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Diagnostic codes within electronic health record systems can vary widely in accuracy. It has been noted that the number of
instances of a particular diagnostic code monotonically increases with the accuracy of disease phenotype classification. As a
growing number of health system databases become linked with genomic data, it is critically important to understand the effect
of this misclassification on the power of genetic association studies. Here, I investigate the impact of this diagnostic code
misclassification on the power of genetic association studies with the aim to better inform experimental designs using health
informatics data. The trade-off between (i) reduced misclassification rates from utilizing additional instances of a diagnostic
code per individual and (ii) the resulting smaller sample size is explored, and general rules are presented to improve
experimental designs.

1. Introduction

Clearly, a wealth of important clinical information is con-
tained within large electronic health record (EHR) systems.
Such information can be an invaluable resource for measur-
ing disease prevalence [1] and disease comorbidity [2], the
association between birth month and disease susceptibility
[3], the prediction of outcomes [4], the measurement of eco-
nomic impact of health care [5], and the discovery of etiolog-
ical factors [6]. A key feature of these data is in the diagnostic
codes given by medical professionals to patient records.
However, the accuracy of inferring disease phenotypes from
electronic diagnostic codes can vary widely across diseases
and is often subject to high degrees of error [7–10]. These
studies have noted the substantial misclassification effects
from the use of electronic diagnostic code data, sufficient to
undermine experiments utilizing cases and controls defined
by the International Classification of Diseases (ICD) codes
alone. The ICD coding system is instituted by the World
Health Organization and has been adopted in the United
States by the National Center for Health Statistics. More

sophisticated approaches to disease classification, such as
those using a variety of EHR data and machine learning
methods, are difficult to generalize across all diseases and
implement in a high-throughput manner. That said, I
anticipate that machine learning methods applied to prob-
lems of phenotype prediction using EHR variables as fea-
tures in the predictive modeling will eventually supplant
the sole use of ICD code data. Until that time, the use of
ICD data may still have utility in initial screens, to be subse-
quently validated through methods with higher positive and
negative predictive values.

2. Related Work

In a general setting, the effect of phenotypic misclassification
on statistical power of genetic association studies has been
previously explored [11–14]. Edwards and colleagues charac-
terized the noncentrality parameter in asymptotic power dis-
tributions given the presence of phenotypic misclassification
[11]. The authors use cost functions to capture the effect of
misclassification and show that the cost of misclassifying a
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control as a case becomes large and the cost of misclassifying
a case individual as a control becomes small as the disease
prevalence becomes small. Similarly, Ji et al. also investigated
the calculation of a noncentrality parameter capturing
phenotype errors for subsequent use in a likelihood ratio
test for genetic association studies [12]. Later, Gordon and
colleagues showed how to incorporate misclassification error
rates into a trend test for genetic association in case/control
studies [13]. More recently, Manchia and colleagues investi-
gated the impact of heterogeneity within a clinical phenotype
on genetic association [14].

Considering ICD data with misclassification, the type I
and type II error rates for genomic association studies were
recently thoroughly explored by Duan et al. [15]. The Duan
et al. study found little inflation in false-positive rates, but
not in considerable false-negative rates under certain allele
frequency, effect size, and disease prevalence parameters. In
the context of initial screens of ICD codes in EHR systems,
several studies have investigated the relationship between
the number of instances of particular ICD codes and the
measures of diagnostic utility [1, 16–18]. In general, the accu-
racy of diagnoses improves with the number of instances of
the code; however, this is at the expense of smaller sample
sizes/increasing false negatives. Hence, there is a trade-off
between type I and type II error rates with the number of
ICD code instances used to define a disease. In this work, I
investigate this trade-off and provide a framework for deter-
mining highly powered EHR-based experimental designs
using diseases defined by different numbers of instances of
ICD codes.

3. Materials and Methods

For a large genetic association scan of using ICD data, define
a simple disease classification scheme such that cases are
those individuals with x instances of a particular ICD code.
Consider a design where individuals with ambiguous num-
bers of instances (i) of the code (i.e., 0 < i < x) are excluded
from the analysis. Further consider a comparison of well-
defined cases (i.e., those with at least x instances) against a
large, fixed set of controls. With regard to the genetics,
restrict the methods to biallelic markers with minor alleles
segregating in the population at a frequency of at least 1%
single-nucleotide polymorphisms (SNPs). Define the alleles
at a SNP contributing to the susceptibility of the disease as
A1 and A2. Let the relative risk of the minor allele, A2, be R,
such that R = P A2∣cases P A2∣controls −1. Let the fre-
quency of A2 in the general population be q. Accordingly,
1 − q is the frequency of A1. Define nx as the number of cases
obtained from the definition of having at least x instances of
the ICD code being evaluated. Set the number of controls as
m, such that m≫ nx. Assume that the A2 frequency in con-
trols is approximately q. Model the decrease in the misclassi-
fication proportion within cases as x increases with a
monotonic function f x , such that the expected number of
truly positive cases is nx 1 − f x . The form of f x may vary
considerably for different ICD codes. Lastly, let α be the
statistical threshold for determining a positive finding in
analyses where p value<α. The statistical test of genetic

association considered is the binomial test of proportions
which evaluates the null hypothesis of no correlation between
the frequency of A2 and the disease status.

