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OBJECTIVE—Diabetic nephropathy is one of the most com-
mon causes of end-stage renal failure. Inhibition of ACE2 func-
tion accelerates diabetic kidney injury, whereas renal ACE2 is
downregulated in diabetic nephropathy. We examined the ability
of human recombinant ACE2 (hrACE2) to slow the progression
of diabetic kidney injury.

RESEARCH DESIGN AND METHODS—Male 12-week-old
diabetic Akita mice (Ins2WT/C96Y) and control C57BL/6J mice
(Ins2WT/WT) were injected daily with placebo or with rhACE2 (2
mg/kg, i.p.) for 4 weeks. Albumin excretion, gene expression,
histomorphometry, NADPH oxidase activity, and peptide levels
were examined. The effect of hrACE2 on high glucose and
angiotensin II (ANG II)–induced changes was also examined in
cultured mesangial cells.

RESULTS—Treatment with hrACE2 increased plasma ACE2
activity, normalized blood pressure, and reduced the urinary
albumin excretion in Akita Ins2WT/C96Y mice in association with
a decreased glomerular mesangial matrix expansion and normal-
ization of increased �-smooth muscle actin and collagen III
expression. Human recombinant ACE2 increased ANG 1–7 lev-
els, lowered ANG II levels, and reduced NADPH oxidase activity.
mRNA levels for p47phox and NOX2 and protein levels for protein
kinase C� (PKC�) and PKC�1 were also normalized by treatment
with hrACE2. In vitro, hrACE2 attenuated both high glucose and
ANG II–induced oxidative stress and NADPH oxidase activity.

CONCLUSIONS—Treatment with hrACE2 attenuates diabetic
kidney injury in the Akita mouse in association with a reduction
in blood pressure and a decrease in NADPH oxidase activity. In
vitro studies show that the protective effect of hrACE2 is due to
reduction in ANG II and an increase in ANG 1–7 signaling.
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C
hronic kidney disease is recognized as an in-
creasing global public health problem due in
part to the increasing prevalence of diabetes
(1–3). Activation of the renin-angiotensin sys-

tem (RAS) and the generation of angiotensin II (ANG II)
play an important pathogenic role in diabetic nephropathy,
and blockade of the RAS attenuates the development of
diabetic kidney injury (4–8). The discovery of a homo-
logue of the classical ACE, ACE2, has introduced a new
enzyme in ANG peptide metabolism (9–12). Like ACE,
ACE2 is membrane bound, but it is a monocarboxypepti-
dase that generates ANG (1–7) from the octapeptide ANG
II (9,10,12,13). As such, ACE2 serves as an endogenous
negative regulator of the renin-angiotensin system.

In animal models of diabetes, early increases in ACE2
mRNA levels, protein expression, and ACE2 activity oc-
curs (14,15), whereas ACE2 mRNA and protein levels have
been found to decrease in older streptozotocin-induced
diabetic rats (16). Loss of ACE2 is associated with age-
dependent glomerulosclerosis and albuminuria (17) and
exacerbation of diabetic kidney injury in Akita mice (18)
and is preventable by angiotensin type 1 (AT1) receptor
blockade. In patients with type 2 diabetes, glomerular and
tubular ACE2 expressions are reduced in the setting of
increased ACE expression (19,20). Taken together, these
studies suggest that ACE2 may play an early protective
role against the development of diabetic nephropathy
(18,21,22). We hypothesized that treatment with human
recombinant ACE2 (hrACE2) will target the diabetic glo-
merulus and slow progression of diabetic nephropathy in
the Akita mouse (Ins2WT/C96Y), a model of type 1 diabetes.

