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Vadim Demichev,6 Hannah V. Meyer,1 James F. Wilson,3,4 Markus Ralser,6 Krzysztof Kiryluk,5 Andrea Ganna,2,7

Kenneth Baillie,3 and Tobias Janowitz1,9,*

SUMMARY

COVID-19 has highly variable clinical courses. The search for prognostic host fac-
tors for COVID-19 outcome is a priority.We performed logistic regression for ICU
admission against a polygenic score (PGS) for Cystatin C (CyC) production in pa-
tients with COVID-19. We analyzed the predictive value of longitudinal plasma
CyC levels in an independent cohort of patients hospitalized with COVID-19. In
four cohorts spanning European and African ancestry populations, we identified
a significant association between CyC-production PGS and odds of critical illness
(n cases=2,319), with the strongest association captured in the UKB cohort (OR
2.13, 95% CI 1.58-2.87, p=7.12e-7). Plasma proteomics from an independent
cohort of hospitalized COVID-19 patients (n cases = 131) demonstrated that
CyC production was associated with COVID-specific mortality (p=0.0007). Our
findings suggest that CyC may be useful for stratification of patients and it has
functional role in the host response to COVID-19.

INTRODUCTION

COVID-19 is caused by a single pathogen, severe acute respiratory coronavirus 2 (SARS-CoV-2), and re-

mains the main burden to global health with >500M cases and �6M deaths to date (Dong et al., 2020).

The clinical course of COVID-19 ranges from asymptomatic infection or mild viral pneumonia to acute res-

piratory distress syndrome (ARDS) necessitating hospitalization and respiratory support (Wiersinga et al.,

2020), potentially with fatal outcomes. Although variants with differing virulence are emerging (Wolter

et al., 2022), there is clear evidence that host factors are the most important determinant of outcome. Ac-

quired characteristics, such as increasing age, comorbidities (Zhou et al., 2020), and high body mass index

(BMI) (Gao et al., 2021) as well as inherited germline predisposition (Initiative, 2021; Pairo-Castineira et al.,

2021) are known to impact on risk for poor outcome.

Mild COVID-19 is associated with sustained upregulated type 1 IFN signaling, which correlates with symp-

tom severity (Brennan et al., 2022). In contrast, inappropriately attenuated early IFN signaling is a hallmark

of severe COVID-19 (Hadjadj et al., 2020; van der Wijst et al., 2021), potentially driven by germline loss-of-

function mutations in pathway components (Zhang et al., 2020b) or pre-existing anti-type 1 IFN autoanti-

bodies (van der Wijst et al., 2021). Incomplete innate antiviral responses cause prolonged viraemia

(Fajnzylber et al., 2020) and hyperactivated inflammatory response (Hadjadj et al., 2020; Zhang et al.,

2020a), termed cytokine release syndrome (CRS), which is thought to be a common pathway of critical

illness in COVID-19 (Moore and June, 2020). Glucocorticoids, such as dexamethasone, have highly pleio-

tropic immune suppressive effects including the inhibition of cytokine production and type 1 IFN signaling,

potentially explaining the benefits (RECOVERY Collaborative Group et al., 2021) and potential harms of

glucocorticoid treatment (Brenner et al., 2020), respectively.

We have recently reported that the production of cystatin C (CyC), a secreted protein routinely used as a

marker of renal function, is induced by glucocorticoid signaling (Kleeman et al., 2021). Using CyC and renal

function data in the prospectively collected UK Biobank (UKB) cohort, we determined the genetic basis of

the unmeasured (latent) trait CyC-production and validated a polygenic score (PGS) for CyC-production

(Kleeman et al., 2021). This CyC-production PGS was predictive and prognostic in a range of inflammatory

conditions, including cancer, potentially capturing inter-individual variation in endogenous glucocorticoid
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production (Kleeman et al., 2021). As a result, we hypothesized that CyC-production PGS might be asso-

ciated with adverse COVID-19 outcomes such as hospitalization, critical illness (such as ICU admission),

and death.

