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Simple Summary: Despite recent advances in understanding the molecular biology of tumors,
obstacles still exist in the treatment of patients affected by rectal cancer. Recent evidence shows
that ionizing radiation may have profound immunostimulatory effects, hinting at the possibility of
exploiting radiotherapy to boost anti-tumor immunity. A bulk of work in pre-clinical tumor models
have highlighted the potential benefit of this approach. Following these results, a few clinical trials
are now evaluating the combination of radiotherapy and immune checkpoint inhibition. Remarkably,
encouraging safety and toxicity profiles from these studies indicate that radio-immunotherapy
combinations could represent a valid opportunity for rectal cancer patients. Yet, the biological and
clinical impact of a radio-immunotherapy combination in rectal cancer remains unclear and further
studies need to be performed to optimize the effect of these combinations.

Abstract: Rectal cancer is a heterogeneous disease at the genetic and molecular levels, both aspects
having major repercussions on the tumor immune contexture. Whilst microsatellite status and
tumor mutational load have been associated with response to immunotherapy, presence of tumor-
infiltrating lymphocytes is one of the most powerful prognostic and predictive biomarkers. Yet, the
majority of rectal cancers are characterized by microsatellite stability, low tumor mutational burden
and poor T cell infiltration. Consequently, these tumors do not respond to immunotherapy and
treatment largely relies on radiotherapy alone or in combination with chemotherapy followed by
radical surgery. Importantly, pre-clinical and clinical studies suggest that radiotherapy can induce
a complete reprograming of the tumor microenvironment, potentially sensitizing it for immune
checkpoint inhibition. Nonetheless, growing evidence suggest that this synergistic effect strongly
depends on radiotherapy dosing, fractionation and timing. Despite ongoing work, information
about the radiotherapy regimen required to yield optimal clinical outcome when combined to
checkpoint blockade remains largely unavailable. In this review, we describe the molecular and
immune heterogeneity of rectal cancer and outline its prognostic value. In addition, we discuss the
effect of radiotherapy on the tumor microenvironment, focusing on the mechanisms and benefits of
its combination with immune checkpoint inhibitors.
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1. Introduction
1.1. Epidemiology of Rectal Cancer

Colorectal cancer (CRC) is the fourth most common cancer worldwide, contributing
to over two million new cases and 1 million cancer-related deaths in 2018 [1,2]. Of these,
one-third is represented by rectal cancer (RC) [3]. Incidence rates of CRC have been steadily
rising, particularly in developing countries, probably due to the westernization of lifestyle
conditions and consequent exposure to risk factors (e.g., obesity, alcohol and limited
physical activity) [4]. Additionally, non-modifiable predisposing factors include hereditary
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genetic alterations, sex and age. CRC indeed occurs more frequently in men than women
and its incidence positively correlates with age [4]. In addition, germ-line mutations in
the APC, BRCA, PTEN and MLH genes are responsible for inherited syndromes such as
hereditary non-polyposis CRC and several polyposis conditions [5,6].

Despite the fact that the term CRC has long been used to identify tumors of the large
intestine, growing evidence suggests that colon cancer (CC) and RC are distinct tumor
entities [7]. Differences exist in terms of embryonic origin, anatomic location, microbiota,
macroscopic and histopathological appearance and patient management [8]. While CC
encompasses the large bowel, RC is restricted to the 15 cm of the distal colon between the
sigmoid and the anal margin [9]. An accurate determination of the distance to the anal
verge is crucial for patient stratification and the European Society for Medical Oncology
(ESMO) classifies RC into upper (10–15cm), medium (5–10cm) and lower (<5 cm) third [10].
On the other hand, the Union for International Cancer Control (UICC) sets different cutoff
values by 12–16 cm as high, 6–12 cm as mid and <6 cm as low RC [11]. Although CC
incidence is greater than RC, in relation to the length, the rectum mucosa has a four
times higher carcinogenic risk than the colon mucosa [8]. Consequently, different growing
patterns have been observed, with the appearance of polypoid non-depressed lesions more
frequently seen in CC than RC [12]. Based on venous drainage, metastatic dissemination in
RC involves lungs and bones more frequently than for CC, whereas CC favors the liver [13].
Ultimately, treatment modalities differentially characterize localized CC and RC: the most
common option for CC is upfront surgery followed by adjuvant chemotherapy, while
neoadjuvant radiotherapy (RT) or chemo-radiotherapy (CRT) followed by surgery and,
eventually, adjuvant chemotherapy is used in RC [14]. Whereas extensive literature is
available for CRC, this review aims to spotlight RC biology and its treatment.

