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Abstract

Background

Dengue virus causes a wide spectrum of disease, which ranges from subclinical disease to

severe dengue shock syndrome. However, estimating the risk of severe outcomes using

clinical presentation or laboratory test results for rapid patient triage remains a challenge.

Here, we aimed to develop prognostic models for severe dengue using machine learning,

according to demographic information and clinical laboratory data of patients with dengue.

Methodology/Principal findings

Out of 1,581 patients in the National Cheng Kung University Hospital with suspected dengue

infections and subjected to NS1 antigen, IgM and IgG, and qRT-PCR tests, 798 patients

including 138 severe cases were enrolled in the study. The primary target outcome was

severe dengue. Machine learning models were trained and tested using the patient dataset

that included demographic information and qualitative laboratory test results collected on

day 1 when they sought medical advice. To develop prognostic models, we applied various

machine learning methods, including logistic regression, random forest, gradient boosting

machine, support vector classifier, and artificial neural network, and compared the perfor-

mance of the methods. The artificial neural network showed the highest average discrimina-

tion area under the receiver operating characteristic curve (0.8324 ± 0.0268) and balance

accuracy (0.7523 ± 0.0273). According to the model explainer that analyzed the contribu-

tions/co-contributions of the different factors, patient age and dengue NS1 antigenemia

were the two most important risk factors associated with severe dengue. Additionally, co-

existence of anti-dengue IgM and IgG in patients with dengue increased the probability of

severe dengue.
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Conclusions/Significance

We developed prognostic models for the prediction of dengue severity in patients, using

machine learning. The discriminative ability of the artificial neural network exhibited good

performance for severe dengue prognosis. This model could help clinicians obtain a rapid

prognosis during dengue outbreaks. However, the model requires further validation using

external cohorts in future studies.

Author summary

Dengue virus infects millions of people annually and is associated with a high mortality

rate. When outbreaks occur, hospitals are often overcrowded with patients. Thus, novel

approaches are required to accelerate patient triage for hospitalization, or further intensive

care. Machine learning is being widely applied for resolving various problems, including

medical diagnosis and outcome prediction. Here, we combined information from patients,

including age, sex, and rapid virus test results, to develop a machine learning model for

severe outcome prediction. The developed machine learning model displayed good perfor-

mance for severe dengue disease prediction, and all information required for the model

could be easily obtained. We also found that patients who were over 60 years old, who had

detectable nonstructural protein-1 from dengue virus, or who had both detectable anti-

dengue IgM and IgG antibodies in their sera, had a greater risk of progression to severe

dengue. This study established a new approach to predict dengue disease outcomes by

applying machine learning and defined the risk factors for severity prediction.

Introduction

Dengue virus (DENV) causes more than 90 million acute infection cases and 0.5 million fatali-

ties worldwide each year [1]. Dengue disease is an acute febrile disease caused by the DENV,

which is transmitted from mosquitos to humans [2]. Most patients present with acute dengue

fever, and approximately 5–20% of patients progress to severe dengue with bleeding, plasma

leakage, shock, organ failure, and even death [3]. Four serotypes of DENV, including DENV-1

to DENV-4, have recently circulated in tropical and subtropical regions around the world [4].

Although robust antibody responses have been detected in individuals who have recovered

from primary DENV infections, these antibodies only have the capacity to prevent re-infection

by the same serotype (homologous serotype). Thus, individuals remain susceptible to a second

infection with a different serotype (heterologous serotype), and re-infection by heterologous

serotypes is known to increase the risk of severe dengue disease through antibody-dependent

enhancement (ADE) of DENV [5]. Thus, the antibody response to DENV infection is both

beneficial and harmful to the host.

Virological and serological methods, including testing for viral RNA, DENV nonstructural

protein 1 (NS1) antigenemia, anti-dengue IgM, and antigen-dengue IgG, have been widely

applied in the diagnosis of DENV infection. DENV viremia occurs for 3–5 days prior to fever

onset and continues for approximately 5 days into febrile illness [6]. During viremia, viral

RNA and NS1 antigen can be detected in serum or plasma samples from infected patients.

Among these markers, NS1 antigen is a widely applied marker in rapid diagnosis owing to its

abundance along with viral RNA on the day of disease onset in patient serum. In addition to

viral RNA and NS1 antigen, the presence of anti-dengue IgM and IgG antibodies is also
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commonly evaluated following dengue viremia [6]. In primary DENV-infected patients, anti-

dengue IgM antibodies gradually increase after the day of disease onset, and anti-dengue IgG

antibodies increase after IgM antibody increases. During secondary DENV infection, anti-

dengue IgM and IgG antibodies simultaneously increase after viremia [7]. Since viral RNA

and NS1 antigenemia may not be detectable in patient’s serum after the acute febrile phase,

either the presence of anti-dengue IgM or the elevated amount of anti-dengue IgG antibodies

can be used as markers to diagnose dengue infection.

After identifying individuals who are infected by DENV, evaluating their risk of developing

severe dengue becomes the key factor for disease control. Clinical presentation combined with

the results of laboratory blood tests have generally been used as markers of dengue severity

prognosis [8]. According to clinical presentation, the World Health Organization (WHO)

announced improved criteria in 2009 [8]; based on these criteria, patients can be divided into

three categories, i.e., dengue fever without warning signs, dengue with warning signs, and

severe dengue. The warning signs of mild dengue disease include high fever, severe headache,

pain behind the eyes, muscle and joint pain, nausea, vomiting, swollen glands, and skin rash.