RESEARCH DESIGN AND METHODS

Experimental animals and protocol. C57BL/6J and diabetic heterozygous
Akita (Ins2WT/C96Y) mice were purchased from The Jackson Laboratory and
bred in our animal facility. Throughout the period of study, animals were
provided with free access to water and standard 18% protein rodent chow
(Harlan Teklad, Madison, WI). Ins2WT/C96Y (Akita) and Ins2WT/WT mice were
treated from 3 months of age with daily injections of placebo or human
recombinant ACE2 at a daily dose of 2 mg/kg for 4 weeks. Twenty-four–hour
urine volumes were collected at the end of 4 months and animals were killed.
All experiments were conducted in accordance with the Canadian Council of
Animal Care and Institutional Guidelines.
Generation and characterization of human recombinant ACE2. The
extracellular domain of human ACE2 (amino acid residues 1–740, molecular
wt � 101 kDa) (9) was expressed recombinantly in CHO cells under
serum-free conditions in a chemically defined medium. The expression
product was purified to homogeneity by applying a capture step on a DEAE
Sepharose anion exchanger resin (Pharmacia Biotech AB, Uppsala, Sweden).
The eluted fractions containing the expression product were submitted to a
polishing step on a Superdex 200 gel filtration column (Pharmacia Biotech
AB). The expression product was compared with the commercially available
ACE2 standard 933-ZN (R&D Systems, Minneapolis, MN). Chemical and
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immunological properties of both products were almost identical, although
rhACE2 showed a 93% enzymatic activity with Mca-APK-(Dnp)-OH substrate
in comparison with rhACE2 standard 933-ZN (R&D Systems). The enzymatic
turnover of hrACE2 with ANG II substrate was 5.2 � 0.1 �mol � mg�1 � min�1,
and the elimination half-life of hrACE2 was 10.4 h in rhesus monkeys. The
purity of the expression product was 99.99% measured by high-performance
liquid chromatography.
Plasma ACE2 activity and detection of anti-ACE2 antibodies. Plasma
collected from mice injected with hrACE2 (2 mg/kg, i.p.) for 2 weeks were
stored at �80°C. The enzymatic activity of rhACE2 in plasma samples was
measured by its ability to cleave the fluorescent peptide substrate Mca-Ala-
Pro-Lys(Dnp)-OH. Cleavage was measured in 1:5 diluted samples (final assay
dilution) using excitation and emission wavelengths of 320 and 430 nm,
respectively, in presence of 100 �mol/l substrate in 50 mmol/l MES, 300
mmol/l NaCl, 10 �mol/l ZnCl2, and 0.01% Brij-30 at pH 6.5. Evaluation was
performed by comparing the maximal slope of the fluorescence/time curve to
respective maximal slopes of a serial rhACE2 dilution in normal mouse
plasma. The response to the specific peptide ACE2 inhibitor DX600 (23)
(Phoenix Pharmaceuticals, Burlingame, CA) on the ACE2 activity in murine
plasma was also examined.

Serum samples of mice were analyzed using an ACE2 antigen–specific
enzyme-linked immunosorbent assay (ELISA) recognizing total anti–ACE2-
specific IgG. Recombinant human soluble ACE2 was presented as antigen,
coated at 10 �g/ml onto Maxisorp adsorption plates (Nunc, Vedbaek, Den-
mark) diluted in coating buffer. Remaining active groups were blocked by
incubation with 3% skim milk (Difco) in PBS. Induced antibodies were
detected by their constant domains using a rabbit anti-mouse IgG or a rabbit
anti-mouse IgM peroxidase-labeled antibody (Zymed). Staining was per-
formed by o-phenylenediamine dihydrochloride (OPD; Sigma-Aldrich) in
staining buffer (PAA Laboratories) using H2O2 as substrate according to the
manufacturer’s instructions. Absorbance at 492 nm was measured using 620
nm as reference wavelength. Quantification was performed by comparison
with a commercially available monoclonal mouse anti-human ACE2 antibody
(R&D Systems).
Blood glucose, urinary albumin excretion, and tail-cuff blood pressure

measurements. Blood glucose levels were obtained weekly between 8:30 and
10:30 AM using an Ascensia Breeze glucometer (Bayer, Toronto, ON, Canada),
and hyperglycemia was stable and sustained in Ins2WT/C96Y mice, as previously
reported (18). Twenty-four–hour urine collections were obtained from mice
prior to sacrifice by housing them in individual mouse metabolic cages
(Nalgene, model 650-0311; Nalge Nunc International, Rochester, NY) with free
access to water and rodent mash. Urinary albumin concentration was
measured using an indirect competitive ELISA according to the manufactur-
er’s instructions (Albuwell M; Exocell, Philadelphia, PA).