1.2. Molecular Pathogenesis of Rectal Tumors

RC arises from the malignant transformation of the epithelial cells lining the large
intestine (Figure 1a) [15]. The first step of RC carcinogenesis involves the acquisition of
genetic and epigenetic changes that promote proliferation [16]. These hyper-proliferative
cells give rise to a benign adenoma, which may then evolve into carcinoma and spread to
distant organs [17]. The latter occurs in approximately 20–30% of the cases [18], and 5-year
survival for these patients is 20–40% [19]. In 1990, Vogelstein and colleagues elucidated
the step-wise accumulation of genetic driver events leading the transition from adenoma
to carcinoma [17]. This model describes the sequential inactivation of tumor suppressor
genes (e.g., APC, SMAD4, and P53) and activation of oncogenic KRAS [20]. Thereafter,
several genomic and epigenomic studies have contributed to a deeper understanding of
the molecular pathogenesis of CRC at the gene-expression level and patients have been
classified into two groups: microsatellite instability-high (MSI-H) and microsatellite stable
(MSS). The MSI-H group accounts for 15% of the cases and is characterized by defects in the
DNA mismatch repair program (dMMR), resulting frequently in high tumor mutational
burden (TMB). Within this group, MSI-H sporadic CRC (67%) is caused by epigenetic
inactivation of the MLH1 gene whereas the remaining 33% is caused by germline mutations
in MMR genes (particularly MLH1 and MSH2) leading to hereditary non-polyposis CRC
(HNPCC) [21]. The MSS group accounts for the remaining 85% of all CRCs and exhibits
chromosomal instability (CIN), proficient DNA mismatch repair mechanisms (pMMR)
and low TMB [22–25]. Notably, a gradient in dMMR/MSI-H has been observed in the
right colon (22.3%) compared to left (4.6%) and the rectum (0.7%) [26]. Subtype analysis
of the TCGA datasets revealed that, within the microsatellite classification, CC and RC
have different immune microenvironments [27]. Integration of immune and transcriptomic
profiling by the CRC Subtyping Consortium (CRCSC) established four consensus molecular
subgroups (CMS) [28]. To date, CMS represent the best description of CRC heterogeneity
(Figure 1b) [29], albeit other classifications have also been proposed [30,31]. The highly im-
munogenic CMS1 subtype (14%) is characterized by high TMB, dMMR/MSI-H and strong
immune activation, the canonical CMS2 group (37%) displays WNT and MYC signaling
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activation and immune ignorance, the metabolic CMS3 class (13%) is distinguished for
metabolic dysregulation, whereas the mesenchymal CMS4 subtype (23%) shows promi-
nent transforming growth factor-β (TGFβ) activation, stromal invasion and angiogenesis.
Interestingly, CMS profiles showed a decrease in CMS1 and CMS3 and an increase in CMS2
prevalence moving distally towards the rectum, while CMS4 remained relatively stable [32].
Despite recent advances in understanding the biological and molecular characteristics un-
derpinning RC heterogeneity, the clinical significance of the CMS classification is still under
evaluation [33].
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Figure 1. The rectal tumor microenvironment. (a) Illustration representing the anatomy of the large intestine and the
development of a tumor localized in the rectum. (b) The four consensus molecular subtypes and their specific stroma-
immune microenvironments. CMS1 cluster displays strong immune activation with high levels of CD8+ T cells, CD4+ T
cells, γδ T cells, activated dendritic cells (DCs), natural killer (NK) cells and M1 macrophages alongside high expression of
cytokines, PD1, PD-L1 and MHC-I. CMS2 shows an immune-desert microenvironment characterized by a few immune cells
and poor expression of PD1, PD-L1, LAG-3 and CTLA-4. CMS3 is distinguished by metabolic dysregulation, infiltration
of Th17 cells, naive B and T cells, and expression of MHC-I, PD1 and PD-L1. CMS4 exhibits high angiogenesis activity,
expression of TGF-β, and infiltration of CD8+ T cells, CD4+ T cells, Tregs, M2 macrophages, monocytes, eosinophils and
resting DCs.

2. Therapeutic Management of Rectal Cancer
2.1. Conventional Treatment Options

Surgical resection is the curative modality for the treatment of RC [34]. On top
of surgery, management of RC patients largely relies on conventional methods such as
chemotherapy and RT [35]. Local relapse represents a major surgical and therapeutic
challenge for RC patients [36]. Because of the topographic position, innervation and vascu-
lar supply, the only curative possibility lies in an extensive surgery—abdominoperineal
resection—removing the anus, the rectum, and part of the sigmoid colon along with the
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associated regional lymph nodes. The end of the remaining large intestine is brought
out permanently as an opening, called colostomy, on the surface of the abdomen. This
life-saving procedure is demanding for the surgeon and has a massive impact on the quality
of life of RC patients.

Neo-adjuvant RT has been shown to reduce tumor burden, improve operative proce-
dures and prevent local tumor recurrence [37–40]. For instance, short-course preoperative
RT (SCPRT) showed a significant reduction in local recurrence compared to postoperative
RT [40,41]. Similarly, preoperative CRT exhibited greater effectiveness and reduced mor-
bidity than postoperative RT [42]. Remarkably, a lower recurrence rate was observed in
patients who underwent surgery at least four weeks after RT compared to a shorter interval
(≤1 week), providing the tumor adequate time to regress, allowing for tumor adaptive
immune responses and enabling patients to recover from acute radiation toxicities [43,44].
Altogether, these studies contributed to the acceptance of neo-adjuvant RT and delayed
surgery in clinical settings. Currently, European and American guidelines for the treatment
of RC recommend five weeks neo-adjuvant CRT (45–50.4 Gy in 1.8–2 Gy/fraction, in associ-
ation with fluoropyrimidine 5-fluorouracil (5-FU) radio-sensitization) followed by an 8- to
12-week treatment-free interval before radical surgery [45]. In addition to 5-FU, commonly
used chemotherapies in the treatment of RC include oxaliplatin. Although they may have
different mechanisms of action, these compounds share their anti-cancer effects through
the disruption of DNA replication and transcription [46,47]. Alternatively, SCPRT of 25 Gy
(5 × 5 Gy) with surgery taking place between 1 and 8 weeks after RT is being used [48].

Notably, RT can be administered to patients either as long-course treatment using
conventional fractionation (1.8–2 Gy/fraction) or as short-course treatment using hypo-
fractionation (>2 Gy/fraction) [49]. Indeed, the STOCKHOLM III study comparing long-
course RT (25 × 2 Gy) with delayed surgery to short-course RT (5 × 5 Gy) and delayed
surgery showed similar oncological results in terms of local recurrence, distant metastases,
survival, and complications, indicating that these treatments are very similar [50]. Despite
the concerns about late toxicity of hypo-fractionation, improved local tumor control and
overall survival (OS) rates with minimal side effects led to the establishment of extreme
hypo-fractionation regimens such as stereotactic body radiation therapy (SBRT). SBRT
delivers high RT doses (≥8 Gy/fraction) in a few fractions [51], however it is not frequently
used in the clinic. The biological bases for the selection of the fractionation regimen depends
on the ability of the normal tissue to repair sublethal damage, tissue re-oxygenation,
patients’ health conditions and concomitant therapies [52]. All these factors together
determine the true biological effective dose (BED) delivered by a particular combination
of dose per fraction and total dose to a particular tissue characterized by a specific α/β
ratio, which reflects the sensitivity of the tissue to irradiation [53]. Consequently, the total
RT dose cannot be directly compared between different fractionation regimens.