Patients with severe dengue further present with severe abdominal pain, persistent vomiting,

rapid breathing, bleeding gums, fatigue, restlessness, and hematemesis. In addition to clinical

manifestations, other markers, such as high fever, platelet depletion, comorbidities, secondary

infections, hemoconcentrations, rhabdomyolysis, prolonged prothrombin time, virus sero-

types, and increased viral antigen NS1 levels, have been reported to be associated with

increased severity in dengue patients [9–13]. These warning signs and identified risk factors

have been applied for the evaluation of the severity of dengue; however, the time required to

perform additional laboratory blood tests with advanced medical devices makes it difficult to

rapidly triage patients with a high risk of severe dengue for further medical treatment or hospi-

talization [14]. Hence, a more efficient prognostic tool is urgently required, particularly for

application during major dengue outbreaks.

Artificial intelligence has recently attracted much attention in various fields of health and

medicine. Different artificial intelligence and machine learning (ML) methods have been

applied for various purposes, including image recognition, patient phenotyping, and outcome

prediction for diseases such as cancer [15–19], cardiac arrest [20], Alzheimer’s disease [21–23],

respiratory diseases [24,25], rheumatic diseases [26], cornea and retinal diseases [27,28], gas-

trointestinal diseases [29,30], and infectious diseases [31–35]. These studies revealed that artifi-

cial intelligence has the capacity to assist clinicians in the disease diagnosis with high efficiency

and accuracy. The advantages of artificial intelligence include improved medical treatment of

patients and reduced duration of diagnosis after patients are examined using medical imaging

or laboratory tests. However, very few artificial intelligence-based approaches or ML methods

have been developed to predict dengue severity thus far [36]. Accordingly, in this study, we ret-

rospectively established a rapid prognosis system for severe dengue using an ML approach

according to rapid diagnostic test results and demographic characteristics of the patients.

Since rapid diagnostic tests are performed when patients are suspected to be infected with

DENV, these test results along with patient demographic information are available without the

requirement of additional tests.

Methods

Ethics statement

All demographic and clinical data were anonymized and de-identified prior to analysis; thus,

informed consent was waived. The waiver was approved by the Institutional Review Board of

National Cheng Kung University Hospital (approval no. B-ER-107-224).
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Demographic and clinical characteristics of patients with dengue

Demographic information and laboratory test results for patients with dengue were obtained

from our previous study [37]. Suspected DENV-infected patients were enrolled at National

Cheng Kung University Hospital between July and November 2015. Among these patients, 798

for whom all demographic information and laboratory test results were available, including dis-

ease severity, age, sex, viral RNA copies, NS1 antigen, anti-dengue IgM, and anti-dengue IgG,

were enrolled in this study. Additional molecular tests for DENV serotyping were performed,

and all patients in this study were confirmed to be infected with DENV-2. Patients were catego-

rized as having mild or severe dengue by clinicians before hospital discharge (inpatients) or by

the Taiwan CDC dengue surveillance system in the severe case report (outpatients), according

to the 2009 WHO diagnostic criteria for severity. In brief, patients with mild dengue typically

develop high-grade fever that is often accompanied by facial flushing, skin erythema, generalized

body ache, myalgia, arthralgia, headache, anorexia, nausea, and vomiting, and some of these

patients may have sore throat, injected pharynx, and conjunctival injection. The liver is often

enlarged and tender after a few days of fever. The following criteria were used to categorize cases

as severe dengue: severe plasma leakage, severe bleeding, or severe organ involvement.

Clinical specimens

Serum samples from patients with suspected DENV infection were collected at the Clinical

Virology Laboratory of National Cheng Kung University Hospital (NCKUH) between July

and November 2015. Samples were screened using one-step immunochromatographic Dengue

DuoDengue NS1 Ag + Ab Combo assays (SD BIOLINE, Yongin, Republic of Korea) according

to the manufacturer’s instructions for qualitative antigen and antibody detection. For estimat-

ing DENV viral loads, viral RNA copies were amplified using LightMix dengue virus EC quan-

titative reverse transcription polymerase chain reaction, as previously described [37]. In brief,

viral RNA was extracted from serum samples and an extraction control sample using QAIamp

viral RNA mini kit (Qiagen, Venlo, Netherlands) or the automated extraction system, Lab-

Turbo Virus mini Kit within the LabTurbo 48 Compact System (Taigen BioscienceCorp., Tai-

pei, Taiwan). qRT-PCR analysis of viral loads was performed using LightMix dengue virus EC

kit (qRT-PCR; TIB Molbiol, Berlin, Germany), which is capable of identifying all four dengue

serotypes. cDNA was generated from the RNA samples using a FirstStrand cDNA Synthesis

kit (Roche, Basel, Switzerland) and a DENV-specific primer included in the LightMix dengue

virus EC kit. The qRT-PCR assay was then performed in a LightCycler 2.0 or LightCycler 480

II device (Roche, Basel, Switzerland), according to the manufacturer’s instructions. The Light-

Mix dengue virus EC kit provides cloned dengue DNA at concentrations of 101 to 106 copies/

reaction as standards. The cycle number of the Crossing Point (Cp) of each sample was calcu-

lated automatically by the Second Derivative Maximum method (Automated (F" max)) using

the LightCycler software. A logarithmic transformation was applied to all resulting data. The

amount of virus per sample (viral load) was reported in copies/reaction, as automatically gen-

erated by the LightCycler software.

