxofusp (3, 4, 8, 60), biotherapeutic agents, such as CD3xBCMA
BsABs, daratumumab, elotuzumab (4–7, 20), and CAR-T cells (4,
65) are needed to gain insights into the clinical impact potential of
CD123xCD3 BsABs.
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Notably, MDSCs have been shown to significantly suppress the
CTL engaging activity of a BCMAxCD3 BsAB, but the MDSC-
suppressed CTL activity could be restored by addition of a
hypomethylating agent (HMA) capable of epigenetically altering
the MDSC transcriptome via reversal of the aberrant DNA
methylation (66). Therefore, MDSC-targeting BsAB could be
potentiated by HMAs. It is noteworthy that a combination of the
CD123xCD3 BsAB APVO436 with azacitidine is being evaluated in
one of the cohorts in the ongoing expansion phase of a Phase 1B
AML study (NCT03647800).
CYTOKINE RELEASE SYNDROME (CRS)

CD3-engaging BsABs act as agonists and activate T-cells in the
presence of tumor cells expressing the target tumor-associated
antigen, which can lead to excessive T-cell activation with release
of inflammatory cytokines and development of the potentially life-
threatening systemic inflammation, known as cytokine release
syndrome (CRS) (67–71). For example, BsAB AMG330 binds
CD33 antigen on AML cells as well as MDSCs cells and CD3ɛ on
T-cells. In an open-label Phase 1 study (Clinicaltrial.gov identifier:
NCT#02520427), AMG330 was given at doses ranging from 0.5–
720 mg/d in the manner of continuous IV infusion among 55
patients with R/R AML (NCT02520427). AMG 330-related AEs
included CRS (67%; Grade ≥3 in 13%) as the most frequent AEs
(72). Similarly, CRS was observed in 63% of AML patients treated
with AMG673, a new version of AMG330 (Grade ≥3 in 18%;
Clinicaltrial.gov identifier: NCT03224819) (72). Flotetuzumab
(MGD006) is a bispecific, dual-affinity re-targeting (DART)
antibody reactive with both CD3 antigen on T-cells and CD123
antigen on AML cells and MDSCs. This CD3 engaging bispecific
antibody exhibited promising single agent activity in therapy-
refractory AML patients with primary induction failure as well as
patients with an early first relapse. CRS was observed in all AML
patients treated with Flotetuzumab (73) and 58% of AML patients
treated with Vibecotamab (XmAb14045), another CD3xCD123
BsAB (74). By comparison, only 10 of 46 patients (21.7%) treated
with the CD3xCD123 BsAB APVO436 developed CRS (64).

IL-6 is one of the driving pro-inflammatory cytokines that
contribute CRS and its pulmonary, cardiovascular, renal, and
neurologic complications (60, 64–71). Cytokine profiling in
patients who developed CRS after APVO436 infusion indicates
that the predominant cytokine in this inflammatory cytokine
response is IL-6, which agrees with our current knowledge
regarding CRS that occurs in the context of BsAB therapy (20, 60,
64–71, 75).Within 1-2 days following the first dose ofAPVO436, the
mean serumIL-6 concentration in thesepatientswhodevelopedCRS
was elevated 145-fold over baseline (755 vs 5.2) and at the end of one
week it was still elevated 83-fold over baseline. In most cases, CRS
events were transient and medically manageable with standard of
care including the use of dexamethasone and anti-IL-6:IL-6R
antibody Tocilizumab or anti-IL-6 antibody Siltuximab (antibody
against IL-6).However, CRS canbe life-threatening evenwith the use
of Tocilizumabor Siltuximab (60, 64–71). Therefore, development of
consistently effective preventionand treatment regimens againstCRS
November 2021 | Volume 11 | Article 760382
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remains an urgent and unmet medical need. Identification of such
regimens would further advance the field of immunotherapy. We
recently reported the robust anti-inflammatory activity of RJX in
animal models of CRS (76). RJX has been shown to block the
production of IL-6, TNF-a, as well as TGF-b and reverse
inflammation-induced tissue injury and multi-organ damage in
mouse models of sepsis and CRS (76). RJX is currently being
evaluated for its ability to prevent COVID-19 associated CRS in a
double-blind randomized clinical study (NCT04708340). Because of
its safety and easy use, RJX may emerge as an attractive adjunct to
BsAB platforms to mitigate the risk of severe CRS.
NEUROTOXICITY

Neurotoxicity is a treatment-emergent adverse event (AE) forBsABs,
and it is oftenassociatedwithCRS(77).The signs and symptomsvary
from patient to patient and include headache, tremor, confusion,
expressive and nominal dysphasia, impaired attention, apraxia, and
lethargy occurring as early and common manifestations (77–79).
Consensus grading criteria were developed by the ASTCT based on
the use of the Immune Effector Cell-Associated Encephalopathy
(ICE) screening tool (78). The CD19xCD3 BsAB blinatumumab has
beenreported tocauseneurotoxicity in70%ofpatientswithB-lineage
non-Hodgkin’s lymphomas (NHL). By comparison, it is less
common with CD20xCD3 or CD123xCD3 BsABs (80). In a recent
Frontiers in Oncology | www.frontiersin.org 5
Phase 1 dose escalation study of the CD123xCD3 BsAB APVO436,
APVO436-related transient neurotoxicity occurred only in 5 of 46
patients (10.9%). It occurredduring thefirst cycle in4of the5patients
and inCycle 8 in the remaining patient. It wasmildwithGrade 1AEs
including headache, tremor, dizziness, lethargy, insomnia, memory
loss, and confusion (64). A single case of Grade 3 confusion was
encountered on the first day of treatment and resolved within a day.
Neurotoxicity did not show any dose-dependence. Gender, race, age,
absolute lymphocyte count or percentage of lymphocytes in
peripheral blood did not predict neurotoxicity. Neurotoxicity
occurred in 3 patients who also experienced CRS and in 2 patients
who did not develop CRS (75). Conversely, of 10 patients who
developed CRS, 7 did not experience any neurotoxicity (75).
CONCLUSION

Recombinant T-cell engaging humanized BsABs redirect host T-cell
cytotoxicity in an target antigen-expressing cells in patients with
hematologicmalignancies. They can be used both for targeting drug-
resistant MM clones as well as the immune-suppressive cell
populations in the BMME (Figure 3). Dual targeting of drug-
resistant MM clones and immunosuppressive MDSC has the
potential to change the therapeutic landscape for MM and improve
the survival outcomes of high-risk as well as relapsed/refractoryMM
patients. The definition of optimal strategies for overcoming the
FIGURE 3 | Bispecific CD3xCD123 Antibodies For Dual Targeting of MM Stem Cells Clones and MDSC Cells in High-Risk MDS Patients. BsAB, bispecific antibody;
MM, Multiple myeloma; MDSC, Myeloid-derived suppressor cell. See text for a detailed discussion of the rationale of targeting the CD123 and CD38 antigens that
are expressed on both MM stem cell clones and MDSCs.
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immunosuppressiveBMMEinMMmayrequire randomizedclinical
studies with parallel cohorts and adaptive trial designs. CD3xCD123
BsAB have clinical impact potential in MM as they may help
treatment outcomes by blocking immune evasion via depletion of
CD123+ MDSC and by reducing the drug-resistant tumor load via
CTL-mediated MHC-independent destruction of MM stem cells.
Frontiers in Oncology | www.frontiersin.org 6
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