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Abstract

Leaves are thought to be the primary carbon source for reproduction in plants, so a positive

relationship between vegetative size and reproductive output is expected, establishing a

trade-off between time to reproduction and reproductive output. A common response to

higher temperatures due to climate changes is the induction of earlier transition into repro-

duction. Thus, in annual plants, earlier transition into flowering can potentially constrain

plant size and reduce seed production. However, trade-offs between early reproduction and

fitness are not always observed, suggesting mechanisms to escape the constraints of early

flowering do exist. Here, we test whether inflorescence photosynthesis contribution to the

reproductive output of Arabidopsis thaliana can offset the cost of early reproduction. We fol-

lowed the development, growth rate and fitness of 15 accessions, and removed all rosette

leaves at flowering (prior to the completion of inflorescence development or any fruit produc-

tion) in half of the plants to determine the ability of inflorescences to maintain fitness in the

absence of leaves. Although leaf removal significantly reduced fruit number, seed weight

and plant height, even the most severely impacted accessions maintained 35% of their fit-

ness with the inflorescence as the sole photosynthetic organ; and some accessions experi-

enced no reduction in fitness. Differences between accessions in their ability to maintain

fitness after leaf removal is best explained by earlier flowering time and the ability to main-

tain as many or more branches after leaf removal as in the control treatment. Although

earlier flowering does constrain plant vegetative size, we found that inflorescence photosyn-

thesis can significantly contribute to seed production, explaining why early flowering plants

can maintain high fitness despite a reduction in vegetative size. Thus, plants can be

released from the usually assumed trade-offs associated with earlier reproduction, and

selection on inflorescence traits can mediate the impact of climate change on phenology.

Introduction

An organism’s life-history is shaped by its allocation to growth, maintenance (e.g. tissue repair

and resistance to pathogens) and reproductive functions. Because resources are usually
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limited, life-history theory expects trade-offs between its allocation to different functions [1,

2]. Assuming all else remains the same, an earlier transition into reproduction is thought to

restrict plant vegetative size and consequently the resources available for offspring production,

reducing the quality and/or number of progeny [3,4,5,6]. Trade-offs between flowering time

and vegetative size are particularly important for annual plants, because they have a single

chance at maximizing fitness. There is concern that changes in the global climate may affect

plant populations’ persistence and crop yield by causing many annual plant species to flower

earlier [7,8,9,10]. Thus, it is important to determine whether there are mechanisms that can

release annual plants from the expected trade-off between earlier flowering and fitness (yield).

Annual plants are a particularly good subject to investigate trade-offs between growth, time

to reproduction, and fitness because they have distinctive vegetative and reproductive phases.

A positive relationship between vegetative size and reproductive output is expected because

the vegetative leaves are assumed to be the primary photosynthetic tissue responsible for car-

bon acquisition. Correlations between flowering time and vegetative size have been observed

in a number of plants [11,12], as well as between vegetative size and reproductive output [12,

13]. However, many exceptions to the correlation between flowering time and reproductive

output have also been observed [14, 15,16,17,18]. For example, Kover et al [19] compared

ancestral and derived populations of Arabidopsis thaliana selected to flower earlier, and found

that derived early flowering populations showed no reduction in fruit production.

A couple of mechanisms have been proposed to explain how reproductive output may be

decoupled from time to reproduction. One hypothesis is that variation in the growth rate can

remove the relationship between age of reproduction and plant size [2,18,20]. Thus, earlier

flowering plants may also be larger if they have a larger growth rate (i.e. leaf production over

time); and therefore, have more photosynthetic resources than plants that grow slowly and

reproduce later. Genetic variation in growth rate has been previously observed within plant

species [14, 18, 21, 22] but its correlation with flowering time and fitness in the context of

understanding trade-offs or its absence has not been considered.

Alternatively, it is possible that the reproductive structure itself (inflorescence and flowers)

contributes significantly to carbon acquisition. Green reproductive structures have previ-

ously been shown to be photosynthetically active and contribute to overall carbon gain

[23,24,25,26,27,28]. If this is the case, an earlier transition to flowering can increase the

resources available for future reproduction by increasing photosynthetic surfaces to support

reproduction; releasing plants from the evolutionary constraints posed on flowering time

evolution by the trade-off between age and size at reproduction. However, how much of a

plant’s reproductive output can be maintained by the inflorescence photosynthetic ability is

not well known.