Statistical and descriptive analysis

To identify the characteristics that contribute to disease severity, we analyzed the contribution

of demographic information and laboratory test results of DENV-2 infected patients. Both age

and viral RNA amount were compared using Student’s t-test. Categorical characteristics,

including sex, DENV NS1, anti-DENV IgG, and anti-DENV IgM test results, were compared

with DENV disease severity using the Chi-squared test of independence. We further per-

formed multivariate logistic regression (LR) to evaluate the association of demographic
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information (age and sex) and clinical test results (NS1, IgM, IgG) with the prognosis of severe

dengue using R version 3.4.4. To analyze the age variable more intuitively, we further catego-

rized age into two groups. As the average age among patients was 55.8 years, we chose 50 years

as a cut-off to categorize cases for multivariate logistic regression analysis. We determined the

univariate and multivariate-adjusted odds ratio (OR) and 95% confidence interval (CI) for

each factor to predict severity using LR. The factors that exhibited P< 0.05 from this analysis

were considered significantly associated with severe dengue.

ML models and preprocessing

The ML models and preprocessing strategy were adapted from a previous report by Nanayak-

kara et al. [20]. We used LR, support vector machine (SVM), random forest (RF), gradient

boosting machine (GBM), and artificial neural network (ANN) methods, which are commonly

used for binary classification questions in medicine, to establish patterns for distinguishing

severe cases from mild cases [20]. Briefly, RFs first established multiple decision trees and gen-

erated various divisions of the data to retrieve an output [38]. Decision trees selected these

divisions based on minimizing impurity. Similar to RFs, GBMs first trained the models in a

gradual, additive, and sequential manner and collected weak decision trees [38]. Through a

process of iteratively training new models to improve the weakly classified observations of the

previous models, GBMs assembled these models together and made predictions. SVMs created

a line or a hyperplane to divide the data into different classes to address the predictions [38].

Through imitating biological neurons of the human brain, the ANN method then established

multiple hidden layers of neurons that link inputs to the output neuron [39]. Models were

then constructed using open-source software and its libraries, including Scikit-learn 0.22.2

[40], Tensorflow 2.0.0 [41], and Python 3.6.10 [42].

To validate the prognosis performance of the models, we used a stratified 10-fold cross-vali-

dation approach with training and testing datasets. In this approach, the original sample was

randomly partitioned into 10 equal size subsamples. Of the 10 subsamples, a single subsample

was retained as the validation data for testing the model, and the remaining 9 subsamples were

used as training data. The folds were selected so that each fold contains roughly the same pro-

portions of severe and mild case labels. In a 90% and 10% training-testing set, each subsample

contained 80 cases, including 14 severe dengue cases. We then repeated this process 10 times

(the folds), with each of the 10 subsamples being used the validation data, exactly once. In each

instance of partition, the remaining training data was used to develop the prognosis model. To

fine-tune the parameters of the prognosis model, we used either grid or random hyperpara-

meter searches to search for optimal hyperparameters for each model by another stratified

10-fold cross validation process using the training data. A broad range of hyperparameters was

applied in the parameter search, and the area under the receiver operating characteristic curve

(AUROC) was referred to as the optimization metric. The AUROC of the model was assessed

using the logarithmic loss function. The age variable was normalized by 100 to yield values

between 0 and 1. Feature normalization is beneficial for improving the numerical stability of

the model and often reduces training time because similar ranges of values help to quickly con-

verge the gradient descents during model training. The performance of the established models

was validated by receiver operating characteristic (ROC) curves, which summarized the trade-

off between the true- and false-positive rates, and the AUROC was calculated to validate the

performance of the established models. We also compared the performance of the models bal-

ance accuracy values based on the average recall obtained on severe and mild case groups. The

10 AUROC and balance accuracy values from each fold were then averaged for model perfor-

mance validation.
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Model explanation methodology

To identify potentially relevant features on a per-patient basis, we assessed explainability using

SHapley Additive exPlanations (SHAP). This method has been previously described in detail

[43] and connects game theory with local explanations, uniting several previous methods.

