
STEM CELLS

Encouraging cartilage
production
A long non-coding RNA called GRASLND is essential to help stem cells

create stable cartilage.

H SCOTT STADLER

R
ecently watching a rerun of the 2016

Olympics gymnastics finals, I could not

help marveling at the way the joints of

the athletes could withstand so many gravity-

defying leaps, twists, and landings. These feats

are possible because the ends of our bones are

covered by articular cartilage, a smooth tissue

that allows fluid, pain-free movement. This tissue

is made by specialized cells secreting proteins

that trap water and form an extracellular matrix

which cushions joints.

When articular cartilage wears away, for

example in degenerative diseases such as osteo-

arthritis, movements become painful and quality

of life drops severely. Yet, these conditions are

increasingly common – in the United States

alone, it is predicted that more than 78 million

people could be affected by 2040

(Hootman et al., 2016).

Cartilage is not connected to the nervous sys-

tem or to blood and lymphatic vessels, which

means the tissue heals poorly when damaged.

Most therapies for osteoarthritis therefore work

by preserving the remaining cartilage or

preventing further loss. Once the cartilage is

lost, few interventions exist: surgeons can care-

fully damage the bone to promote the creation

of new tissue, they can graft bone and cartilage

obtained from a donor, or they can completely

replace the joints with artificial ones

(Steadman et al., 2001; Toh et al., 2014;

Bugbee et al., 2016; Migliorini et al., 2020).

However, these interventions may not be dura-

ble, and they are limited by factors such as the

availability of donor tissue and the age or health

condition of the patient.

Another, lab-based approach is to harvest

mesenchymal stem cells or chondroprogenitor

cells from patients, and then ’coax’ these to cre-

ate cartilage that can be implanted in the indi-

vidual (Migliorini et al., 2020). However, one

challenge associated with this method is the sta-

bility of the resulting cartilage: over time, it can

change into bone, reducing the function of the

repaired joint.

Long non-coding RNAs are molecules that

regulate an array of genetic events in the cell,

and it was reported recently that these sequen-

ces are essential to keep cartilage stable: for

instance, several long non-coding RNAs are acti-

vated in mesenchymal stem cells that produce

cartilage (Barter et al., 2017; Huynh et al.,

2019). Now in eLife, Farshid Guilak and col-

leagues – including Nguyen Hyunh as first author

– report having identified a long non-coding

RNA called GRASLND which encourages mesen-

chymal stem cells to produce molecules that

form cartilage (Huynh et al., 2020).

First, the team (which is based at Washington

University in St. Louis, the St. Louis Shriners
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Hospital, Duke University and Vanderbilt Univer-

sity) designed RNA molecules that were used to

deactivate GRASLND in mesenchymal stem

cells. As a result, the production of cartilage

decreased and these cells started to show a

molecular profile associated with

bone formation. These results demonstrate

that, in these cells, GRASLND is required to

maintain a cartilage-forming program (Figure 1).

Further experiments showed that GRASLND

interacts with EIF2AK2, a kinase that normally

inhibits a protein known as EIF2A, which triggers

a molecular cascade called the type II IFN-g sig-

naling pathway (Samuel, 1979; Platanias, 2005).

This pathway is essential for the immune system,

but some of its elements, such as a cytokine

called IFN-g, also help to stimulate bone forma-

tion (Duque et al., 2011).

When GRASLND binds EIF2AK2, it probably

stops this kinase from acting on EIF2A; this sup-

presses IFN activity while allowing the genes

that promote the production of cartilage to be

expressed (Figure 1B). On the other hand,

Hyunh et al. find that removing GRASLND is

associated with an increase in the expression of

genes under the control of IFN-g (Figure 1C). As

IFN-g promotes bone formation, these findings

explain why depleting mesenchymal stem cells

of GRASLND leads to more bone production.

Finally, Hyunh et al. used data mining to

show that, in diseased cartilage, genes regu-

lated by IFN are expressed more abundantly.

This suggests that IFN-signaling may be directly

responsible for the production of the abnormal,

bony nodules that are often present in osteoar-

thritic cartilage.

Figure 1. GRASLND helps mesenchymal stem cells to create cartilage by suppressing IFN-signaling. (A)

Exposing mesenchymal stem cells (MSCs) to the growth factor TGFb3 activates the expression of the Sox9 gene,

which triggers the production of a long non-coding RNA called GRASLND. (B) GRASLND binds to the kinase

EIF2AK2 (blue), which blocks the inhibitory phosphorylation of the protein EIF2A (green). This, in turn, promotes

the expression of ’prochondrogenic factors’ that encourage the production of molecules, such as proteoglycans,

which form cartilage; the cell is said to have a ’chondrogenic’ phenotype. (C) When GRASLND is depleted from

mesenchymal stem cells, the kinase EIF2AK2 probably phosphorylates EIF2A (represented here by the ‘-P*’). This

activates the Type II IFN-g response, which ultimately leads to a reduction in proteoglycan expression and a loss of

the chondrogenic phenotype. GRASLND: glycosaminoglycan regulatory associated long non-coding RNA; EIF2A:

eukaryotic translation initiation factor two alpha; EIF2AK2: EIF2A kinase; TGFb3: transforming growth factor beta 3.

Figure created using BioRender (BioRender.com).
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Overall, these results indicate that — at least

in vitro — GRASLND is an important modulator

of type II IFN-g signaling that is necessary for

cartilage differentiation. They also highlight that

this pathway may be involved in diseases of the

cartilage. If so, the interaction between

GRASLND and EIF2AK2 could be an important

pharmacological target. Exploring this possibility

will first require comparing the expression of

GRASLND in healthy and diseased cartilage.

GRASLND has only been found in primates,

but related long non-coding RNAs could be

identified in other species by spotting the motifs

that GRASLND needs to interact with EIF2AK2.

In turn, this knowledge could pave the way for

better animal models to study how this class of

long non-coding RNAs is involved in degenera-

tive joint diseases.
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