Two phase III clinical trials (POLISH and TROG 01.04) have reported a direct compari-
son between neo-adjuvant RT and CRT, suggesting that the two approaches are broadly
comparable in their ability to lower the risk of local recurrence and so both are acceptable
options [54,55]. In these trials, five-year recurrence rates for neo-adjuvant RT and CRT were
27% and 30% respectively, whereas OS rates were 74% and 70% [55]. In practice, the major-
ity of localized RC patients are treated with SCPRT over CRT due to comparable outcomes,
reduced toxicity and cost-effectiveness [56], while CRT or SCPRT with chemotherapy is
favored for bigger tumors [9].

Pathological complete response (pCR) is defined as the absence of residual disease
in the rectum and lymph nodes at the time of surgery [57]. In patients achieving pCR
after neo-adjuvant treatment, a non-operative “watch and wait” management could be
offered, hereby preserving the organ, its function and the patient’s quality of life. Up to 16%
of patients receiving CRT reach pCR compared to 12% of those treated with SCPRT [48].
Patients undergoing chemotherapy before CRT or SCPRT showed increased pCR to 30–
35% [58]. Similar results were observed when chemotherapy was applied after conventional
neo-adjuvant RT and CRT treatments [59]. In some instances, patients achieving pCR
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showed lower risk of local or distant recurrence and improved survival compared to
patients not achieving pCR [60], but in general there is no clear correlation between
pCR and outcome. In fact, two international multicenter phase III trials (RAPIDO and
PRODIGE 23) showed no survival benefit in any experimental arms where chemotherapy
was applied either before or after neo-adjuvant RT or CRT compared to the conventional
treatments [59,61]. Therefore, more efforts into exploring multimodality approaches should
be invested.

With increasing insight into the molecular pathways governing tumor growth, the
development of targeted therapies inhibiting these signals have gained attention, especially
in the context of metastatic RC [62]. Despite the majority of RCs (>50%) being wild type
for the RAS genes, targeted therapies against epithermal growth factor receptor (EGFR),
which gene is mutated in a mutually exclusive manner with RAS, showed suboptimal
activity in locally advanced RC patients [63]. On the other hand, in metastatic CRC
settings, the combination of EGFR inhibitors with conventional chemotherapy showed
improved progression-free survival (PFS) and OS [64–66]. Notably, 5% of CRCs carry a
BRAF mutation. Remarkably, when combined with the RAF inhibitor encorafenib, which
is part of the EGFR downstream signaling pathway, response rates to EGFR inhibition
compared to chemotherapy alone increased from 2% to 30% and OS was improved from
5.4 months to 9 months, respectively [67]. Similarly, recent trials targeting HER2, which is
a member of the EGFR superfamily, in combination with chemotherapy showed promising
preliminary activity in metastatic CRC [68]. Nevertheless, anti-HER2 and anti-BRAF
therapies have yet to be tested in localized RC settings. In addition to these studies, others
investigated safety and efficacy of the anti-vascular endothelial growth factor (VEGF)
monoclonal antibody bevacizumab with chemotherapy and CRT in CRC [69–71] and
RC [70–72] showing opposite results. In particular, anti-VEGF antibody in combination
with chemotherapy improved PFS and OS in metastatic CRC [69–71] whereas discouraging
toxicity profiles were observed in phase I [70–72] and phase II [72] trials in locally advanced
RC where anti-VEGF was combined with CRT. Despite the success of targeted therapies in
advanced settings, RT followed by surgery remains the current standard-of-care for the
treatment of localized RC patients.

2.2. Checkpoint Inhibitor Therapy

Over the past decade, the rise of immunotherapy has revolutionized the way many
cancers are treated [73]. Unlike conventional therapies, these novel anti-cancer treatment
modalities focus on enhancing anti-tumor T cell functions rather than targeting tumor cells
directly [74]. Cancer immunotherapies include therapeutic vaccines, chimeric antigen re-
ceptor (CAR) T cell infusions [75,76], immune modulators (e.g., cytokines) and monoclonal
antibodies (e.g., immune checkpoint inhibitors (ICIs)) [77,78]. The latter, in particular, have
shown substantial clinical activity in patients with advanced cancers, including melanoma,
non-small-cell lung cancer and CRC [79–81]. Although several immune checkpoints have
been discovered, monoclonal antibodies against three major targets (PD1, its ligand PD-L1,
and CTLA-4) have been approved for the treatment of a wide variety of cancers [82]. Ex-
pression of PD-L1 by cancer cells leads to the inhibition of T cell proliferation and cytokine
secretion while simultaneously reducing apoptosis in anti-inflammatory T regulatory cells
(Tregs) [83]. Similarly, CTLA-4 promotes immune escape by increasing immune toler-
ance [84]. By blocking these immunosuppressive interactions, ICIs reinvigorate immune
recognition of tumors. Despite these successes, only a minority of patients experience
clinical benefits from immune checkpoint blockade. In metastatic CRC, ICIs showed re-
markable results in dMMR/MSI-H patients [85]; however, these agents have not proved
meaningful activity in pMMR/MSS CRC [86]. Indeed, two phase II trials (KEYNOTE-016
and KEYNOTE-164) evaluated safety and overall response rate (ORR) of the anti-PD1 anti-
body pembrolizumab in pre-treated patients with advanced dMMR/MSI-H CRC [87,88].
These studies revealed durable responses in dMMR/MSI-H CRC, whereas no effect was
observed in pMMR/MSS CRC (ORR of 57% and 0%, respectively) [87,88]. Similarly, the
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CHECKMATE-142 trial testing the effect of another anti-PD1 agent, nivolumab, showed
improved clinical outcome in dMMR/MSI-H CRCs [89]. These patients displayed dis-
ease control for 12 weeks or longer, with PFS and OS rates at 12 months of 50.4% and
73.4% respectively [89]. The KEYNOTE-177 study comparing the standard-of-care first-line
chemotherapy treatment to pembrolizumab in dMMR/MSI-H patients showed superiority
of pembrolizumab in term of PFS (16.5 months vs. 8.2 months for chemotherapy), response
rate (44% vs. 33% for chemotherapy) and quality of life [85]. Following these data, the
Food and Drug Administration (FDA) granted accelerated approval for the use of pem-
brolizumab and nivolumab in first- and second-line treatment, respectively, of unresectable
or metastatic dMMR/MSI-H CRCs.