For the measurement of tail-cuff systolic blood pressure (TC-SBP), con-
scious mice were placed in the restrainers and their body temperature was
maintained at �34°C by the warming chamber. The IITC tail-cuff sensor
containing both the inflation cuff and the photoelectric sensor was placed on
the tail and attached to the restrainer. The cuff was inflated to a pressure of
200 mmHg and then deflated slowly. Upon reappearance of pulse signals,
TC-SBP data from the IITC amplifier were recorded, analyzed, and reported by
the IITC software (IITC Life Science Blood Pressure System, Woodland Hills,
CA). The mice were trained on three occasions before actual recordings were
made, and the corresponding TC-SBPs were averaged from three readings and
used for the averaged comparisons.
Histopathology and electron microscopy. Kidneys were harvested for
pathological examination and one section was fixed in 10% neutral-buffered
formalin (Sigma-Aldrich, St. Louis, MO) for 24 h and then transferred to 90%
ethanol for light microscopy and immunohistochemistry, and the remaining
sections were used for electron microscopy or snap-frozen for RNA extraction.
The formalin-fixed tissue was embedded in paraffin and 3-micron sections were
stained with periodic acid Schiff stain. A detailed methodology is included in the
online appendix (available at http://diabetes.diabetesjournals.org/cgi/content/full/
db09-1218/DC1).
Biochemistry, peptide analysis, and Western blot analysis. Mice were
injected intraperitoneally 10–15 min prior to sacrifice with 0.1 ml of heparin
sodium (500 IU/ml; LEO Pharma, Thornhill, ON, Canada) to prevent blood
clotting. Whole blood was collected from the carotid artery and jugular vein in
syringes containing a mixture of rat renin inhibitor and protease inhibitors.
Samples were centrifuged at 3,000 rpm at 4°C for 20 min and the plasma was
stored at �80°C until analysis. Plasma potassium, glucose and creatinine, and
urine creatinine were measured by VITA-TECH (Markham, ON, Canada), as
previously described (18). For the measurement of peptides, isolated kidneys
were quickly perfused with ice-cold saline and the renal cortices dissected and
snap frozen in liquid nitrogen. Renal cortical and plasma ANG II and ANG 1–7
concentrations were measured by radioimmunoassay in the Hypertension and
Vascular Disease Centre Core Laboratory at Wake Forest University School of

Medicine, Winston-Salem, North Carolina, as previously described (18).
Western blot analysis for protein kinase C� (PKC�) and protein kinase B �I
isoforms was carried out as previously described (24). The extracted proteins
were separated using 10% SDS-PAGE gels and then transferred to nitrocellu-
lose membrane (Millipore). The membrane was blocked in 5% milk for 2 h and
incubated overnight at 4°C with specific antibody against PKC�, PKC�1, and
�-actin (Santa Cruz Biotechnology and Cell Signaling Technology). The
�-actin was used as an endogenous loading control.
Real-time Taqman PCR. mRNA expression levels of various genes were
determined by TaqMan Real-time PCR using 18S rRNA as the internal standard
as previously described (see supplementary Table 1 for primers and probes)
(17,25). Briefly, kidney samples from mice were snap frozen in liquid nitrogen,
the cortex was later dissected in an RNA-stabilizing solution (RNAlater;
Ambion, Austin, TX), and RNA was extracted using TRIZOL Reagent (Invitro-
gen, Carlsbad, CA). Total RNA (1 �g) was reverse transcribed, and RNA
expression levels were quantified by Taqman RT-PCR using a sequence
detection system (Prism 7700; Applied Biosystems, Foster City, CA).
NADPH oxidase activity and dihydroethidium fluorescence. Harlan
Sprague-Dawley rat mesangial cells were cultured in Dulbecco’s modified
Eagle’s medium supplemented with 20% FCS, penicillin (100 units/ml), and
streptomycin (100 �g/ml) at 37°C in 95% air and 5% CO2. Experiments were
carried out in cells between passages 12 and 20. Sprague-Dawley rat mesangial
cells were plated on 60-mm dishes with growth medium. The cells were
cultured for 72 h to 90% confluence. A detailed methodology is included in the
online appendix.
Statistical analysis. Results are expressed as means � SEM, unless other-
wise specified. Student t test was used for comparison between two groups.
Comparisons among multiple groups were performed by one-way ANOVA
followed by multiple comparison testing (Student-Newman-Keuls test) using
SPSS software (version 10.1; Chicago, IL).