RESULTS

In four cohorts (UKB validation set, GenOMICC, FinnGen, Columbia) spanning European and African

ancestry populations, we identified a significant association between Z-scored CyC-production PGS and

odds of critical illness (Figure 1, p < 0.05, OR>1.20, Table S1), with the strongest association captured in

the UKB cohort versus population controls (OR 2.13, 95% CI 1.58–2.87, p = 7.12 3 10�7), reflecting approx-

imately a 2-fold increased odds of critical illness per one SD of CyC-production PGS. In UKB, we identified

an additional significant association between CyC-production and odds of hospitalization (OR 1.24, 95% CI

1.09–1.41, p = 0.00077). In the Columbia cohort of African ancestry participants, CyC-production PGS was

associated with significantly increased odds of hospitalization (OR 1.20, 95% CI 1.05–1.34, p = 0.0175) and

critical illness (OR 1.44, 95% CI 1.22–1.65, p = 0.000956). Age data were unavailable for the Columbia pop-

ulation controls (STAR Methods) and, in order to perform an age-adjusted analysis, we incorporated

ancestry-matched UKB controls (n = 2334) to independently test the significant association between

CyC-production PGS and ICU admission (Figure 1, OR 1.31, 95% CI 1.02–1.57, p = 0.053, Table S1). All other

analyses for non-critical illness phenotypes showed a consistent direction of effect (odds ratio >1), but did

not reach statistical significance (V).

We and others have reported that serumCyC is correlated with increased bodymass index and obesity (Klee-

man et al., 2021; Muntner et al., 2008), which are risk factors for adverse COVID-19 outcomes (Gao et al., 2021;

Initiative, 2021). To investigate whether the association between CyC-production PGS and COVID-19

morbidity is partly explained by BMI we repeated our analyses with BMI as an additional covariate, where

BMI data were available (UKB, FinnGen). In UKB the effect size for each clinical outcomewas only mildly atten-

uated by adjustment for BMI (Figure 1 and Table S1), and associations with hospitalization and ICU admission

remained significant. Unexpectedly, BMI adjustment abrogated the association between CyC-production

and ICU admission in the FinnGen cohort (OR 1.01, 95% CI 0.82–1.25, p = 0.163). Next, we investigated po-

tential reasons for this unexpected result. In FinnGen, BMI is recorded for approximately 70% of participants,

and so we hypothesized that there could be systematic differences between patients with BMI recorded

Figure 1. Forest plot logistic regression analyses for odds of critical illness as a function of Z-scored

CyC-production polygenic score (PGS)

All analyses were adjusted for age (except Columbia-vs-Columbia comparison), ancestry principal components, and sex.

Control populations comprised either mild-moderate COVID-19-positive patients or ancestry-matched population

controls. A mild-moderate COVID-19 control population was not available for the Columbia cohort. Critical illness refers

to ICU admission for all analyses except for the Columbia cohort where it reflects a composite outcome of death or

invasive respiratory support.
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versus those without. Although there was no evidence of population stratification between these groups (Fig-

ure S1), a genome-wide association study (GWAS) for BMI recording (yes/no) identified a large number of

highly significant loci (Figure S2), with the top signal in the HLA locus (rs3957146). This spurious heritability

is likely to be explained by a significant participant bias between groups (Pirastu et al., 2021), and implies

that the association between CyC-production and ICU admission is enriched in a specific subset of the pop-

ulation, potentially capturing a gene-environment interaction in the Finnish population.

While it has proven challenging to implement polygenic scores into routine clinical practice (Chatterjee et al.,

2016), CyC is a secreted protein that can be readily detected with validated clinical assays. We hypothesized

that the ratio of estimatedglomerular filtration rate (eGFR) calculated from creatinine (Inker et al., 2012), an alter-

native marker of renal function, to eGFR calculated from CyC (termed C2 ratio, a surrogate for CyC-production

as eGFR is inversely related to serum CyC/creatinine) would be associated with adverse COVID-19 outcomes.