Further studies explored the combination of immunotherapies in dMMR/MSI-H
metastatic CRC. Combining the anti-CTLA-4 agent ipilimumab and nivolumab led to 80%
disease control rate (stable disease) at 12 weeks and PFS and OS rates at 12 months of 71%
and 87% respectively [90], outperforming results published with first-line chemotherapy
or immunotherapy with single agents. This combination has been approved by the FDA
in second-line treatment of dMMR/MSI-H metastatic CRCs [91]. Similarly, the NICHE
study tested the combination of ipilimumab and nivolumab in the neoadjuvant setting in
dMMR/MSI-H or pMMR/MSS early-stage CRC [92]. Interestingly, 27% of patients with
pMMR/MSS tumors displayed pathological responses ranging from partial to complete
response, providing the first indication of a clinical benefit of immune checkpoint inhibition
in pMMR/MSS patients [92]. In the context of RC specifically, a phase II clinical trial
(iSCORE) is currently evaluating the combination of nivolumab and the anti-LAG3 antibody
relatlimab in metastatic RAS/RAF wild type tumors (NCT03867799).

3. The Prognostic Value of the Tumor Microenvironment

The network of interactions established by immune cells, endothelial cells, stromal
fibroblasts and matrix-associated molecules within the tumor and the surrounding tissues
generates the tumor microenvironment (TME) [93]. There is substantial evidence recog-
nizing the TME as a determining factor for disease progression, therapeutic responses
and patient outcome [7,94]. While alterations to the TME composition during tumor de-
velopment have been extensively described in other reviews [95,96], our manuscript will
focus on discussing the prognostic and clinical value of these interactions in the light of
advancing treatment options for RC patients.

3.1. The Immunoscore

The importance and decisive role of the immune microenvironment in determining
tumor fate has been elegantly described in a recent study by Devaud et al., where the
authors identified two opposing immune response profiles with either pro- or anti-tumor
properties that establish at early stage of tumor development and determine tumor pro-
gression vs. rejection [97]. Phenotypic differences in T cell infiltration within the TME can
be summarized into three categories: the “immune-inflamed/hot” phenotype, in which
CD8+ T cells infiltrate the tumor; the “immune-excluded” phenotype, in which infiltrating
CD8+ T cells accumulate in the tumor stroma and the “immune-desert/cold” phenotype,
in which CD8+ T cells are low or absent from the tumor and the stroma [98,99]. As T cell
infiltration is typically dictated by the presence of tumor-specific antigens (neoantigens), it
is not surprising that dMMR/MSI-H tumors display a greater number of tumor-infiltrating
lymphocytes (TILs) as compared to pMMR/MSS cancers [100]. The presence of TILs has
been shown to correlate with improved outcomes in many cancers, including RC [101,102].

In line with these observations, Galon and colleagues demonstrated the prognostic
value of CD3+ and CD8+ TIL densities in advanced CRC [103]. They conducted genomic
analyses and in-situ immunohistochemistry, highlighting a positive correlation between
the presence of markers for Th1 polarization and of cytotoxic and memory T cells (CD3,
CD8, GZMB, and CD45RO) and a low incidence of tumor recurrence. Similarly, Tosolini
et al. revealed that Th1-associated gene expression is linked to a positive clinical impact in
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CRC patients [104]. Following this work, an international validation study demonstrated
that this “immunoscore” is an independent positive prognostic biomarker for recurrence in
stage I-III CRC, outcompeting the MSI status [105,106]. Interestingly, CD8+ and CD3+ T
cells but not FoxP3+ Tregs were found to correlate with frameshift mutations in dMMR/MSI
tumors [107,108]. High CD8+ levels and CD8+/FoxP3+ TIL ratio inversely correlated with
pathological stages [109,110], whereas a positive correlation was described between FoxP3
expression and nodal dissemination and disease burden [111]. Similarly, low CD3+/FoxP3+

TIL ratio predicted adverse outcomes [112]. Since the validation of the “immunoscore”,
several teams have worked towards its refinement [30]. Interestingly, expression of PD-L1
in the tumor was found to be associated with a high “immunoscore” [113]. While the
prognostic value of CD3+ and CD8+ T cells is well described, the significance of Tregs
remains controversial. For instance, a study in CRC showed that a high infiltration rate of
FoxP3+ Tregs at the tumor invasive front correlated with a significantly improved progno-
sis [114]. Later, Lin et al. identified two Tregs populations that were associated with distinct
clinical outcomes, which could explain these contrasting results [115]. These findings were
corroborated by Saito and colleagues, revealing that FoxP3high CD45RO− but not FoxP3low

CD45RO− Tregs were associated with poor prognosis [116]. In addition, a detailed inves-
tigation of CD3+ T cells in CRC liver metastasis revealed the existence of distinct spatial
distribution patterns of immune cells in relation to the tumor margin that were associated
with specific prognostic outcomes [117]. For instance, a significant decreased in GZMB
CD8+ T cell density at 20–30 µm from the tumor epithelium concomitant with an increase
in CD163 macrophages correlated with improved OS [117]. On the contrary, high T cells
and low CD163 macrophages, which were observed at the direct tumor border <10 µm,
also correlated with improved OS [117]. Taken together, this study highlights the impact
of T cell function and localization on clinical responses. In the light of the recent findings,
further improvements are to be expected.

3.2. Other Immune Cells

In addition to T cells, other immune cell populations are commonly present in the
TME in RC. Natural killer (NK) cell infiltration, in particular CD56bright cells, positively
correlates with patient survival [118,119]. However, expression of inhibitory receptors
was shown to impair NK cytotoxic function and was found to be associated with tumor
progression [120]. The presence of mast cells has been associated with reduced survival
and advanced pathological stages, especially in CRC liver metastasis [121,122]. Elevated
neutrophil to lymphocyte ratio in the peripheral blood of advanced CRC patients has been
correlated with poor clinical outcome [123], whereas the opposite has been shown for
tumor eosinophil infiltration [124].