RESULTS

Human recombinant ACE2 increases serum ACE2
activity and reduces urinary albumin excretion. Male
Ins2WT/WT (control C57BL/6J mice) and Ins2WT/C96Y (mu-
tant diabetic Akita mice) were studied at 3 months of age
(18,26). Whereas plasma ACE2 activity in Akita mice
injected with placebo was undetectable, daily injection of
2 mg/kg of hrACE2 for 2 weeks resulted in measurable
serum ACE2 activity of 3,138 � 721 fluorescence unit/min
(n � 6) in Akita mice that was equivalent to 7.14 � 2.1
�g/ml of hrACE2 (n � 6). The specific ACE2 inhibitor,
DX600 (1 �mol/l), suppressed 95 � 4% of the murine
plasma ACE2 activity (n � 3). We hypothesized that the
large size of hrACE2 and the increased serum ACE2 activity
would target the diabetic glomeruli. Treatment with
hrACE2 for 4 weeks reduced the urinary albumin excretion
rate by 60% in the diabetic Akita mice (Ins2WT/C96Y)
compared with the placebo-treated diabetic Akita mice
(Fig. 1A and B). There were no significant differences in
the plasma glucose concentrations of the Ins2WT/C96Y �
placebo and Ins2WT/C96Y � hrACE2 mice (Fig. 1C). Despite
severe hyperglycemia in the Ins2WT/C96Y mice, body
weights were similar in all four groups of mice (Table 1).
Assessment of TC-SBP in conscious mice revealed mild
hypertension in the Akita mice (Fig. 1D) that declined over
a 4-week period in response to daily administration of
hrACE2 (Fig. 1E). Human recombinant ACE2 did not affect
the serum creatinine concentrations or potassium levels
(Table 1).
Recombinant human ACE2 reduces mesangial matrix
expansion. Given the marked protective effect of hrACE2
on the urinary albumin excretion in the diabetic mice, we
sought to relate this functional change to kidney histomor-
phology. As expected, kidney hypertrophy (Table 1) was
associated with an increase in glomerular volume in the
Ins2WT/C96Y � placebo mice compared with the control
Ins2WT/WT mice, and glomerular volume was reduced by
hrACE2 treatment (Fig. 2A and C). In accordance with
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the light microscopic changes, increased glomerular
basement membrane (GBM) thickness in the Akita
Ins2WT/C96Y mice was also significantly reduced in re-
sponse to hrACE2 treatment (Fig. 2B and D). Diabetic
nephropathy is characterized by an accumulation of
extracellular matrix proteins in the glomerular mesan-
gium. A semiquantitative and blinded assessment of the
mesangial matrix expansion showed a significant in-
crease in the diabetic Akita mice that was reduced by
treatment with hrACE2 (Fig. 2E).

Immunohistochemical staining for �-smooth muscle ac-
tin (�-SMA) (Fig. 3A and C) and collagen III (Fig. 3B and
D) was significantly increased in the glomeruli of diabetic
mice, and expression was normalized by hrACE2 treat-
ment. Inflammation and the accumulation of kidney mac-
rophages can play an important role in diabetic kidney
injury (27) and we also observed that anti-ACE2 IgG
antibodies developed in 50% of the mice injected with
hrACE2, with a mean IgG titer of 11 � 7.2 ng/ml. We
therefore performed immunohistochemical studies of
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FIG. 1. Human recombinant ACE2 reduces the increased urinary albumin excretion rates in diabetic Akita mice independent of hyperglycemia and
with a mild blood pressure–lowering effect. A and B: Urinary albumin excretion rate (A) and urinary albumin/creatinine ratio (B) based on 24-h
urine samples showing marked reduction in albuminuria after 4 weeks of daily treatment with hrACE2. n � 8 and 10 for urine albumin
measurements in Ins2WT/WT and Ins2WT/C96Y groups, respectively. *P < 0.05 compared with all other groups and #P < 0.05 compared with placebo �
Ins2WT/C96Y group using ANOVA and multiple comparison testing. C–E: Plasma glucose and tail-cuff systolic blood pressure showing no effect of hrACE2
on the marked hyperglycemia (C) and mild elevation in systolic blood pressure in diabetic Akita mice (D) that was normalized over a 4-week period
in response to daily hrACE2 administration (2 mg � kg�1 � day�1) (E). n � 10 for plasma glucose and n � 12 for systolic blood pressure measurements.
*P < 0.05 compared with corresponding Ins2WT/WT group (C and D) or with Ins2WT/C96Y � placebo group (E) using Student t test.