We analyzed longitudinal plasma proteomics data, including the quantification of CyC, from a recently reported

(Demichev et al., 2021) cohort of 309 patients admitted to the Charité University Hospital, Berlin, Germany, of

which 131 patients had PCR-confirmed SARS-CoV-2 infection, clinical follow-up and paired serum creatinine

measurements. These patients were treated prior to the RECOVERY dexamethasone trial (RECOVERY Collab-

orative Group et al., 2021) and, therefore, did not receive steroids as part of their COVID-19management. Anal-

ysis of longitudinal patient data demonstrated that COVID-specific mortality was associated with progressive

elevations in the C2 ratio (Figure 2, p = 0.0007, t-test on linear regression coefficients). A C2 ratio >1 was

associated with a significantly increased risk of COVID-specific mortality in univariate (HR 3.01, 95% CI 2.28–

3.74, p= 0.0030) andmultivariate (HR 2.81, 95%CI 2.19–3.45, p = 0.0013) Cox regression, incorporating repeated

measures for each patient (if applicable) and accounting for their interdependence. Furthermore, a multivariate

analysis incorporating only the earliest timepoint (n = 126) for each patient replicated a significant association

between C2 ratio >1 and COVID-19 mortality (HR 2.74, 95% CI 1.14–6.58, p = 0.023).

DISCUSSION

In this study, we demonstrated through two entirely independent approaches that CyC is a relevant pre-

dictor of outcome in diverse populations of patients with COVID-19. We found that a PGS for CyC predicts

Figure 2. Dynamic longitudinal changes in creatinine-CyC (C2 ratio) during the first 50 days following admission

with PCR-confirmed SARS-CoV-2

Each line signifies repeated measures from a single patient, with the color signifying whether the patient was alive (gray)

or dead (red) at follow-up cut-off (December 2020). Data points are annotated with linear regression lines and 95%

confidence intervals.
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the risk of ICU admission in three independent cohorts and, in a fourth independent cohort, that increased

renal function normalized plasma levels of CyC are predictive of COVID-specific mortality.

CyC is used routinely as a passive marker of renal function, but varies in a renal function-independent

manner in the context of COVID-19. As such, eGFR estimates from CyC alone may be a confounded marker

of renal function in patients with COVID-19, consistent with recent reports (Liu et al., 2021). The biological

explanation of these observations remains incomplete but is likely to include CyC’s molecular function as a

potent inhibitor of cysteine proteases (Kopitar-Jerala, 2006), such as components of antigen presentation

pathways, and its role as a glucocorticoid response gene (Kleeman et al., 2021). Altogether, we propose

that CyC is both a predictive biomarker that could be readily implemented to risk-stratify patients with

COVID-19, but also a driver in the pathophysiology of COVID-19 and other inflammatory diseases.

Limitations of the study

This study has limitations. Our conclusions are based on a relatively small number of COVID-19 cases, neces-

sitating future largeprospective studies to interrogate thegeneralizability ofbothCyC-productionPGSand the

C2 ratio as prognostic markers for COVID-19 and other diseases. Analyses incorporating population controls

have the potential to increase power but implicitly assume that the overwhelmingmajority of the control group

wouldnot experiencean adverseoutcome if exposed toCOVID-19.However, this assumptiondoesnot appear

to confound genetic associations (Initiative, 2021). Although proteomics-basedmeasurements of CyC are suf-

ficiently accurate and precise our findings should be replicated using standard clinical CyC assays.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Ethical approval

B COVID-19 phenotype extraction

B UK biobank (UKB)

B GenOMICC

B Columbia COVID-19 biobank

B FinnGen

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Cohort genomic data quality control (QC)

B UKB matched controls
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the Lead Contact, Tobias Janowitz

(janowitz@cshl.edu).

Materials availability

The study did not generate any new reagents or materials.

Data and code availability

d Due to the data use agreements for the datasets analyzed in this manuscript, we are unable to directly

share or distribute any patient-level data. All summary statistics are published alongside the study, and

polygenic scores will be reposited on PGS Catalog on the acceptance of the peer-reviewed manuscript.