Significant variation in flowering time, development rate and reproductive output has been

previously observed in the annual plant A. thaliana [22,29]. The development of A. thaliana is

divided into a vegetative phase where a laminar rosette grows in terms of leaf number and leaf

area, and a reproductive phase characterised by an inflorescence developing vertically. It has

been shown that the inflorescence of A. thaliana contributes significantly to carbon gain

[27,28]. Earley et al. [27] also showed that the contribution of the inflorescence to carbon gain

varies among natural accessions, and suggested that this variation may be an adaptive response

to the accession’s climate of origin. They propose that switching to higher photosynthetic

activity in the inflorescence may be favoured in warmer climates, where the increased ambient

temperature at the soil surface makes photosynthesis in the rosette leaves less efficient.

Here, we investigate whether the inflorescence photosynthetic activity in A. thaliana can

maintain seed production (fitness). We use a manipulative approach of removing all rosette

leaves when plants transition into reproduction. This approach leaves the inflorescence as the
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sole remaining photosynthetic organ in the treated plants prior to the development of

branches or fruits. Control plants are grown simultaneously, where leaves are kept throughout

the plant’s life-cycle. Comparison of reproductive output in treatment and control plants of 15

natural accessions of A. thaliana from a wide geographical range and different flowering times

allows the determination of whether there is natural variation in the ability of inflorescences to

maintain fitness.

We also consider three specific hypotheses: 1) We hypothesize that if Early et al. [27] sug-

gestion is correct, accessions from warmer climates should have inflorescences selected to con-

tribute more to carbon gain, and therefore should be able to maintain a higher proportion of

the fitness. 2) Alternatively, it is also possible that early flowering accessions would have been

selected to have inflorescences with higher potential to photosynthesize. This could be because

either they have to compensate for the smaller rosette size (if there is a positive relationship

between flowering time and rosette size), or because ecological conditions that favour earlier

flowering such as heat and drought will also favour inflorescence photosynthesis [27,30]. 3)

Finally, it is also possible that variation in fitness reduction upon removal is a function of inflo-

rescence size, since photosynthesis capability will increase with more branches and taller inflo-

rescences. To test these hypotheses we will determine whether there is natural variation in the

ability of inflorescences to maintain fitness, and whether this variation is correlated with aver-

age temperatures in the geographical locations of origin of the accessions used, flowering time,

rosette or inflorescence size.

Materials and methods

Plant material and growing conditions

Seeds from the 15 natural accessions of A. thaliana listed on Table 1 were originally obtained

from the Arabidopsis stock centre (www.arabidopsis.org), and selfed twice in our lab prior to

use in these experiments. These accessions were chosen because of their wide geographic

Table 1. Rosette growth rate measured as number of rosette leaves per day, at 23 days after planting (when plants were between 18 ad 20 days),

and at flowering time (when plants have completed their vegetative growth), averaged across 10 plants per accession.