TABLE 1
Morphometry and plasma biochemistry in 4-month-old mice

Ins2WT/WT� placebo Ins2WT/WT� hrACE2 Ins2WT/C96Y� placebo Ins2WT/C96Y� hrACE2

n 8 10 8 10
BW (g) 25.0 � 1.2 25.3 � 1.4 23.1 � 0.8 23.4 � 1.3
KW (g) 0.145 � 0.06 0.151 � 0.08 0.262 � 0.09* 0.254 � 0.07*
KW/BW (mg/g) 0.72 � 0.15 0.63 � 0.18 1.12 � 0.23* 1.10 � 0.29*
KW/TL (mg/mm) 7.25 � 0.83 7.14 � 0.91 11.23 � 1.65* 10.64 � 1.47*
Plasma K� (mM) 4.12 � 0.32 4.5 � 0.36 4.58 � 0.41 4.2 � 0.46
Creatinine (�M) 42.7 � 5.7 36.7 � 8.4 45.3 � 5.1 33.7 � 8.9

Data are means � SEM. *P 	 0.05 compared with corresponding nondiabetic control group. BW, body weight; KW, kidney weight; TL, tibial
length.
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macrophage and neutrophil infiltration in the kidneys (Fig.
3E and F). There was no evidence of glomerular or
tubulointerstitial infiltration by macrophages or neutro-
phils in the untreated and treated diabetic Akita mice. In
addition, the expression profiles of the proinflammatory
cytokines, tumor necrosis factor-�, interleukin-1�, and
interleukin-6, and the chemokine, monocyte chemoattrac-
tant protein-1, were similar in all four groups of mice
(supplementary Table 2).
Recombinant human ACE2 reduces ANG II levels in
the plasma and renal cortex. Plasma ACE2 activity was
increased in the treated mice, so we measured plasma and
renal cortical levels of ANG II, a substrate for ACE2 and
ANG 1–7, a product of ACE2, in response to the exogenous
hrACE2. In the Akita mice, plasma and renal cortical ANG
II levels were significantly reduced by 4 weeks of hrACE2
treatment (Fig. 4A). Consistent with the biochemical ac-
tion of ACE2, renal ANG 1–7 levels were increased after 4
weeks of treatment with hrACE2. There was a numeric
increase in plasma ANG 1–7 levels in the treated mice but
the difference did not reach statistical significance (P �

0.092) (Fig. 4B). Renal cortical expression of ace (Fig. 4C)
was reduced in the diabetic mice, whereas expression of
ace2 (Fig. 4D) was increased in the diabetic Akita mice.
The administration of hrACE2 did not influence ace and
ace2 expression levels in the kidney, suggesting that the
treatment-induced changes in peptide levels were due to
exogenous ACE2 activity rather than changes in endoge-
nous kidney expression of the key angiotensin processing
enzymes. Similarly, the expression of other components of
the RAS known to play a key role in diabetic nephropathy
such as the AT1 receptor (Fig. 4E), AT2 receptor (Fig. 4F),
bradykinin2 receptor (Fig. 4G), and the Mas receptor
(supplementary Table 2) was not influenced by hrACE2
treatment. Consistent with the measures of mesangial
matrix expansion, the mRNA expression of the ANG
II–sensitive genes fibronectin (Fig. 4H) and pro–collagen
III �-1 (Fig. 4I) was increased in Akita diabetic mice and
normalized by treatment with hrACE2.
Increased NADPH oxidase activity and PKC expres-
sion were suppressed by hrACE2. Increased renal
NADPH oxidase activity and activation of the PKC system
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play key roles in the pathophysiology of diabetic nephrop-
athy (5,28–30). Given the protective effect of hrACE2 on
diabetic kidney injury, we examined the effect of hrACE2
treatment on renal cortical NADPH oxidase activity and
the protein expression of PKC� and PKC�1 isoforms. In
the diabetic Akita mice, renal cortical NADPH activity
based on the lucigenin chemiluminescence assay was

significantly increased compared with nondiabetic mice
(Fig. 5A) in association with increased renal cortical
mRNA expression of the NADPH oxidase subunits, NOX2
(gp91phox) (Fig. 5B) and p47phox (Fig. 5C). The cortical
expression of the other NADPH subunits including NOX1,
NOX4, p22phox, p40phox, and p67phox was not significantly
altered in our diabetic model (supplementary Table 3).
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Treatment with hrACE2 normalized NADPH oxidase ac-
tivity and mRNA expression of NOX2 and p47phox subunits
in the diabetic mice (Fig. 5A–C). In the diabetic Akita mice,
protein levels of PKC� (Fig. 5D and E) and PKC�1 (Fig. 5D
and F) increased threefold compared with nondiabetic
C57BL/6J mice and this effect was attenuated by hrACE2
treatment.
Human recombinant ACE2 reduces high glucose and
ANG II–induced NADPH oxidase activity in mesan-
gial cells: evidence for the potential role of ANG 1–7.
To address mechanisms responsible for the protective
effect of hrACE2 in the diabetic mice, we used cultured
primary rat mesangial cells to study the effects of hrACE2
on high glucose and ANG II–induced dihydroethidium
fluorescence (DHF) fluorescence and NADPH oxidase