The prognostic significance of tumor-associated macrophages (TAMs) in RC remains
controversial [125]. A bulk of studies indicate a positive association with survival [126–128],
whereas others predict poor patient outcome [129,130]. Nearchou and colleagues applied
automated image analysis and machine learning approaches to evaluate the prognos-
tic significance of immune cell subpopulations and their spatial interactions in RC and
found that a low CD68+/CD163+ cell ratio was significantly associated with improved
DFS [131]. In contrast, Feng et al. and Yang et al. showed that high CD163+/CD68+

and CD206+/CD68+ ratios correlated with decreased relapse-free survival and OS in
CRC [132,133]. Similarly, dendritic cells (DCs) exhibited positive as well as negative con-
tributions to patients’ survival, indicative of the intrinsic heterogeneity and plasticity of
these populations [134–136]. Finally, a high frequency of myeloid-derived suppressor cells
(MDSCs) correlated with advanced stage and metastasis in the lymph nodes [137]. Interest-
ingly, MDSCs isolated from the peripheral blood of CRC patients were able to inhibit T cell
expansion in vitro [138]. Taken together, these studies show that a pro-inflammatory TME
characterized by CD8+ T cell infiltration is associated with improved clinical outcomes in
RC. In contrast, the immunosuppressive functions of other immune cells, such as MDSCs,
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immunosuppressive/M2 TAMs and Tregs, appear to play a major role in promoting tumor
immune escape [139].

4. Biomarkers of Response to Immunotherapy

The positive correlation between the presence of TILs in the TME and good prog-
nosis in RC further supports the idea that a treatment based on immunotherapy should
provide clinical benefit [140]. Indeed, failure in achieving durable responses to immune
checkpoint inhibition is often associated with scarce or absent T cell infiltration, indicative
of an “immune-desert/cold” tumor microenvironment. The relationship between muta-
tional load, microsatellite status and response to immunotherapy has been described in
many solid cancers [141]. Along with the evidence that dMMR/MSI-H tumors are more
responsive to ICIs, a significant association was predicted within the four CMS subtypes
in CRC [142,143]. The highly immunogenic CMS1, characterized by elevated TMB, MSI
and immune activation, correlated with good prognosis and was predicted to respond to
checkpoint blockade. On the other hand, the immune ignorant CMS2 was shown to be
associated with worse prognosis and was predicted to respond poorly to immunother-
apy [142,143]. Although the microsatellite status is important, it is however not sufficient
to guide immunotherapy responses. For instance, even within pMMR/MSS CRC, tumors
with a high neoantigen load display increased T cell infiltration, which positively correlates
with survival, suggesting that not all pMMR/MSS tumors are non-immunogenic [144].
Interestingly, the majority of these pMRR/MSS tumors show POLE mutations, which
are known to lead to high TMB [145]. In this line, the pMMR/MSS RC patients who
responded to the combination of PD1 and CTLA-4 checkpoint inhibitors showed high TMB,
neoantigen load and TIL infiltration [92]. Furthermore, the authors found that CD8+ and
PD1+ T cells were predictive of response [92]. Similarly, Llosa and colleagues reported that
pMMR/MSS tumors responding to pembrolizumab showed an immune microenvironment
resembling that of the dMMR/MSI-H tumors and were characterized by PD1+ CD8+ T cell
infiltration and high levels of PD-L1 [146]. Nevertheless, in CRC, PD1/PD-L1 expression is
poorly correlated with clinicopathological parameters such as tumor stage and grade [147]
and the identification of more precise and reliable predictive biomarkers continues to be an
unmet clinical need.

It appears increasingly clear that, in order to broaden the application of promising ICIs
and develop an effective treatment strategy especially in the context of “non-inflamed/cold”
tumors, novel therapeutic approaches aiming at reconditioning the TME by either pro-
moting TIL activation and infiltration or by inhibiting immunosuppressive signals are
required. To this end, cytotoxic agents such as chemotherapy and RT might affect the
interplay between cancer cells and immune cells in the TME.

5. The Effect of Conventional Therapies on the Tumor Microenvironment

A bulk of pre-clinical work showed that modification of the TME can be achieved by
chemotherapy, RT and/or targeted agents [148]. Recent evidence suggests that ionizing
radiation can induce important immunomodulatory effects that may stimulate an in-situ
vaccine phenomenon by reconditioning the TME and inducing T cell trafficking to the
tumor [149]. Upon irradiation, cancer cells undergo immunogenic cell death that is asso-
ciated with the release of damage associated molecular patterns (DAMPs), accumulation
of cytosolic DNA, and upregulation of signals (e.g., IFN-γ, IL-1 and IL-6) that promote
the recruitment of DCs, and expression of immunomodulatory genes including antigen
presentation genes (Figure 2) [150,151].
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Figure 2. Tumor microenvironment after radiotherapy and immune checkpoint Inhibition. Upon radiotherapy, cancer cells
undergo immunogenic cell death that is associated with the release of damage associated molecular patterns (DAMPs),
neoantigens and pro-inflammatory cytokines (e.g., IFN-γ, IL-1 and IL-6), which promote the expression of immunomod-
ulatory genes including antigen presentation genes and lead to the recruitment and activation of dendritic cells (DCs).
Following migration to the lymph node, DCs are involved in priming and activation of T lymphocytes, which are then
recruited into the tumor site alongside other immune cells. Additional modifications in the tumor microenvironment (TME)
upon radiotherapy (RT) treatment include shift in macrophage phenotype towards M1, modulation of the tumor vasculature
and alteration of the cell metabolism. Altogether these events enhance the recognition and killing of tumor cells. Besides
inducing de novo inflammation, RT is also responsible for increasing the expression of immune checkpoints such as PD1,
PD-L1 and CTLA-4. In this context, the application of immune checkpoint inhibitors might further add to the ongoing
adaptive anti-tumor immunity. Taken together, the effect of RT on the TME could evoke the transition from CMS2-like TME
to CMS1-like TME.