Accession Stock # Origin Latitude Spring T Total Leaves Growth rate

@18–20 days

Growth rate

@flowering

Days to

Flowering

Mean SE Mean SE Mean SE Mean SE

Bur-0 CS6643 Ireland 53N 4.5 25.9 1.64 0.64 0.01 0.86 0.05 35.6 0.34

Col-0 CS6673 USA 38N 15.5 14.8 0.65 0.53 0.02 0.58 0.04 32.8 0.36

Ct-1 CS6674 Italy 37N 13.5 14.2 0.84 0.54 0.03 0.58 0.04 32.6 0.50

Hi-0 CS6736 Netherlands 52N 5.5 12.8 0.49 0.58 0.02 0.57 0.02 28.6 0.45

Kn-0 CS6762 Lithuania 54N 3.5 16.4 0.83 0.60 0.02 0.65 0.03 32.5 0.67

Ler-0 CS20 Germany 52N 3.5 10.6 0.37 0.50 0.02 0.48 0.02 28.0 0.40

Mt-0 CS1380 Libya 32N 15.5 18.4 1.01 0.69 0.02 0.75 0.04 32.8 0.49

No-0 CS6805 Germany 51N 5.5 12.1 0.48 0.52 0.03 0.50 0.02 31.2 0.53

Oy-0 CS6824 Norway 60N 3.5 15.9 0.28 0.69 0.02 0.66 0.02 32.5 0.27

Rsch-4 CS6850 Russia 56N 1 17.2 0.07 0.65 0.04 0.66 0.42 33.1 0.81

Sf-2 CS6857 Spain 41N 11.5 32.0 4.19 0.58 0.02 1.0 0.11 37.8 1.86

Tsu-0 CS6874 Japan 34N 9.5 26.2 1.01 0.71 0.2 0.93 0.04 35.8 0.51

Wil-2 CS6889 Russia 55N 1 13.5 0.27 0.63 0.01 0.61 0.01 30.0 0.26

Ws-0 CS6891 Russia 52N 3.5 24.0 1.97 0.67 0.01 0.86 0.04 34.3 1.35

Wu-0 CS6897 Germany 49N 5.5 16.9 0.86 0.59 0.03 0.70 0.03 33.2 0.79

https://doi.org/10.1371/journal.pone.0185835.t001
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distribution, and large genetic variation [31]. Also, these accessions are among the parents of

the MAGIC mapping lines [32].

Ten replicates of each accession were grown individually in 5.5 cm diameter pots filled with

Levingtons F2+S compost (Scotts, Marysville,OH). Pots were randomly allocated to trays and

trays were rotated around the greenhouse at regular intervals to homogenize possible microen-

viromental effects. The experiment was carried out in the University of Bath greenhouse, set at

21˚C day/18˚C night and 16 hours of light/day. Seeds were suspended in a 0.015% agar solu-

tion at 4˚C for 3 days to promote simultaneous germination, before being pipetted onto the

pot’s surface for germination.

Half of the replicates of each accession were randomly assigned to either the “Removal” or

“Control” group. The control group was left to grow normally, while the removal group had all

rosette leaves removed using scissors on the day the first flower opened (prior to any seed

being developed, and when the inflorescence was still small and unbranched). All removed

leaves were attached to a piece of paper and scanned for later estimation of total rosette leaf

area using ImageJ (http://rsbweb.nih.gov/ij/).

Plants were inspected every couple of days and the timing of germination, flowering (day

first flower opened) and senescence were noted. Senescence was defined as the day when no

more open flowers were visible. Prior to removal of leaves, rosette leaves were counted on

plants assigned to both treatments every couple of days until flowering (starting 10 days after

planting). After the plants had senesced the inflorescence height was measured and the num-

ber of branches (derived from the inflorescence or rosette) and fruits per plant were recorded.

To assess seed weight and seed number per fruit, 3 fruits between the 6th and 10th fruit on the

main stem were collected. A Nikon SMZ 1500 dissecting microscope with a Nikon Digital

Sight DS-U1 camera was used to capture images of seeds to determine seed number per fruit.

Average seed weight per seed was measured by weighing seeds on a Mettler UMT2 Ultra

Microbalance. Total fitness was estimated as the average seed number per fruit multiplied by

total fruit number produced per plant. All raw data is available in Appendix 1.

Statistical analysis

All analyses were carried out in SPSS version 23 (IBM Corp.). A one-way ANOVA was used to

test whether accessions differ significantly in days to flower, leaf number at flowering and

growth rate. Growth rate was measured as the number of rosette leaves at bolting divided by

the number of days between germination and bolting. As growth rate varies throughout rosette

development, we also compared growth rate 19 days after planting. Since all of these variables

were measured prior to the removal treatment, and a two-way ANOVA confirmed that none

of them were affected by treatment (see below), all 10 replicates/accession were included in

this set of analysis.

A two-way ANOVA was employed to analyse the effects of accession (random variable)

and treatment (fixed variable) on inflorescence traits (height and number of branches), fitness

components (average seed weight, average seed number per fruit, total number of fruits pro-

duced per plant, and total fitness), and senescence.

We used the ratio of the average total fitness for plants in the removal group relative to the

control group for each accession, to estimate the contribution of inflorescence photosynthetic

activity to fitness (from here on called “fitness maintenance”). For example, accessions that

can maintain 100% of the fitness observed in control plants, despite having their leaves

removed, would obtain a fitness maintenance value of 1. To investigate which factor(s) better

explain variation in fitness maintained among accessions, we carried out a number of multiple

regression models with fitness maintenance as the dependent variable. The independent

Inflorescence photosynthesis release plants from early reproduction trade-offs
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variables included the average spring temperature in the location of origin of each accession,

total leaf area, flowering time, inflorescence height, and branch number.