UK Biobank data can be requested through the application process detailed at https://www.ukbiobank.

ac.uk/.

d All code has been reposited on Github at https://github.com/Janowitz-Lab/cyc_covid.

d Where data use agreements allow, additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethical approval

All patient-based research in this analysis was performed in accordance to international and institutional

guidelines. UK Biobank obtained ethics approval from the North West Multi-Centre Research Ethics

Committee which covers the UK (approval number: 11/NW/0382) and obtained informed consent from

all participants. UKB data were accessed as part of this analysis under applications 58510, 19655 and

41849. The FinnGen study protocol was approved by the Ethical Review Board of the Hospital District of

Helsinki and Uusimaa (Nr HUS/990/2017). The FinnGen study is approved by the Finnish Institute for Health

and Welfare (THL), approval number THL/2031/6.02.00/2017, amendments THL/1101/5.05.00/2017,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

UK Biobank https://www.ukbiobank.ac.uk/

FinnGen https://www.finngen.fi/en/

GenOMICC https://genomicc.org/

Columbia COVID-19 Biobank https://www.vagelos.columbia.edu/research/

researchers/core-and-shared-facilities/new-

instruments-and-facilities/columbia-university-

biobank

Software and algorithms

PLINK https://www.cog-genomics.org/plink/

Hail https://hail.is/

R https://www.r-project.org/

KING https://www.kingrelatedness.com/

TOPMED https://imputation.biodatacatalyst.nhlbi.nih.

gov/#

MAMA https://github.com/JonJala/mama/
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THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019, Digital

and population data service agency VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3, the 5Social In-

surance Institution (KELA) KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019,

and Statistics Finland TK-53-1041-17. Access to FinnGen study data were obtained through a research pro-

posal with Dr. Andrea Ganna, a consortium partner of FinnGen and a co-author of the work, which granted

only sharing of results but not individual-level data sharing. The collection of samples to the Columbia Uni-

versity COVID-19 Biobank was approved by the Institutional Review Board (IRB) of Columbia University (IRB

protocol number AAAS7370), while the genetic analyses were approved under Columbia University IRB

protocol number AAAS7948. The GenOMICC study was approved by the appropriate research ethics com-

mittees in Scotland (15/SS/0110) and England, Wales and Northern Ireland (19/WM/0247).

COVID-19 phenotype extraction

For UKB, GenOMICC and FinnGen cohorts, the critical illness phenotype refers to patients with a docu-

mented admission to ICU. As this data does not exist for the Columbia cohort, we defined critical illness

as death from COVID-19 or treatment with invasive respiratory support.

UK biobank (UKB)

COVID-19 phenotype data were accessed as part of application 58510, which was registered for access to

COVID-19-specific data fields. COVID-19 test results (for England, Wales and Scotland), COVID-19 Hospi-

tal Episode Statistics (HES) for admissions, discharge destination and critical care admissions and COVID-

19 death certificate data were downloaded from the UK Biobank data portal on July 23rd 2021. These data

were processed to identify patients admitted to hospital with COVID-19 as the primary diagnosis (hospi-

talized outcome), patients admitted to ICU with COVID-19 (ICD10 code U07.1) as the primary diagnosis

(ICU outcome) and patients that died from COVID-19 (death outcome). The latter outcome included pa-

tients admitted with a primary diagnosis of COVID-19 who died during their admission (discharge destina-

tion code 11001) or where COVID-19 was listed as the primary cause of death. The mild-moderate control

cohort comprised patients with a positive COVID-19 test but without recorded hospital/ICU admission or

death. The population control cohort comprised patients without recorded positive COVID-19 test,

COVID-19-related admission or death.

GenOMICC

GenOMICC and ISARIC4C patients were recruited based on their admission to high-dependency or inten-

sive care units for continuous cardiorespiratory monitoring after testing positive for COVID-19. Presence of

SARS-CoV-2 particles was confirmed by local clinical testing. Phenotypic information with matched genetic

data, age, sex, confirmed COVID-19 diagnosis and first part of the participant postcode was available for

3,650 (74.4%) of the 4.906 unrelated European-ancestry individuals in the GenOMICC cohort. After exclu-

sion of participants in postcode-ascribed local authority regions with fewer than 50 individuals, 2,188 pa-

tients remained and were included in the analysis (see Supplementary Note).