Briefly, SHAP generates a locally interpretable model for individual prediction from a complex

model using an explainer method that combines the inputs together to evaluate the effects on

the predictive model. Assessing how the ML model makes predictions is essential, particularly

for predictive models with good performance; however, the ML model often achieved good

performance by using complex models, which are difficult to explain. Thus, to explain the

developed ANN model, we applied the SHAP model explainer [43], which is a unified frame-

work to interpret predictions generated by our model. In the model explanation, we used a

stratified holdout approach by randomly partitioning patients into subsets with 90% and 10%

of training and testing datasets, with the same proportion of severe and mild cases in training

and testing datasets. The training dataset was used to establish the ANN with hyperparameter

tuning via stratified 10-fold cross validation. The testing dataset was analyzed using the SHAP

explainer, which illustrated the output of ML models by assigning an importance value (the

SHAP value) to each feature for prediction. This also included the identification of a new class

of additive feature importance measures as well as theoretical results. The SHAP explainer

could interpret for all predictions, whether each feature increased (SHAP value > 0) or

decreased (SHAP value< 0) the potency for different classification results. Additionally, the

SHAP explainer improved computational performance and consistency with higher local

accuracy than other model explainer approaches [43]. The summary plot demonstrates how

the SHAP values vary along with the feature values (age) and the designated values (NS1, anti-

DENV IgM, and anti-DENV IgG: positive as 1 and negative as 0; sex: male as 1 and female as

0). The dependence plot reveals the combined effects of two features on the SHAP values. In

the dependence plots, features that were most strongly associated with each other were paired

as a “feature pair” for which the combined effects on disease severity prognosis were

examined.

Results

Statistics and machine learning models using demographic information

and laboratory test results

To develop a rapid prognostic model to predict severe dengue, we retrospectively analyzed the

profiles of DENV-infected patients from the 2015 Taiwan outbreak. Among 798 recruited

patients, 17.4% (138) of cases had severe dengue, and 82.6% (660) of cases had mild dengue.

Patients with DENV were evaluated for presence of DENV NS1 antigen, anti-DENV IgG,

anti-DENV IgM, and viral RNA in serum samples.

To identify the characteristics associated with disease severity that should be included as

features of the prognostic model, we first analyzed association of the characteristics, including

age, sex, DENV NS1 antigen, viral RNA amount, and anti-DENV IgG and IgM antibodies,

with the severity of dengue (Table 1). The results indicated that patients with severe dengue

were significantly older than patients with mild dengue (median age: 75 versus 55 years,

respectively; p< 0.001). Additionally, more severe cases exhibited detectable DENV NS1 anti-

gen (94.9% versus 74.2%, respectively; p< 0.001), anti-DENV IgG antibody (30.2% versus

23.6%, respectively; p< 0.001), and anti-DENV IgM antibody (25.8% versus 24.3%, respec-

tively; p = 0.008) compared with mild cases in serum samples collected on day 1 when they

sought medical advice in our hospital during acute febrile illness. In contrast, neither patient

PLOS NEGLECTED TROPICAL DISEASES Prognosis of severe dengue based on machine learning

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008960 December 23, 2020 6 / 19

https://doi.org/10.1371/journal.pntd.0008960


sex nor viral RNA amount in serum was significantly associated with disease severity. In sum-

mary, patient characteristics, including age, serum DENV NS1 antigen, and anti-DENV IgG

antibody levels, were associated with disease severity in DENV-2-infected patients. This

implies that characteristics may be good predictors of disease severity

To develop a prognosis model for rapid triage, we next excluded viral RNA amount, which

result have to be retrieved with need for advanced medical instrument, and applied the patient

demographic characteristics, and their laboratory test results, including age, sex, DENV NS1

antigen, anti-DENV IgG antibody, and anti-DENV IgM antibody for model development.

First, we used the multivariate LR method to assess the impact of clinical and virological/sero-

logical laboratory characteristics on DENV disease severity (Table 2). Among the evaluated

characteristics, age over 50 years (univariate OR: 7.22, 95% CI: 4.14–13.66; multivariate-

adjusted OR: 7.58, 95% CI: 4.28–14.54; p< 0.001) and presence of NS1 (NS1 +) in the serum

(univariate OR: 7.63, 95% CI: 3.60–19.74; multivariate-adjusted OR: 10.07, 95% CI: 4.61–

26.58; p< 0.001), were the two major risk factors for severe DENV disease.

In addition to the multivariate LR method, we established ML models to predict the proba-

bility of patients progressing to severe dengue. The ML approach used diverse computational

methods capable of incrementally building an accurate data model according to a measure of

how well the model supported a given task, which may be applied for diagnosis classification

in medicine. We thus utilized various ML methods, including LR, SVM, RF, GBM, and ANN,

to establish models for severe dengue prognosis (Table 3). In addition to model development,

we searched the hyperparameters to fine-tune each ML method for severity prognosis with

high prognosis performance.

To evaluate whether the ANN model was not overfitting and thus generalized to unseen

data, we used a 10-fold cross-validation scheme to assess the performance of the models (Fig 1

and Table 3). The performance values of the model are not single iterations; they are the aver-

ages across ten validations of the 10-fold cross-validation process. The ANN classified the clin-

ical outcomes of patients with slightly higher AUROC (0.8324 ± 0.0268) and balance accuracy

(0.7523 ± 0.0275), compared with the LR, SVM, RF, and GBM methods (Table 3). Thus, the

Table 1. Demographic information and laboratory test results of DENV-2-infected patients. Age is reported as the median with interquartile range shown in square

brackets. The viral RNA amount is reported as the mean with standard deviation in parentheses. For the remaining variables, the percentages of total number of patients

are given in parentheses.