5.1. Effect of Radiotherapy

In syngeneic mouse models of CRC, high dose irradiation (1 × 10 Gy and 1 × 30 Gy)
promoted the expansion of effector CD8+ T cells and a loss of MDSCs via activation of
antigen cross-presenting DCs, secretion of IFN-γ, and activation of CD4+ T cells express-
ing CD40L [152,153]. Altogether, these alterations resulted in improved tumor control
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in vivo [152,153]. On the other hand, high dose RT (1 × 10 Gy) was shown to increase the
immunosuppressive function of Tregs in the TME via TGFβ and IL-33 signaling [154]. In
RC patients, a decrease in the CD8+/FoxP3+ TIL ratio was observed after conventional as
well as hypo-fractionated RT and positively correlated with OS [155]. These results are
difficult to interpret and the prognostic and predictive significance of Tregs in RC remains
controversial [115]. Furthermore, it appears increasingly clear that RT holds stimulatory as
well as immunosuppressive traits [156], and that the fine balance between these properties
dictate patient outcome. The effect of RT in promoting a pro- or an anti-inflammatory
phenotype likely depends on dose, fractionation, and tumor type [157–159]. It has been hy-
pothesized that high dose radiation is involved in the direct killing of primary tumor cells,
which allows neoantigen release and T cell priming, whereas low dose radiation modulates
the TME including at distant sites (abscopal effect) and enhances TIL infiltration, which
leads to enhanced immune-cell recognition, tumor cell killing and antigen release [160].
Indeed, Dewan et al. showed that a single fraction of 20 Gy failed to inhibit tumor growth
at a distant site compared to fractionated RT (3 × 8 Gy, 5 × 6 Gy) [161]. Remarkably,
compared to conventional fractionated RT, hypo-fractionated RT further diminished the
ratio of CD8+/FoxP3+ TILs in RC patients, indicating that differences can be observed
even within fractionated regimens [155]. Grapin and colleagues showed that different
fractionation schemes with similar BED (18 × 2 Gy, 3 × 8 Gy and 1 × 16.4 Gy) induced
different lymphoid and myeloid responses as well as modulation of PD-L1 and TIGIT
expression [162]. In particular, mice bearing subcutaneous CT26 colon tumors displayed
the highest number of GZMB CD8+ T cells and M1/M2 TAM ratio concomitantly with
the lowest CD8+/Treg ratio when irradiated with 3 × 8G y [162]. Contrary to the hypo-
fractionated schemes, the conventional fractionated regimen (18 × 2 Gy) appeared to be
the least effective [162]. Similarly, PD-L1 expression was found to be upregulated in the
TME after high dose RT (1 × 12 Gy) in vitro and in vivo [163], while another pre-clinical
study in syngeneic mouse model of CC demonstrated that 5 × 2 Gy RT leads to tumor cell
expression of PD-L1 via IFN-γ production by infiltrating CD8+ T cells [164].

SCPRT (2 × 5 Gy) was also found to be associated with a shift in the polarization of
TAMs towards an M1-like pro-inflammatory phenotype in vitro and in vivo [165]. Similarly,
in another study, irradiated macrophages (5 × 2 Gy) showed a reduced anti-inflammatory
profile, increased phagocytosis and unaltered pro-invasive and pro-angiogenic capaci-
ties [166]. Taken together, the studies presented above hints towards the possibility that
hypo-fractionated RT might have a superior therapeutic potential compared to conven-
tional fractionated RT. Nevertheless, these reports are not directly comparable as they
investigated different fractionation regimens, which prevent us from drawing defini-
tive conclusions. Therefore, the optimal radiation regimen (total dose and fractionation
schedule) to stimulate an efficient anti-tumor immune response in RC remains unclear
and additional work should focus on dissecting the exact kinetics and nature of how RT
changes the TME.

5.2. Effect of Chemotherapy and CRT

The prognostic value of CD4+, CD8+ and FoxP3+ TILs in response to neoadjuvant
chemotherapy and CRT has been extensively described [167–169]. Reduction in FoxP3+

Tregs and increased expression of MHC-I genes were observed in RC patients responding
favorably to FOLFOX chemotherapy [170]. Similarly, in another study, FoxP3+ TILs corre-
lated with poor therapeutic responses to FOLFOX chemotherapy alone or in combination
with RT (25–50 Gy) [171]. Remarkably, in this study, neo-adjuvant CRT showed superior
OS compared to chemotherapy alone, suggesting the importance of ionizing radiation in
remodeling the TME [171]. In addition, a slight but not significant increase in the expres-
sion of CTLA-4 was observed upon CRT compared to chemotherapy, concomitantly to the
expansion of FoxP3 Tregs [171]. These results are in line with previous reports where RT
was shown to increase the proportion of Tregs, which may, in turn, induce the expression
of CTLA-4 through various pathways [159,172]. On the other hand, a significant increase
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of CD3+ and CD8+ immune infiltrates in the TME of RC patients after neoadjuvant CRT
was prognostic for the extent of tumor regression, distant metastasis rates and DFS [173].
In contrast, a multivariate analysis revealed that, while the total number of CD3+ and CD8+

TILs was significantly lower in RC after neo-adjuvant CRT compared to primarily resected
cases, the level of GZMB+ CD8+ T cells was increased and positively correlated with tumor
regression and lower recurrence [174]. These data suggest that the presence of GZMB+

CD8+ T cells in the TME may limit the occurrence of tumors and improve prognosis in RC
patients. Alongside high levels of CD8+ TILs, the expression of immune checkpoint genes
such as B7-H3 and B7-H5 was found upregulated upon CRT in RC patients and correlated
with better outcome [175]. Similarly, high expression of PD-L1 in tumor nests was asso-
ciated with favorable outcomes after neoadjuvant chemotherapy and CRT [171,176]. In
addition, patients with high cyto-HMGB1 translocation and/or PD1+ TILs before treatment
showed better disease control upon neo-adjuvant CRT [177]. Recent studies implied that
high tumor PD-L1 expression is involved with the feedback mechanism caused by the
induction of IFN-γ due to RT intervention [178,179]. Among other functions, IFN-γ has
been shown to play an important role in the recruitment of T cells and expression of MHC-I
through autocrine and paracrine signaling [180]. Taken together, RT has been shown to
induce a two sided effect by recruiting immune cells into the tumor site and upregulating
immune checkpoints. These results hint towards a potential therapeutic synergism between
irradiation and immunotherapy.