Columbia COVID-19 biobank

The Columbia University COVID-19 Biobank was established in response to the New York City infection

surge in March 2020. The Biobank recruited COVID-19 cases (n = 1,166) of diverse ancestry among all pa-

tients who were treated at Columbia University Irving Medical Center between March and May 2020. All

cases were diagnosed by positive SARS-CoV-2 PCR test based on nasopharyngeal samples. Hospital re-

cord data were utilized to identify hospitalized cases (n = 1,067). We extracted a composite endpoint

capturing critical illness that comprised patients who died from COVID-19 or had severe respiratory failure

defined by intubation and requirement for invasive respiratory support (n = 496). Population controls are

derived from the same general patient population as the cases, and were genotyped as healthy controls

for other studies. Age data were unavailable for these population controls as these participants were fully

anonymized.

FinnGen

The FinnGen study combines electronic health records data from Finnish national health registries. These

include the infectious disease registry and data on all SARS-CoV-2 positive individuals included in FinnGen

Release 7 (n = 3,496). The data were collected from the register on May 27th 2021. ICU admitted COVID-19

cases were defined based on information on ICU admission or invasive ventilation (n = 165). Hospitalized
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cases were defined based on hospitalization information available in the register (n = 319). The COVID-pos-

itive control population comprised all the individuals not included in the previous two categories (n = 2835)

while population controls included all the individuals in FinnGen, excluding participants with a history of

COVID-19 infection (n = 305,996).

QUANTIFICATION AND STATISTICAL ANALYSIS

Cohort genomic data quality control (QC)

UK biobank (UKB)

UKB-provided measured genotype, imputed genotype (GRCh37, imputed data release 3) and phenotype

data73 was accessed as part of application 58510. For sample QCwe excluded subjects with sex chromosome

aneuploidy (field 22019), discordant genetic sex (fields 31 and 22,001), excess heterozygosity andmissing rate

(field 22,027). Genetic ancestry was classified as described previously (Kleeman et al., 2021). For all analyses

using imputed data, we filtered to variants with INFO score >0.8 and MAF >1% across whole cohort.

GenOMICC

GenOMICC and ISARIC4C individuals (data release 7) were genotyped using the Illumina Global Screening

Array v.3.0 and had their relatedness inferred using KING 2.1, as previously described (Pärn et al., 2018). For

brevity, the combined cohort is referred to as GenOMICC. Sample QC was performed by excluding sub-

jects with sex chromosome aneuploidy, discordant genetic sex, and SNP call rates <97%. Genotyped array

variants were filtered to have call rates of >99%, MAF >1%, and Hardy–Weinberg equilibrium (HWE) p R

10�6. Genome-wide SNPs were imputed using the TOPMed reference panel (Taliun et al., 2021). Excluding

all non-European ancestry samples, removing all but one of each set of related individuals (up to third de-

gree), and further excluding individuals who had withdrawn from the study, a total of 4,906 individuals had

complete genetic information in GenOMICC.

Columbia COVID-19 biobank

DNA of whole blood samples was extracted using standard procedures and genotyping was performed

using the Illumina Global Diversity Array (GDA) chip. The controls were genotyped using the IlluminaMulti-

ethnic Global Ancestry (MEGA) chip. The analysis of intensity clusters and genotype calls were performed

in Illumina Genome Studio software; all SNPs were called on forward DNA strand and standard quality con-

trol (QC) filters were applied, including per-SNP genotyping rate >95%, per-individual genotyping rate

>90%, minor allele frequency (MAF) > 0.01, and Hardy–Weinberg equilibrium (HWE) test p value > 10-08

in controls. The duplicates and cryptic relatedness in the given cohort were determined and excluded

based on the estimated pairwise KING kinship coefficients >0.0884. After QC, the dataset consisted of