Characteristics Severe dengue (n = 138) Mild dengue (n = 660) P value

Age (years) 75 [68–79] 55 [35–71] < 0.001

Male sex 76 (54.6%) 342 (51.8%) 0.486

DENV NS1 positive 132 (94.9%) 490 (74.2%) < 0.001

Viral RNA amount (copies/140 μL serum) 1.72 × 107 (4.93 × 107) 1.03 × 107 (3.97 × 107) 0.123

Anti-DENV IgG positive 42 (30.2%) 156 (23.6%) < 0.001

Anti-DENV IgM positive 36 (25.8%) 161 (24.3%) 0.008

https://doi.org/10.1371/journal.pntd.0008960.t001

Table 2. Multivariate logistic regression model of clinical and laboratory diagnosis characteristics for dengue virus type 2 infection.

Characteristic Severe (n = 138) Mild (n = 660) Univariate OR (95% CI) P value Multivariate-adjusted OR (95% CI) P value

Age� 50 years 377 125 7.22 (4.14–13.66) < 0.001 7.58 (4.28–14.54) < 0.001

DENV NS1 positive 176 622 7.63 (3.60–19.74) < 0.001 10.07 (4.61–26.58) < 0.001

Anti-DENV IgM positive 36 161 1.09 (0.71–1.65) 0.68 1.37 (0.82–2.28) 0.22

Anti-DENV IgG positive 42 156 1.41 (0.94–2.11) 0.09 1.15 (0.70–1.87) 0.57

Male 76 342 1.14 (0.79–1.65) 0.49 1.11 (0.75–1.65) 0.61

https://doi.org/10.1371/journal.pntd.0008960.t002
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Table 3. Comparison of machine learning and deep learning models by 10-fold cross-validation for disease severity prediction in dengue virus type 2 infection.

Values Logistic

regression

Support vector

machine

Random forest Gradient boosting

machine

Artificial neural

network

Area under receiver operating characteristic curve

(AUROC)

0.8152 ± 0.0718 0.8233 ± 0.0624 0.8187 ± 0.0543 0.8104 ± 0.0594 0.8324 ± 0.0268

Balance accuracy 0.5425 ± 0.0468 0.7485 ± 0.0688 0.5448 ± 0.0543 0.5867 ± 0.0712 0.7523 ± 0.0273

Values are shown as mean ± standard deviation.

https://doi.org/10.1371/journal.pntd.0008960.t003

Fig 1. Comparing receiver operating characteristic curves of machine learning methods with 10-fold cross-validation. Mean receiver

operating characteristic curves of prognostic models established using machine learning methods are displayed in the indicated colors.

https://doi.org/10.1371/journal.pntd.0008960.g001
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cross-validation results of our prognostic models for dengue disease severity revealed that utili-

zation of the ANN method yielded a model with good prediction performance, as well as high

AUROC and balance accuracy values. Ideally, a prognostic system should use readily available

data for decision-making [20]. In the large 2015 Taiwan outbreak, we applied the rapid SD

BIOLINE Dengue Duo kit for dengue diagnosis, and the results of NS1, IgM, and IgG were

available within hours for patients in the emergency department of our hospital [37]. Since all

of the characteristics used in the prognostic model, including age, sex, NS1 antigen, anti-

DENV IgM, and anti-DENV IgG, could be evaluated quickly after rapid tests were performed,

the ANN model that we developed can assist with and accelerate the triage of patients when

hospitals are overcrowded during large outbreaks.

Model explainability for the prognostic ANN model

Since cross-validation results indicated that the ANN method exhibited a relatively better aver-

age performance compared with the other methods, we next analyzed the ANN model to

determine how the models classified disease severity by utilizing the SHAP program. Similar

to the statistic and multivariate LR model results (Tables 1 and 2), the importance plot of the

SHAP program showed that age and NS1 antigen were more important features than sex, anti-

DENV IgM, and anti-DENV IgG (Fig 2A), although the multivariate LR model indicated that

NS1 antigen had a higher OR than patient ages (Table 2). Taken together, these results confirm

the importance of these specific factors in DENV disease severity.

Next, we analyzed the contribution of each feature to the prediction using summary (Fig

2B) and dependence plots (Fig 3) of SHAP values. In the age panel of the summary plot, the

SHAP value gradually increased as patient age increased (Figs 2B and 3A). In the indepen-

dence plot of age, the SHAP values changed from negative to positive as the age increased to

greater than 60 years, suggesting that age greater than 60 years increased the probability of the

patient progressing to severe dengue (Fig 3A). NS1 antigen was another feature that positively

contributed to the SHAP value (Figs 2B and 3B). In the summary plot, we observed that the

appearance of NS1 antigen increased the probability of severe dengue as an outcome predic-

tion when evaluated using the ANN model (Fig 2B). Meanwhile, SHAP values were not

directly correlated with sex, anti-DENV IgM antibodies, or anti-DENV IgG antibodies (Figs

2B, 3C and 3D).

To further assess whether dual features cooperatively affected disease severity, we next

determined the effects of the feature pairs on the SHAP value to evaluate the associations

between features using dependence plots (Fig 3). In the dependence plots of age, NS1, and sex,

we did not observe obvious association patterns within feature pairs; thus age, NS1, and sex

were considered to be independent of the other features in the ANN model prognosis (Fig

3A–3C). In contrast, we found that IgM and IgG double-positive (IgM+/IgG+) was associated

with positive SHAP values in the dependence plot of anti-DENV IgM antibody (IgM) and

anti-DENV IgG antibody (IgG) (Fig 3D). IgM negative and IgG positive (IgM-/IgG+), or IgM

positive and IgG negative (IgM+/IgG-) generally yielded negative SHAP values. (Fig 3D).