A caveat of our experimental design is that if rosette leaves significantly contribute to the

fitness output of a plant, removal of larger rosettes might increase the cost of the leaf removal

treatment. This could lead to some of the variation in fitness maintenance being due to varia-

tion in the cost of the leaf removal treatment. To address this caveat, we estimated the Pear-

son’s bivariate correlation between all variables measured among individual plants in the

control and removal treatments, as well as correlations among accession average trait values. If

the removal of leaf size affected fitness maintenance we expect that rosette size would be posi-

tively correlated with fitness under control condition, but negatively correlated in the removal

treatment.

Results

Natural variation in vegetative growth and time to reproduction

There is extensive variation among the accessions studied in terms of their rate of vegetative

growth, rosette size and time to reproduction (Fig 1, Table 1). Significant differences in growth

rate across the 15 accessions were observed when measured across the entire vegetative stage

(F14,142 = 14.7, p<0.001), or during the first 19 days of development (F14,142 = 9.1, p<0.001).

Accessions also significantly differ in the number of days they take to transition into the repro-

ductive phase (F14,142 = 11.6, p<0.001) and in final vegetative size (measured in terms of total

leaf number at transition to reproduction, F14,142 = 17.8, p<0.001).

Early flowering does constrain vegetative growth, since days to flowering is strongly and

positively correlated with final vegetative size measured as total rosette leaf number (Table 2).

We found no evidence of faster growth rate to compensate for earlier flowering. On the con-

trary, the tendency is for growth rate to be positively associated with flowering time (Table 2).

In other words, accessions that flower earlier also tend to have slower growth rate; e.g. Ler-0

has the lowest growth rate and earliest flowering time, as shown in Table 1.

Fig 1. Natural variation among 15 accessions (10 replicates/accession) in vegetative growth curve as

measured in terms of leaf number over time.

https://doi.org/10.1371/journal.pone.0185835.g001
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Effect of rosette removal

On average, removal of rosette leaves at flowering time had a negative impact on reproductive

output (Table 3). Across all accessions, rosette removal significantly reduced inflorescence

height (reduced on average by 12%), number of fruits per plant (reduced on average by 38%),

and total fitness (reduced on average by 40%), as shown by statistically significant effects of

treatment on a two-way ANOVA (Table 3).

Although there is only a marginally significant effect of rosette removal on branch number,

a significant interaction between treatment and accession was observed, indicating that the

Table 2. Bivariate Pearson’s correlation among all variables measured. Values above the diagonal are for plants in the control group and values bellow

the diagonal are for plants in the removal group. The statistical significance of the correlation is indicated by asterisks: * indicates p<0.05; and ** indicates

p<0.01.

Days to

flower

Growth@

18–20

days

Growth

@

flowering

Total nr.

leaves

Total

leaf

area

Branches Inflorescence

height

Senescence Number

of fruits

Average

seed

weight

Nr.

Seeds/

pod

Total

seed nr.

Days to flower .150 .514** .679** NA 0.069 .239* .489** -.231* .282* -.299* -.326**

Growth@ 18–

20 days

.045 .567** .400** NA 0.169 .381** .147 .076 .135 -0.173 -0.020

Growth @

flowering

.572** .582** .951** NA .274* .400** .327** -0.02 .337** -.238* -0.112

Total nr.

leaves

.733** .367** .941** NA 0.224 .362** .491** -0.075 .417** -.334** -0.214

Total leaf area .690** .431** .793** .837** NA NA NA NA NA NA NA

Branches 0.057 .449** .439** .252* .484** .301** -0.152 .466** -0.048 .254* .487**

Inflorescence

height

0.079 .260* .246* 0.145 .352** .374** 0.152 .447** 0.028 0.005 .324**

Senescence .661** -0.063 .464** .657** .527** -0.077 -0.052 0.095 .289* -.407** -0.184

Number of

fruits

-.400** 0.108 -0.156 -.274* -0.129 .358** .484** -.285* -0.126 0.084 .791**

Average seed

weight

.249* 0.171 .282* .327** .438** 0.172 0.08 .455** -0.054 -.314** -.255*

Nr. Seeds/pod -.244* -0.001 -.242* -.326** -0.191 0.199 0.218 -.482** .302* -.376** .647**

Total seed nr. -.345** 0.122 -0.19 -.314** -0.140 .383** .460** -.417** .866** -0.21 .713**

https://doi.org/10.1371/journal.pone.0185835.t002

Table 3. Comparison of estimated mean and standard error for each measured trait in control and treated (leaves removed at flowering) plants.