6. Combining Radiotherapy with Immune Checkpoint Inhibitors

Combining chemotherapy with RT was shown to improve pCR in RC patients [181].
In addition, neo-adjuvant CRT has been shown to upregulate PD-L1 and promote T
cell infiltration [182–184]. However, the combination of chemotherapy with RT often
results in increased toxicity in normal tissues [185]. On the other hand, the potential
of combining immunotherapy and RT has been increasingly investigated in many solid
cancers, highlighting the benefit of such a combination [186–188]. The biological premise
behind this strategy is that the release of immune-stimulating signals and neoantigens
following RT will induce profound changes in the TME and promote anti-tumor immune
responses that could be enhanced further by systemic immune-stimulating agents such as
ICIs [189]. An overview of these alterations is outlined in Figure 2.

Deng et al. found that the combination of high dose RT (1 × 12 Gy) and anti–PD-
L1 treatment induced tumor regression in a murine xenograft model of CRC [163]. In
this work, radio-immunotherapy stimulated CD8+ T cell responses and reduced the local
accumulation of MDSCs through TNF-α secretion [163]. This first study provided pre-
clinical evidence of the promising effects of such a combination. Importantly, the effect
of RT fractionation has been evaluated in the context of radio-immunotherapy in several
studies. In a syngeneic mouse model of CC, Grapin and colleagues showed that, compared
to 18 × 2 Gy and 1 × 16.4 Gy, 3 × 8 Gy irradiation induced the greatest increase in TILs and
expression of PD-L1 and TIGIT and this protocol was even more effective in controlling
tumor development when associated with anti-PD-L1 and anti-TIGIT treatment [162].
Similarly, combination of RT (3 × 8 Gy) with anti-CTLA-4 therapy induced tumor growth
control in a MC38 xenograft model [161]. Using the same animal model, Morisada et al.
showed that high dose hypo-fractionated RT (2 × 8 Gy) was superior to conventional RT
(10 × 2 Gy) in enhancing anti-tumor immunity in combination with anti-PD1 treatment,
highlighting the potential benefit of hypo-fractionated RT. On the other hand, two other
pre-clinical studies using a CT26 xenograft model showed improved local tumor control,
long-term survival, and protection against tumor re-challenge when 5 × 2 Gy RT was
combined with anti-PD1 or anti-PD-L1 antibodies [164,190]. Nevertheless, the authors
observed similar combinatorial activity between 5 × 2 Gy, 3 × 4 Gy and 1 × 7 Gy RT
regimens even though the latter showed the poorest tumor control on its own [190]. Taken
together, this study indicates that the degree to which radiation achieves local tumor control
do not always predict its ability to synergize with ICIs.
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Because of the differences in the dynamic progression of immunological responses
upon RT and ICIs, it might be important to determine the most effective sequence of
treatments [191]. Although a limited number of pre-clinical studies have been conducted
on this topic, Dovedi et al. showed that anti-PD1 antibody should be administered simul-
taneously with RT compared to 7 days later in order to enhance its effect [164]. On the
contrary, CTLA-4 inhibition was more effective when given 7 days prior to RT compared
to day 1 and 5 after RT [192], probably due to the different mechanisms of action of these
two immunotherapies. As CTLA-4 inhibits T cells in the early stages of the immunity
cycle, it is plausible that CTLA-4 inhibition synergizes with the RT-induced enhancement
of antigen-cross presentation and T cell priming by pre-conditioning the lymph node
microenvironment and, subsequently, boosting T cell activation and expansion. On the
other hand, PD1 acts directly on the TME; therefore, blockade of the PD1 axis promotes
the activation of T cells that infiltrated the tumor site upon RT intervention [193]. In line
with these observations, pre-clinical in vivo data highlighted a trajectory of immune effects
such as reduction in the infiltration of MDSCs, TAMs and Tregs, and an increase in CD8+ T
cells alongside the expression of HLA, CEA, MUC-1 and ICAM-1 reaching a peak within
8–15 days after irradiation [153,194,195]. Although optimal sequencing of RT and ICIs is
not yet determined, these studies suggest that, in order to benefit from the highest levels of
CD8+ T cells, anti-PD1 antibodies should be administered together with RT [191]. On the
other hand, treatment with anti-CTLA-4 can be effective even before RT by reconditioning
the lymph node microenvironment and diminishing Tregs [192].

Many clinical trials exploring the synergistic effect of combining RT with checkpoint
blockade in solid cancers are ongoing [186–188]. In this line, a few trials are evaluating
the combination of RT and immune checkpoint inhibition in RC (e.g., NCT02298946 [196],
NCT02948348 [197], NCT04124601, NCT04262687, NCT04558684), but always in combina-
tion with chemotherapy. A brief summary of the relevant radio-immunotherapy clinical
trials in RC is presented in Table 1. Encouraging safety and toxicity profiles from these stud-
ies indicate that radio-immunotherapy combinations could represent a valid opportunity
for RC patients. For instance, in the VOLTAGE trial (NCT02948348) where patients received
CRT followed by nivolumab, only mild toxicity was reported, with 7.7% of patients experi-
encing immune-related grade 3/4 side effects [197]. Moreover, 30% of patients with locally
advanced pMMR/MSS RC reached pCR compared to 60% of dMMR/MSI-H RCs [197].
After these encouraging results, a few other trials have begun investigating the effect of
such combination without the addition of chemotherapy. Remarkably, the combination of
ipilimumab with SBRT (50 Gy in 4 fractions or 60 Gy in 10 fractions) has shown to induce
an increase in peripheral CD8+ T cells and CD8+/CD4+ T cell ratio, indicating a systemic
immune activation [198]. Likewise, the authors observed an increased proportion of CD8+