In addition to potential decision rules in the prediction, analyzing the characteristics of mis-

classified cases helped us to determine the limitations of the ANN model. We thus analyzed

the 24 misclassified cases (Table 4), including two severe cases and 22 mild cases; these cases

were incorrectly classified by the ANN model among the 80 cases of the 90:10 hold-out test

dataset. The two false-negative cases were female, aged 56 and 63 years. They had NS1 antige-

nemia, with no anti-DENV IgM or IgG antibodies. Among the 22 false-positive cases, nine

were male and 13 were female, 19 of whom were older than 60 years. Twenty-one false-positive

cases were NS1 positive. In addition, two cases had NS1 antigenemia and anti-DENV IgG
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antibodies; three cases simultaneously had NS1 antigenemia, anti-DENV IgM, and anti-

DENV IgG antibodies. The calibration plot for the prediction is displayed in Fig 4. The figure

shows under-prediction of severe dengue risk among the cases of the ANN model. Misclassifi-

cations, particularly the cases that were falsely classified as negative by the ANN model, should

be noted. Such cases included two females with NS1 antigenemia but no anti-DENV IgM and

IgG antibodies.

Discussion

Since DENV activity is dramatically increased during large outbreaks, a large number of

patients suspected of having dengue will seek medical advice at hospitals, particularly from the

emergency department. To help accelerate triage in overcrowded emergency rooms or out-

patient clinics, we developed ML models for dengue severity prognosis according to demo-

graphic information (age and sex) and laboratory test results (NS1 antigen, anti-DENV IgM

Fig 2. Importance plot and summary dot plot of the ANN model using SHAP explainer. (A) Importance plot

depicting the features most effective at predicting dengue disease outcomes. (B) Summary dot plot mapping the effects

of the indicated features on prediction outcomes, which assigns features to continuous color for age, and discrete color

for other features. For NS1, anti-DENV IgM, and anti-DENV IgG, positive is red, and negative is blue; For sex, male is

red, and female is blue.

https://doi.org/10.1371/journal.pntd.0008960.g002

PLOS NEGLECTED TROPICAL DISEASES Prognosis of severe dengue based on machine learning

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008960 December 23, 2020 10 / 19

https://doi.org/10.1371/journal.pntd.0008960.g002
https://doi.org/10.1371/journal.pntd.0008960


antibody, and anti-DENV IgG antibody). The established ANN model predicted disease sever-

ity with good performance, and the SHAP explanation showed that patient age and the pres-

ence of NS1 antigen in serum samples were two major factors for severe dengue prediction.

When we combined sex and anti-DENV IgM/IgG antibody in the serum, the ANN model

could quickly predict severity using the NS1 antigen and anti-DENV IgM/IgG rapid tests. This

method could enable clinicians to determine the prognosis of patients with dengue by analyz-

ing retrieved information with a laptop, without the need for advanced medical instruments.

Fig 3. Dependence plots of the ANN model using SHAP explainer. Dependence plots of the ANN model showed the potential cooperative

effects of feature pairs on prediction outcomes. For each feature, its most associated feature was chosen to be analyzed using dependence plots.

The feature pairs included (A) age and sex, (B) NS1 and age, (C) sex and IgM, and (D) IgM and IgG.

https://doi.org/10.1371/journal.pntd.0008960.g003

PLOS NEGLECTED TROPICAL DISEASES Prognosis of severe dengue based on machine learning

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008960 December 23, 2020 11 / 19

https://doi.org/10.1371/journal.pntd.0008960.g003
https://doi.org/10.1371/journal.pntd.0008960


Moreover, this approach can be applied in not only hospitals but also local clinics, which will

help in identifying patients who may need further medical treatment or care.

According to the patient demographic information and laboratory test result dataset used

in this study, patient age and NS1 antigenemia were the two factors that were most important

for prediction. Regarding age, the SHAP values for severe dengue increased with increasing

age and changed from negative to positive as age increased to greater than 60 years, suggesting

that patients in this advanced age category had a higher probability of progressing to severe

dengue. A potential explanation for this scenario is the gradual increase in seroprevalence

rates with age in Taiwan [44]. According to a previous study, these rates in Taiwan increased

significantly from 2.1% in the 30–39-year age group to 17.1% in the 60–69-year age group, and

50% in the 70–79-year age group [44]. The increasing seroprevalence rate from the younger

group (30–39 years) to the older group (> 60 years) implied the low prevalence of DENV in

Taiwan. Most individuals in the aged group were thought to be monotypically immune as they

had been previously infected with DENV. Thus, the monotypically immune individuals in the

aged group were at a high risk of secondary infection by heterologous DENV serotypes, which

could induce ADE or immune mimicry in dengue infection and cause immunopathogenesis-

related damage to endothelial cells, thereby causing severe plasma leakage [45–49]. This may

explain the elevated potential for disease severity in the aged group. Moreover, since monoty-

pically immune individuals were then exposed to infection by a homologous DENV serotype,

Table 4. Definitions of false-negative and false-positive severe dengue cases in the test dataset, using ANN model prediction.