6,757 individuals (1,029 cases and 5,728 controls) genotyped for 1,096,321 SNPs with overall genotyping

rate of 99.9%. The imputation analysis was performed using TOPMed imputation server. A total of

13,439,413 common markers imputed at high quality (r2 > 0.8 and MAF >0.01) were used in downstream

analyses. Genetic ancestry was then classified as described previously (Kleeman et al., 2021), followed

by joint PCA analysis to eliminate ancestry outliers, and to select controls closely matched to the cases

in the PCA space. The largest ancestry populations in the COVID-19 case cohort were Admixed American

(n = 542) and African (n = 220). We opted to focus on the African ancestry population as there were insuf-

ficient Admixed American participants (n = 707) in UKB to derive a modified ancestry-specific CyC-produc-

tion PGS (described below). The final case-control cohort comprised 220 African ancestry COVID-19

patients and 2,341 controls. Genetic analyses were approved under Columbia University IRB protocol num-

ber AAAS7948.

FinnGen

Chip genotype data processing and QC Samples were genotyped with Illumina (Illumina Inc., San Diego,

CA, USA) and Affymetrix arrays (Thermo Fisher Scientific, Santa Clara, CA, USA).

Genotype calls were made with GenCall and zCall algorithms for Illumina and AxiomGT1 algorithm for Af-

fymetrix data. Chip genotyping data produced with previous chip platforms and reference genome builds

were lifted over to build version 38 (GRCh38/hg38) as previously described (Pärn et al., 2018). In sample-

wise quality control, individuals with ambiguous gender, high genotype missingness (>5%), excess hetero-

zygosity (+-4SD) and non-Finnish ancestry were excluded. In variant-wise quality control variants with high

missingness (>2%), low HWE p-value (<1 3 10�6) and minor allele count, MAC<3 were excluded.
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UKB matched controls

GenoMICC

UKB genotype data were accessed as part of application 19,655. We included only White British individuals

(field 22,006), again removing all but one of each set of related individuals (up to third degree, field 22,021),

and further excluding individuals who had withdrawn from the study. A total of 336,015 individuals had com-

plete genetic information in UKB. Individuals with history of COVID-19 diagnosis (defined as above) or from

local authority districts with fewer than 50 participants were excluded, leaving a total of 330,227 individuals

(see Supplementary Note). Differences in genotyping and imputation between GenOMICC cases and UKB

control requires stringent QC to avoid confounding. For each cohort, we removed SNPs absent from the

CyC PGS as well as SNPs with HWE p < 10�6, MAF <1%, INFO <0.8, or call rates <99% using QCTOOL v2.

Taking forward the SNPs passing QC filters in both studies, we next excluded any SNPs with differences in

MAF larger than 10% between the two cohorts. The final dataset used for PGS calculation included

980,733 SNPs (95.08% of the original 1,031,528 PGS SNPs). Between GenOMICC and UKB, there were 75 in-

dividuals present in both cohorts. These were used to confirm there were no systematic differences in PGS

between cohorts, and then were then excluded from the UKB controls (see Supplementary Note).

Columbia COVID-19 biobank

For age-adjusted sensitivity analysis incorporating UKB population controls, UKB genotype data were ac-

cessed as part of application 41,849. Genetic ancestry was assigned as described previously (Kleeman

et al., 2021) and related subjects (>3rd degree using UKB-provided KING kinship estimates) were removed,

altogether identifying 8,152 unrelated African ancestry controls. We merged the genotyping data from the

UKB controls with the Columbia COVID-19 cases, keeping only the overlapping markers for downstream

analyses. We then performed joint PCA analysis to eliminate ancestry outliers, and to select controls closely

matched to the cases in the PCA space, leaving 217 cases and 2,334 ancestry-matched UKB controls. The

merged UKB-Columbia cohort was imputed using the TOPMed imputation server (Taliun et al., 2021). After

standard QC, a total of 10,704,006 common markers imputed at high quality (r2 > 0.8 and MAF >0.01) were

used in downstream logistic regression analyses.