Last three columns show the F statistic and their associated probability (in brackets) from the two-way ANOVA to assess the effect of rosette removal (Treat-

ment) and Accession on measured traits. Treatment is a fixed variable and accession is a random variable. Values in Bold indicate statistically significant

effects (i.e. probability <0.05).

Control Removal Treatment Accession Treatment*Accession

Mean SE Mean Mean SE Mean

Flowering 32.4 0.35 32.9 0.49 1.4 (0.232) 11.6 (<0.001) 0.5 (0.955)

Growth 0.69 0.02 0.68 0.02 1.0 (0.327) 15.1 (<0.001) 0.9 (0.553)

Height 42.7 0.58 37.0 0.61 39.1(<0.001) 13.9 (<0.001) 2.1 (0.019)

Nodes 4.3 0.14 4.2 0.15 0.2 (0.665) 12.1 (<0.001) 0.5 (0.925)

Branches 5.3 0.14 4.9 0.15 3.0 (0.087) 5.3 (<0.001) 2.6 (0.003)

Senescence 52.3 0.32 49.2 0.34 1.5 (0.225) 5.1 (<0.001) 1.0 (0.514)

Fruit number 164.2 4.42 102.4 4.66 93.7 (<0.001) 4.3 (<0.001) 2.7 (0.002)

Seeds/pod 52.1 1.18 49.2 1.24 2.9 (0.092) 4.9 (<0.001) 0.9 (0.529)

Seed weight 22.4 0.46 21.2 0.48 3.1 (0.079) 8.7 (<0.001) 0.8 (0.637)

Total fitness 8587.6 268.92 5116.5 283.32 79.0 (<0.001) 6.4 (<0.001) 2.3 (0.009)

https://doi.org/10.1371/journal.pone.0185835.t003
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effect of rosette removal on reducing branch number depended on the specific accession. An

interaction between accession and treatment was also observed for inflorescence height, fruit

number and total fitness. Such interaction can be clearly seen in Fig 2, where the majority of

accessions displayed a large reduction in fitness with rosettes removed, but Ct-1 and Hi-0

treated plants produced almost as many or more seeds than control plants. Given that treat-

ment plants relied solely on inflorescence photosynthesis, the ability of the inflorescence to

maintain normal levels of fitness varied among accessions.

Possible explanations for variation in inflorescence contribution across

accessions

Because the two-way ANOVA (Table 3) indicated that treatment affected the number of

branches and the inflorescence height, the best estimate of the accession characteristic trait

value is the average number of branches and height in the control treatment. In addition, the

fact that inflorescence traits respond to the leaf removal treatment differently depending on

the accession, open the possibility that fitness maintenance in our experiment is not just a

function of inflorescence size, but also of the specific plastic response expressed by the different

accessions in response to the treatment. Thus, we also included in our regression models the

ratio of the means of inflorescence traits in the two treatments to estimate this plasticity.

Models that included both number of branches and inflorescence height had colinearity

problems, so we used only branches as an estimate of inflorescence size in the following

model: Fitness maintenance = Average spring temperature + Flowering time + Branch number

in Control treatment + Ratio of branches (number of branches in removal treatment/ number

of branches in the control treatment). The full version of this model (Table 4) shows a signifi-

cant effect of flowering time and branch ratio on fitness maintenance. Running forward or

backward selection does not affect the model outcome. The standardized regression coeffi-

cients indicate that branch ratio has the biggest impact, with accessions that maintain or

increase the number of branches after the removal of leaves having higher fitness maintenance.

Flowering time has a negative coefficient, indicating that early flowering plants maintain

higher fitness after leaf removal. No evidence was found that variation in fitness maintenance

can be explained by the mean spring temperature of the accession’s place of origin (Table 4

Fig 2. Average fitness for control (light grey) and treated (dark grey) plants for each accession.

Accessions are listed in the X axis in order of their total seed production under control conditions. Numbers on

the top of the bars indicate percentage of fitness maintained by inflorescence photosynthesis only (fitness

maintenance).

https://doi.org/10.1371/journal.pone.0185835.g002
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and S1 Table). A model using height as an indicator of inflorescence size show similar results

but those models have a lower adjusted R than the ones using branches (see S1 and S3 Tables,

Supporting Information).