Severity Sex Age NS1 antigen Anti-DENV IgM Anti-DENV IgG Prediction probability of severe cases using the ANN model

False-negative cases

Severe Female 56 Positive Negative Negative 0.3872

Severe Female 63 Positive Negative Negative 0.2694

False-positive cases

Mild Female 72 Positive Negative Negative 0.6373

Mild Female 52 Positive Positive Positive 0.6311

Mild Female 83 Positive Negative Positive 0.7466

Mild Female 53 Positive Positive Positive 0.6272

Mild Female 83 Positive Negative Negative 0.8125

Mild Male 67 Positive Negative Negative 0.7621

Mild Male 77 Positive Negative Positive 0.5912

Mild Male 65 Positive Negative Negative 0.7412

Mild Male 75 Positive Negative Negative 0.7996

Mild Female 77 Positive Negative Negative 0.7504

Mild Male 63 Positive Positive Positive 0.8439

Mild Female 76 Positive Negative Negative 0.7349

Mild Male 1 Positive Negative Negative 0.9256

Mild Female 70 Positive Negative Negative 0.5919

Mild Male 61 Positive Negative Negative 0.5275

Mild Female 83 Positive Negative Negative 0.8125

Mild Female 80 Positive Negative Positive 0.6627

Mild Female 73 Positive Negative Negative 0.6639

Mild Female 73 Negative Negative Negative 0.5512

Mild Female 75 Positive Negative Negative 0.7159

Mild Male 68 Positive Negative Negative 0.7679

Mild Male 75 Positive Negative Negative 0.7996

https://doi.org/10.1371/journal.pntd.0008960.t004
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they may be asymptomatic or exhibit mild dengue disease owing to the protective effects of

pre-existing anti-DENV IgG antibodies [5]. However, ADE with aberrant activation of cross-

reactive T cells causes severe dengue, such as dengue hemorrhagic fever and dengue shock syn-

drome, when monotypically immune individuals are infected with heterologous DENV sero-

types [45–49]. A similar explanation can be applied to the findings of the model explainer,

which indicated that IgM+/IgG+ marginally increased disease severity, but IgM-/IgG+ or IgM

+/IgG- reduced disease severity. Most specimens were collected on day 1 when they sought

medical advice in clinics or emergency departments of our hospital during acute febrile illness.

Therefore, the simultaneous elevation of IgM and IgG (IgM+/IgG+) in the acute febrile phase

of infection implied that the patients were immune to monotypic DENV and were recently

infected with a heterologous serotype, which could increase the risk of progression to severe

disease. Considering that the antibody, which was developed from a monotypic immune

response, could protect individuals from re-infection by the homologous serotype [5], the sce-

nario of IgM-/IgG+ in patients during the acute infection phase implied that the patients had

been infected by the homologous serotype virus, which stimulated a pre-existing subset of

plasma cells or memory B cells to produce anti-DENV IgG antibodies against the virus. The

scenario of IgM+/IgG- in patients with acute infection may imply that they were primarily

infected with DENV and that their naïve B cells have begun to produce anti-DENV IgM anti-

bodies against DENV infection. Hence, both IgM-/IgG+ and IgM+/IgG- likely indicated that

the individuals would potentially not be re-infected by the heterologous serotype, which may

have caused mild dengue disease. While the information of patients regarding primary or sec-

ondary infection was not available in our de-identified data, it might be worthwhile to investi-

gate the association between the rapid IgM/IgG test results and primary/secondary infection

among dengue patients in the future.

Fig 4. Calibration plot for the ANN model prediction. For the ANN model, the predicted probability of severe dengue

cases is compared to the actual proportion of severe dengue cases among subjects in the 90–10 holdout test set. Perfect

predictive ability is represented by the dashed diagonal line.

https://doi.org/10.1371/journal.pntd.0008960.g004
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Another important risk factor was NS1 antigenemia. NS1 antigen has been widely applied

as a diagnosis marker in dengue rapid tests and identified as a virulence factor in DENV infec-

tion [50,51]. By disrupting the endothelial glycocalyx, NS1 causes vascular leakage and

increases endothelial permeability [50], which can lead to plasma leakage or hemorrhage.

High amounts of NS1 antigenemia have been suggested as an essential factor for severe den-

gue, particularly in the endemic population [52–56]. Thus, these reports implied that NS1

causes the pathogenesis of dengue infection and is associated with disease severity. Similar to

previous studies, the SHAP explainer for the developed ANN model showed high SHAP values

for the NS1 antigenemia group, suggesting greater risk of severity among NS1 positive

patients.