Derivation and application of CyC-production polygenic scores

CyC-production polygenic score (PGS) was derived and validated as described previously (Kleeman et al.,

2021), using summary statistics from the UKB European (EUR) population, implemented in LDpred2 (Privé

et al., 2020). For African ancestry populations, we used a modified version of the CyC-production PGS to cap-

ture ancestry-specific linkage disequilibrium structure. To develop this modified score, we performed multi-

ancestry meta-analysis implemented in the ‘mama’ package for R, according to the package tutorial (https://

github.com/JonJala/mama/tree/mainline/tutorial). For this analysis, we provided eGFR-CyC and eGFR-Cr

summary statistics for EUR, Central and South Asian (CSA) and AFR populations in UKB, with GWAS per-

formed as described previously (Kleeman et al., 2021), implemented in BOLT-LMM (Loh et al., 2018). To

generate AFR-specific summary statistics for the CyC-production latent trait, we performed structural equa-

tion modeling using GenomicSEM (Grotzinger et al., 2019) as described previously (Kleeman et al., 2021). To

compute CyC-production PGS on a per-patient level, we utilized the PLINK2 linear scoring function (–score),

avoiding the exclusion of duplicate dbSNP IDs. The sample-level PGS was normalized by Z-scoring in each

cohort. For the primary UKB case-control analysis, we included subjects in a predefined held-out validation

cohort comprising 50,000 randomly selected unrelated (>3rd degree using UKB-provided KING kinship esti-

mates) European participants (Kleeman et al., 2021), which was not used for polygenic score derivation.

Logistic regression for adverse COVID-19 outcomes against polygenic score

Where data were available, we examined three relevant clinical outcomes (hospitalization, ICU admission

and death) using two ancestry-matched control populations (COVID-positive patients with mild-moderate

disease, or population controls), generating up to 6 analysis per cohort where data were available.

We modeled each binary clinical outcome as a function of Z-scored CyC-production PGS and relevant co-

variates (summarized in Table S1). The coefficients of the regression model were extracted to calculate the

odds ratio and 95% confidence interval for each outcome per standard deviation of CyC-production PGS.

GWAS for BMI recorded/not recorded in FinnGen

We performed a GWAS of having (n = 245,936) vs not having (n = 96,563) BMI recorded for the whole

FinnGen cohort. We ran association tests with SAIGE for each variant with a minimum allele count of
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5 from the imputation pipeline. We filtered the results to include variants with an imputation INFO >0.6 and

MAF >1%.

Quantitative proteomics analysis of plasma cystatin C

The Charité Hospital patient cohort, recruited as part of the Pa-COVID-19 study, has been described pre-

viously (Demichev et al., 2021). Briefly, patients with a PCR-confirmed diagnosis of SARS-CoV-2 infection

were eligible for inclusion in the study. Plasma sampling for plasma proteomics by mass spectrometry

was performed three times per week subsequent to inclusion. Sample processing, mass spectrometry

and data analysis were performed as described previously (Demichev et al., 2021), allowing for quantifica-

tion of plasma CyC levels in 309 patients. Out of these patients, 131 had available paired serum creatinine

for at least one timepoint, as well as clinical outcome data (COVID-specific mortality). For patients with at

least one creatinine measurement, missing data were imputed with the most recent value. Plasma CyC

levels were scaled by a factor of 300, so that the cohort mean was comparable to the mean serum CyC re-

corded in the UKB cohort (field 30720, units mg/L). For each patient, a creatinine-CyC (C2) ratio was calcu-

lated at each timepoint, using CKD-EPI eGFR equations with the race term set to 0. We performed Cox

regression for in-hospital mortality against C2 ratio, with age, sex, BMI, C-reactive protein and Charlson

comorbidity index as model covariates. To account for patient-specific factors where repeated measures

were included, the robust standard error term was included. The time interval corresponded to days

from blood sampling to death or follow-up cut-off date (December 2020).
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