A possible caveat of our experimental design is that leaf removal might introduce a negative

impact of rosette size. This is because if plants with bigger rosettes have more resources for

seed production, it follows that the removal of bigger rosettes might cause larger reduction in

fitness. Although a significant negative correlation between fitness and leaf area is observed

among plants in the removal treatment (see Table 2), there is also evidence for a negative cor-

relation between rosette size and fitness on the control treatment. Leaf area was only measured

on the removal treatment because it requires destructive sampling. However, leaf area is

strongly and positively correlated with leaf number (0.941, Table 2), and leaf number is nega-

tively correlated with fitness as strongly in the control as in the removal treatment. In addition,

accession level correlations are negative and non-significant between leaf area and both con-

trol and removal treatment fitness (Pearson’s correlation = -0.26 and -0.33, respectively).

Thus, it is unlikely that the negative impact of rosette size on fitness is only due to the removal

treatment.

Discussion

Here we show that flowering time does constrain vegetative growth, but that such constraint

does not affect reproductive output in a predictable way. The observed decoupling between

vegetative size and reproductive output is likely due to a significant contribution of inflores-

cence photosynthesis, which was able to maintain a significant proportion of fitness in the

plants with leaves removed. It is unlikely that carbon storage could explain the results

because carbon storage in A. thaliana occurs mostly in leaves, and is mainly transitory, to

cope with night time lack of irradiance for photosynthesis [33]. Thus, the significant contri-

bution of the inflorescence photosynthetic activity to the plant’s reproductive output can

potentially decouple the commonly assumed trade-off between age of reproduction and fit-

ness [3,4,5,6].

Variation in growth rate has also been suggested as a possible mechanism to decouple size,

age at reproduction and reproductive output [2,18,20]. Although we did find variation in

growth rate among the accessions studied (from 0.5 to 0.7 leaves per day, Table 1), we find that

flowering time still correlates strongly with final rosette size. This result suggests that variation

in growth rate was not sufficient to break down the constraint exerted by flowering time on

vegetative size. The maintenance of the correlation between flowering time and rosette size,

despite variation in growth rate occurs because the variation in growth rate is not associated in

Table 4. Multiple linear regression model for fitness maintenance after leaf removal. “Spring Tempera-

ture” is the average spring temperature in the place of origin of each accession, “Control branches” is the aver-

age number of branches produced per accession in the control treatment (an indicator of inflorescence size),

and branch ratio is the average number of branches in the removal treatment divided by the number in the

control treatment. “Std β” stands for standardized regression coefficient, “p” for probability.

Enter Full Model

R2 = 0.82; p<0.001

Std β p

Spring Temperature 0.10 0.51

Flowering Time -0.34 0.03

Control Branches 0.26 0.21

Branch Ratio 1.01 >0.01

https://doi.org/10.1371/journal.pone.0185835.t004
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a way that allows compensation for earlier flowering; on the contrary, our results reveal earlier

flowering plants tend to have a slower growth rate (Fig 1, Table 1). Our results are in agree-

ment with Weis et al. [34], who found that growth rate variation had little effect on the shape

of selection on flowering time.

We find that inflorescence photosynthesis contribute considerably to fitness (on average

60%), with some accessions showing no reduction in fitness despite the removal of leaves. It is

noteworthy that fitness reduction was not accompanied by a significant reduction in the aver-

age seed weight (Table 3); confirming the hypothesis that seed size is highly canalized [35]

despite being heritable among genotypes (Gnan et al, 2014). While previous studies have

shown that reproductive structures in plants are photosynthetically active [23,26,27,36], a cost

of early reproduction is still implicit in most models of life-history evolution [25,34,37,38,39];

and trade-offs between size and age of reproduction are commonly used as an explanation for

lack of response to selection for larger vegetative size [40] or the maintenance of variation in

flowering time [8]. Our results show that despite the constraint exercised by earlier flowering

on plant vegetative size, a cost of early reproduction should not always be assumed, since

reproductive structures can sustain significant proportions of the reproductive output. Field

experiments imposing artificial herbivory in A. thaliana found that herbivory after flowering

affects seed production less than before flowering [41], which might be due to the inflorescence

significantly contributing to reproductive output, as found in this study. In addition, a field

experiment with Brassica rapa has shown that the commonly observed selection for early flow-

ering, is mediated by the Julian calendar not the developmental age of the plant [38]. This sug-

gests that independent of size, plants that flower at a certain time of the year have higher

fitness. Thus, smaller vegetative size does not seem to constraint fitness of B. rapa under field

conditions either.