activity. High glucose–induced DHF fluorescence was at-
tenuated by both hrACE2 and ANG 1–7 (Fig. 6A–D).
NADPH oxidase was also activated by high glucose (Fig.
6E), and this effect was attenuated by pretreatment with
rhACE2 (Fig. 6F). As an osmotic control, D-mannitol did
not activate NADPH oxidase (Fig. 6E). Consistent with the
ability of hrACE2 to metabolize ANG II, hrACE2 also
suppressed ANG II–induced DHF fluorescence (Fig. 6G–I)
and reduced NADPH oxidase activity in a dose-dependent
manner (Fig. 6J) in mesangial cells. Pretreatment with the
specific ACE2 inhibitor, DX600 (1 �mol/l), prevented the
ability of hrACE2 to suppress ANG II–mediated activation
of NADPH oxidase (Fig. 6J). High glucose concentrations
can activate the intrarenal RAS and increase the genera-
tion of ANG II in mesangial cells (31–33), so we studied the
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effects of hrACE2 on high glucose–induced NADPH oxi-
dase activity in mesangial cells pretreated with either the
ANG II type I receptor antagonist, losartan, or the Mas
receptor peptide antagonist, D-Ala7-ANG 1–7 (34). Treatment
with the ANG II type 1 receptor antagonist attenuated the
high glucose–induced increase in NADPH oxidase activity
with hrACE2, leading to incremental suppression (Fig. 6K).
The attenuation of high glucose–induced NADPH oxidase
activity by hrACE2 was partially prevented by the Mas
receptor antagonist, D-Ala7-ANG 1–7, suggesting that part
of the effect was mediated by ANG 1–7 (Fig. 6L). Taken
together, these results support the hypothesis that the
protective effect of hrACE2 is mediated, at least in part, by
a reduction in ANG II and an increase in ANG 1–7 and that
together these changes reduce oxidative stress in the
diabetic kidney.

DISCUSSION

Diabetic nephropathy continues to be the most common
cause of end-stage renal disease in North America. Acti-
vation of the RAS and ANG II play an important role in the
development of experimental and clinical diabetic ne-
phropathy, and blockade of the RAS in both experimental
and clinical diabetes attenuates the development of dia-
betic kidney injury (6–8,18). However, ACE inhibitors and
angiotensin receptor blockers provide only partial long-
term benefits in patients with type 1 (35) and type 2
(6,7,36) diabetes. The recent discovery of an ACE homo-
logue, ACE2, has revised our understanding of the renin-
angiotensin system (11,12,37). In a long-standing diabetic
rat model, renal ACE2 expression is reduced (16), whereas
there is an early increase in ACE2 expression and activity
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in the kidneys of the diabetic db/db (15) and Akita (18)
mice. Deletion of the AceII gene and pharmacological
inhibition of ACE2 is associated with accelerated glomer-
ular injury in Akita diabetic mice (18) and in streptozocin-
induced diabetes (38,39), providing definitive evidence
that ACE2 is renoprotective and that reduced ACE2 activ-
ity contributes to the progression of kidney disease
(19,20). Kidney disease in patients with type 2 diabetes is
associated with a reduction in ACE2 mRNA and protein
expression (20). Accordingly, we evaluated the ability of
hrACE2 to reduce the functional and structural changes of
diabetic nephropathy in male Akita (Ins2WT/C96Y) mice, a
model of type 1 diabetes that is associated with the
development of changes in the kidney that are similar to
human diabetic nephropathy (18,26,40).