In addition to the characteristics analyzed in this study, several studies have reported other

potential markers in patient serum, such as immune activation markers (interleukin [IL]-6,

IL-10, interferon-γ, macrophage inhibitory factor, and C-C chemokine motif ligand-4), endo-

thelial activation markers (increase levels of angiotensin [Ang]-2, von Willibrand factor, circu-

lating vascular adhesion molecule, vascular endothelial growth factor [VEGF], and VEGF

receptor [VEGFR] 1 and decrease levels of Ang-1, a disintegrin and metalloproteinase with a

thrombospondin type 1 motif member 13, and VEGFRII), and biochemical markers

(increased levels of lipopolysaccharide, aspartate aminotransferase [AST], and alanine amino-

transferase [ALT] and decreased levels of lipids, inhibitor alpha inhibitor protein, and nitric

oxide), as predictors of severe dengue disease [57]. In addition to the soluble markers in

patient serum, recent investigations have identified biomarkers associated with severe dengue

development via microarray-based analysis to analyze host gene expression in peripheral

blood samples from patients with different disease severities [57–67]. By combining results

retrieved from patients, including demographic characteristics, dengue warning signs, other

symptoms or signs, and laboratory features associated with severe dengue, researchers have

further applied scoring systems to evaluate the potential for severe dengue with high perfor-

mance [36,58,68]. In contrast, our prediction system applied patient information, including

demographic characteristics (age and sex) and laboratory test results (NS1 antigen and anti-

DENV IgM/IgG antibodies) obtained from rapid tests. Dengue NS1 and anti-DENV IgM/IgG

rapid tests have been applied in the laboratory diagnosis of dengue infection, particularly dur-

ing outbreaks and epidemics [37]. Since these tests are potentially conducted to diagnose den-

gue infection in suspected cases at clinics, hospitals, and medical centers, NS1 antigen and

anti-DENV IgM/IgG antibody test results can be rapidly available as diagnostic factors for

decision-making, without the need for special medical devices to detect or quantify other

markers in the blood. The data can then be analyzed using a laptop to determine severity pre-

diction using the ANN model. Through the ANN prediction system, the risk of patients pro-

gressing to severe dengue can be rapidly estimated. Although our prognostic approach

exhibited marginally lower performance in terms of AUROC values compared to those

reported in previous studies [58,68], the developed ANN prognostic system could rapidly gen-

erate predictions within hours, including the durations of collecting blood, performing rapid

tests, and running the data prediction model. In addition, we believed that more patients’

blood test results and dengue disease histories may improve the sensitivity and decrease the

false positive rate of this method. Thus, by combining demographic and laboratory test results,

we can simultaneously diagnose DENV infection and predict disease outcomes using the

ANN method without the requirement for additional medical laboratory instruments. This

could facilitate the widespread use of this prognostic approach in hospitals and local clinics.

Accordingly, by utilizing rapid dengue detection tests and the ML method, our ANN model

system may improve and accelerate patient triage and therefore reduce morbidity and mortal-

ity during dengue outbreaks.
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Nevertheless, several issues remain that must be explored when applying the ANN prognos-

tic model. First, we only used a single type of rapid test kit in this study. A previous report

showed that various commercial dengue rapid test kits exhibit differences in sensitivity and

specificity [69]. Thus, the sensitivity, specificity, and accuracy of the ANN model will need to

be further verified using different rapid test kits. Second, the age of patients with severe dengue

varies among countries and regions. We recognize that our dataset included only Taiwanese

patients. Most patients with severe disease in our study were older than 60 years; however, in

southeastern Asia [60] and South America [56], the most severe cases are found in children.

These differences in age distribution among severe cases in various endemic or outbreak

regions may be the result of the prevalence of monotypic immune responses in the studied

populations. Therefore, it is necessary to rebuild a new ML model when applying the prognos-

tic system to a different population. Third, the predominant serotype or strain that appears

during outbreaks of severe dengue may vary according to the region. In Taiwan, we faced two

large outbreaks in 2014 and 2015. DENV-1 caused the first wave in 2014, with a mortality rate

of 0.127% (15,732 cases and 20 fatalities); however, DENV-2 caused a large outbreak in 2015,

with a mortality of 0.497% (43,784 cases with 218 fatalities), which was more than 3-fold higher

than that of the 2014 DENV-1 outbreak. The different mortality rates between the two out-

breaks, which were caused by different predominant strains in the same population, indicated

that the virulence of different DENV serotypes may vary. Because our retrospective study used

data retrieved from the DENV-2 outbreak in 2015 in Taiwan, our findings will need to be veri-

fied for other serotypes. Four, most severe dengue cases were observed in our hospital, the

largest medical center of Tainan city, which was overcrowded during the 2015 outbreak.

Although our hospital served the entire population of Taiwan, more severe cases might be

recruited preferentially into this study, which might result in sampling bias. Finally, as a retro-

spective study, our findings still need to be validated in a prospective cohort before the prog-

nostic model could be applied in the clinical setting.

In conclusion, we established an ML ANN model for dengue outcome prediction based on

demographic information and patient laboratory test results. Upon examining the prognosis

performance of the established models, we showed that the ML model developed by us using

the ANN method demonstrated superior performance in severe dengue prognosis than estab-

lished models. Therefore, this new prognostic model can assist physicians in evaluating the

risk of patients progressing to severe dengue and can increase the efficiency of patient triage

into hospitals, particularly in overcrowded medical facilities during dengue outbreaks. Since

all information used in this model was available upon initial dengue infection diagnosis, the

prognostic system may be widely applied by all medical institutes, particularly local clinics, for

the prediction of dengue disease outcomes.
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