The ability to maintain fitness while relying solely on the inflorescence photosynthetic

activity varies among accessions. After leaf removal, accessions maintained between 34% and

110% of the fitness of control plants (Fig 2). Earley et al. [27] suggested that variation among

accessions in inflorescence photosynthetic activity might be adaptive. They hypothesized that

shifting carbon acquisition to inflorescences may be beneficial for accessions in warmer cli-

mates, because with increasing temperatures, photosynthesis would be more efficient away

from the ground surface. We addressed this possibility by testing whether the average spring

temperatures from the accession’s place of origin or flowering time, was associated with fitness

maintenance. While we found no evidence that spring average temperatures in their place of

origin explain the variation in fitness maintenance (Table 4), we recognize that there are many

other climate variables that might also be relevant and were not tested (e.g. precipitation).

Flowering time in A. thaliana has been previously shown to be correlated with climate gradi-

ents and can serve as a good indicator of general ecological conditions experienced during past

evolution [30,42,43]. Furthermore, Earley et al [27] hypothesis specifically suggest that envi-

ronmental conditions unfavourable for photosynthesis at the soil surface (where rosette leaves

are located) should select for earlier transition into reproduction to provide photosynthesis

under cooler air temperatures. Thus, the fact that flowering time explains some of the variation

in fitness maintenance is compatible with the idea that earlier reproduction can be an adaptive

strategy to better cope with stressful climatic conditions by shifting much of the carbon fixa-

tion towards the inflorescence. The fact that rosette leaf area is strongly and negatively corre-

lated with flowering time (Table 2), and that models that include leaf area instead of flowering

time find that accessions with smaller rosettes maintain more of their fitness after leaf removal

(S2 Table), indicates that it is also possible that early flowering accessions have inflorescences

that contribute more to fitness because they have been selected to overcompensate for small

rosettes.
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Variance in fitness maintenance was also shown to be explained by inflorescence size

plasticity (Table 4). Some accessions (e.g Ct-1) produced inflorescences with the same height

and more branches after leaf removal than in the control treatment; while most (e.g. Ler)

show reduced height and number of branches after leaf removal. The reduction in inflores-

cence size can be explained by the fact that resources were significantly reduced by the leaf

removal treatment during inflorescence development. The accessions that maintained or

improved their inflorescence size were the ones that also maintained most of their fitness.

The mechanism that allows some accession to grow the same size inflorescences despite the

lack of leaves is unknown, but the inflorescence of accession Mt-0 has been shown to con-

tribute 93% of the carbon gain during the plant lifetime [27]. In agreement, Mt-0 is one of

the accessions that maintained the same size infloresecence in the removal or control treat-

ments. Thus, it is possible that accession with inflorescence with more efficient photosyn-

thetic rates will be able to maintain their inflorescence size better. It is also possible that our

manipulative approach may have triggered some stress responses akin to responses to her-

bivory, and that accessions from locations with higher herbivory recovered better. Genetic

variation in tolerance to herbivory have been previously observed [44,45], and a relationship

between inflorescence architecture and tolerance to herbivory has been documented across

a number of species [46]. Unfortunately, to the best of our knowledge, a mechanism through

which such stress could be measured has not been characterized, and a previous study that

attempted to identify quantitative trait locus underlying tolerance to herbivory was unsuc-

cessful [44].

In summary, our manipulative approach shows unequivocally that the photosynthetic activ-

ity of the inflorescence of A. thaliana is capable of maintaining a high proportion of the plant’s

fitness. While similar experiments need to be carried out in more species to confirm the gener-

ality of our results, evidence in Lolium perenne [40] and B. rapa [34] support the conclusion

that assuming an inherent cost of early reproduction due to exclusive contribution of vegeta-

tive tissues to resource acquisition might not be warranted. On the contrary, our results sug-

gest that earlier transition into reproduction can diversify life-history strategies, and might be

favoured depending on environmental conditions, such as locations where soil temperatures

are less optimal for photosynthesis, or where herbivory or competition compromise the ability

to maintain high carbon fixation through rosettes.
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