We observed early and sustained increases in the blood
glucose concentrations in our Akita mice, as reported
previously (18,26,40). Our major finding is that treatment
with exogenous hrACE2 slows the progression of diabetic
nephropathy. The Akita diabetic mice develop an increase
in the urinary albumin excretion rate in association with
renal and glomerular hypertrophy, mesangial matrix ex-
pansion, and an increase in GBM thickness compared with

littermate nondiabetic mice. The increase in albumin ex-
cretion, an early functional abnormality in the natural
history of nephropathy in patients with diabetes (41,42),
was markedly reduced by hrACE2 treatment. ACE2 activ-
ity increased in the plasma of treated mice; plasma and
renal ANG II levels declined whereas ANG 1–7 levels rose
in the treated Akita mice. These observations are consis-
tent with the hypothesis that ACE2 plays an important role
in the processing of angiotensin peptides in the plasma
and kidney (13,15,16) and that ANG II–dependent injury
(via the AT1 receptors) in the diabetic kidney is acceler-
ated by reduced ACE2 activity (18). Whether the changes
in renal angiotensin peptide levels reflect the changes in
plasma angiotensin levels and/or an active intrarenal pro-
cess remains to be clarified. Consistent with previous
studies (18,40), we observed mild hypertension in the
diabetic Akita mice and hrACE2 treatment lowered blood
pressure in association with the decrease in plasma ANG II
levels, an effect that may contribute to renal protection.

Glomerular hypertrophy and mesangial matrix expan-
sion, early features of human diabetic nephropathy, were
reduced by hrACE2 treatment, confirming that modulation
of angiotensin peptide metabolism and its downstream
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effects can attenuate diabetic kidney injury in the diabetic
mouse. The RAS is activated in the diabetic milieu and
increasing ACE2 activity may provide an alternate and
important strategy to limit the role of the RAS in progres-
sive diabetic nephropathy. Increased renal NADPH oxi-
dase activity and activation of the PKC system are two
canonical pathways known to play a fundamental role in
the pathophysiology of diabetic nephropathy (28–30). Ex-
pression analysis of the renal cortical NADPH subunits
revealed that both NOX2 (gp91phox) and p47 subunits were
increased in diabetic Akita mice in agreement with previ-
ous findings in a type 1 diabetic model (29). Along with
these changes in NADPH oxidase subunit expression,
NADPH oxidase activity increased in the kidney cortex of
our diabetic Akita mice. Importantly, hrACE2 treatment
reduced renal cortical protein levels of PKC� and PKC�1
and normalized NADPH oxidase subunit expression and
activity in diabetic Akita mice.

We used an in vitro system of cultured primary rat
mesangial cells to provide further insights into the mech-
anisms responsible for renoprotective effect of hrACE2
treatment in our diabetic Akita mice. Both high glucose
concentrations and ANG II increased NADPH oxidase
activity in vitro, and hrACE2 treatment attenuated high
glucose– and ANG II–induced DHF staining and NADPH
oxidase activation in the mesangial cells. Blockade of ANG
1–7 signaling with a Mas receptor peptide antagonist
limited the protective effect of hrACE2 in vitro. Taken
together with our finding that kidney cortical levels of
ANG 1–7 were increased in the treated diabetic mice,
these in vitro findings support the hypothesis that the
protective effect of hrACE2 on diabetic injury was medi-
ated, at least in part, by an increase in ANG 1–7 levels and
attenuation of oxidative stress. Indeed, treatment with
ANG 1–7 reduces renal NADPH oxidase activity and
urinary albumin excretion in diabetic hypertensive rats
(43), whereas the loss of ANG 1–7 receptor (Mas receptor)
leads to glomerular hyperfiltration and albuminuria (44),
changes that are characteristic of early diabetic nephrop-
athy. Finally, our data also suggest that hrACE2-induced
reduction in NADPH oxidase activity in vivo is due in part
to the decrease in plasma and kidney ANG II levels.

In summary, we have shown that hrACE2 treatment
improves kidney function and structure in a murine model
of diabetic nephropathy. The ability of hrACE2 to suppress
high glucose– and ANG II–induced activation of NADPH
oxidase and to limit diabetic nephropathy is consistent
with the notion that it functions as a negative regulator of
the RAS. These beneficial effects of hrACE2 were not due
to changes in plasma glucose levels, although there was a
normalizing effect on blood pressure that may contribute
to the renoprotection. Enhancing ACE2 activity may rep-
resent a novel therapeutic strategy to minimize the rate of
progression of diabetic kidney disease. Additional work
will be required to determine whether hrACE2 provides an
incremental benefit over AT1 receptor blockade and/or
ACE inhibition.
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