Statistical power will be used to evaluate the impact of
increasing x and the resulting experimental design. Under
the model specified above, the power to detect association
at an autosomal SNP, 1 − β, is calculated by the approxima-
tion as follows:

Φ N q − s 2

q 1 − q + s 1 − s
− z1−α/2 , 1

where Φ is the standard Gaussian cumulative distribu-
tion function, z is the inverse standard Gaussian score,
N = 4nxm/nx +m, and q and s are the A2 frequencies
in controls and cases, respectively. Using Bayes’ theorem,
the expected frequency of A2 within cases under the misclas-
sification model is given by

s = f x q + Rq 1 − f x 1 + R − 1 q −1 2

To model the decrease in the misclassification rate with
increasing numbers of ICD code instances, consider the
simple decay function for f x :

f x = 1 − δ x, 3

where δ is the parameter that can be estimated for each
ICD code. Similarly consider the following form for nx
as a function of nx=1 to model the reduction in the number
of cases defined by using increasing numbers of instances
of an ICD code:

nx = nx=1 1 + ε −x , 4

where ε is the parameter that captures the rate of decline in
case numbers as the definition for case status becomes more
stringent with the use of larger numbers of ICD code
instances and can also be estimated for each ICD code. The
machinery is now in place for the calculation of statistical
power to detect disease association at a genetic marker using
data from linked ICD coding systems.

4. Results and Discussion

The above model is used to conduct an exploration of the
impact of ICD code definitions on power. To obtain a value
of x which maximizes power to detect genetic association,
one can numerically solve the following differential equation
for x:

∂
∂x

N q − s 2

q 1 − q + s 1 − s
= 0 5
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The solution to (5) can be solved through standard
numerical methods applied to solving

nx=1 1 − δ 2 − 1 q − 1 R − 1 2 F1F2ln 1 − δ

+ F3 F4 − F5 ln 1 + ε = 0,
6

where

F1 = − 1 − δ x 1 + ε xm + nx=1 q R − 1 + 1 ,
F2 = 1 − δ x + 2q R − 1 1 − δ x + 1 + R − R 1 − δ x + 3,
F3 =m 1 + ε x 1 − δ x − 1 ,
F4 = 1 − δ x + 1 + 1 − δ 2x + 1 q2 R − 1 2 + R − R 1 − δ x,
F5 = q R − 1 R 1 − δ x 1 − δ x − 1 − 1 − δ x

− 1 − δ 2x − 2
7

The closest integer value to the value of x that solves this
continuous equation can be used to optimize the power
for a given set of parameters. To exemplify the use of this
approach, let m = 10 000, nx=1 = 400, R = 2, q = 0 20, δ =
0 15, and ε = 0 15. Call this set of parameters the baseline
model. x = 7 2265 solves the differential equation. There-
fore, using seven instances of an ICD code will yield the
optimal design weighing the trade-off between the case
sample size and the misclassification. For that set of

parameters, Figure 1 shows the power curve for this set
of parameters.

To investigate the power curves, varying the baseline
number of cases (nx=1), the calculations were performed as
the nx=1 varied from 100 to 800. Visual inspection shows
the peak of power at approximately 7 instances. Figure 2
shows the results.

Next, to determine the role of the δ and ε parameters on
the power curves, the calculations were performed fixing the
other parameters. Figures 3 and 4 display these results.

5. Conclusions

Genetic data linked to longitudinal electronic health records
can serve as a very useful tool in modern disease genetics.
However, misclassification present in ICD coding systems
can severely hamper large-scale screens using those codes
for the purpose of genetic association studies. This work
has described a simple approach to better understand the
impact of misclassification present in EHR systems for the
purpose of optimizing experimental designs that screen
numerous ICD codes in genetic association studies. Under
the mathematical models considered, the methods offer an
approach to select the number of instances of an ICD code
for the purpose of defining cases and obtaining an optimal
experimental design for the identification of genetic markers.
Additional work is needed in this area to improve disease
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Figure 1: Statistical power versus ICD code instances, baseline
model. From the mathematical model specified, power was
calculated using the set of parameters from the baseline model.
The results show the trade-off between the sample size,
misclassification rates, and statistical power to detect genetic
association. For the baseline model, the peak of power occurs
when the number of instances is 7.
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Figure 2: Power versus ICD code instances, effect of varying nx=1.
The baseline level was used to generate this figure with the
exception of nx=1, which varied from 100 to 800, and the resulting
power was calculated for each number of ICD instances.
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classification schemes for genetic association studies as well
as for other investigations.
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Figure 4: Power versus ICD code instances, effect of varying delta.
To explore the effect of the delta parameter on the power
calculations, the baseline model was modified to include values of
delta from 0.01 to 0.30. The power to detect genetic association
was calculated across these delta parameter values.
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Figure 3: Power versus ICD code instances, effect of varying
epsilon. The epsilon parameter varied in the baseline model from
0.01 to 0.30, and the power to detect was subsequently calculated.
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