T cells expressing 4-1BB and PD1 in the tumors after treatment, which positively correlated
with clinical benefit [198]. These data confirm the pre-clinical evidence on the effects of RT
in remodeling the TME and are suggestive of additional immune checkpoint targets may
help optimize treatment efficacy. Lastly, the combination of nivolumab and ipilimumab
with RT is currently under investigation in CRC and pancreatic cancer (NCT03104439),
whereas a phase II clinical trial (NCT04109755) is studying the impact of combining pem-
brolizumab with SCPRT in the neo-adjuvant treatment of localized pMMR/MSS RC. The
results of these future clinical trials will shed light on the future of radio-immunotherapy
in the treatment of RC.
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Table 1. Summary of the current clinical trials in the field of radio-immunotherapy in rectal cancer.

Short Course Radiotherapy

NCT Number Phase Clinical Stage Microsatellite
Status Arm

Neo-Adjuvant Treatment Sequence
Time to
Surgery

Adjuvant
Treatment

Nb of
Patients

Primary
OutcomePre-Radiotherapy

Treatment
Radiotherapy

Treatment
Post-Radiotherapy

Treatment

NCT04663763 II T3–4 and/or
N+

MSS A - scRT (5 × 5 Gy)
4 cycles of CAPOX

and anti-PD1
antibody (Sintilimab)

1 week after
the end of

neoadjuvant
therapy

4 cycles of
CAPOX 32 pCR rate

MSI-H B - scRT (5 × 5 Gy)
4 cycles of CAPOX
and PD1 antibody

(Sintilimab)

1 week after
the end of

neoadjuvant
therapy

4 cycles of
CAPOX 8 pCR rate

NCT04518280 II
R*

T3–4 and/or
N+

MSS

A

2 cycles of CAPOX
and anti-PD1

antibody
(Toripalimab)

scRT (5 × 5 Gy)

4 cycles of CAPOX
and anti-PD1

antibody
(Toripalimab)

2–4 weeks
after the end

of neoadjuvant
therapy

- 65 pCR rate

B - scRT (5 × 5 Gy)

6 cycles of CAPOX
and anti-PD1

antibody
(Toripalimab)

2–4 weeks
after the end

of neoadjuvant
therapy

- 65 pCR rate

NCT04558684 II >T2N0 or low
T2N0 - - - scRT (5 × 5 Gy)

6 cycles of CAPOX
and anti-PD1

antibody
(Camrelizumab)

8 (+/−4)
weeks after the

end of
neoadjuvant

therapy

- 30 cCR rate

NCT04621370
PRIME-RT

study

II
R*

cT3b+, N+,
EMVI+

- A

Anti-PD-L1
antibody

(Durvalumab)
week prior

radiotherapy

scRT (5 × 5 Gy)

6 cycles of FOLFOX
and anti-PD-L1

antibody
(Durvalumab)

3–5 weeks
after the end

of neoadjuvant
therapy

- 24 pCR rate

- B

Anti-PD-L1
antibody

(Durvalumab)
week prior

radiotherapy

capecitabine
radiosensitized
NACRT (50Gy)

4 cycles of FOLFOX
and anti-PD-L1

antibody
(Durvalumab)

3–5 weeks
after the end

of neoadjuvant
therapy

- 24 pCR rate
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Table 1. Cont.

Short Course Radiotherapy

NCT Number Phase Clinical Stage Microsatellite
Status Arm

Neo-Adjuvant Treatment Sequence
Time to
Surgery

Adjuvant
Treatment

Nb of
Patients

Primary
OutcomePre-Radiotherapy

Treatment
Radiotherapy

Treatment
Post-Radiotherapy

Treatment

NCT04109755
PEMREC

study
II

cT3–T4 N0 or
cT any and

N1-2
MSS -

scRT (5 × 5 Gy) with
anti-PD1 antibody
(Pembrolizumab)

3 cycles of anti-PD1
antibody

(Pembrolizumab)

3 weeks after
the end of

neoadjuvant
therapy

- 25 TRG

NCT04231552 II cT3–4 or N+ - - scRT (5 × 5 Gy)

2 cycles of CAPOX
and anti-PD1

antibody
(Camrelizumab)

n.a - 30 pCR rate

NCT03503630 II cT2 N1–3, cT3
N0–3 - - scRT (5 × 5 Gy)

6 cycles of FOLFOX
and anti-PD-L1

antibody
(COMPOUND

2055269)

2–3 weeks
after the end

of neoadjuvant
therapy

- 44 pCR

NCT04503694
REGINA

study
II

Intermediate
risk

MRI-defined
rectal cancer

-

2 cycles anti-PD1
antibody

(Nivolumab) +
regorafenib

scRT (5 × 5 Gy)

3 cycles anti-PD1
antibody

(Nivolumab) +
regorafenib

7–8 weeks
after the end of
scRT therapy

- 60 pCR

NCT04636008 Ib ≥cT2 MSI-
H/dMMR - scRT (5 × 5 Gy) 3 cycles of anti-PD1

antibody (Sintilimab)

1–2 weeks
after the end

of neoadjuvant
therapy

- 20 TRAE rate

Long Course Chemo-Radiotherapy

NCT Number Phase Clinical Stage Microsatellite
Status Arm

Neo-Adjuvant Treatment Sequence
Time to
Surgery

Adjuvant
Treatment

Nb of
Patients

Primary
OutcomePre-Radiotherapy

treatment
Radiotherapy

Treatment
Post-Radiotherapy

Treatment

NCT04411537 II T3–4 and/or
N+ MSS 2 cycles of

anti-PD1 antibody

Capecitabine plus
irinotecan

radiosensitized
NACRT (50 Gy)

3 cycles of anti-PD1
antibody

1–2 weeks
after the end

of neoadjuvant
therapy

6 cycles of
XELOX 50 pCR rate

NCT04411524 II T3–4 and/or
N+ MSI-H 2 cycles of

anti-PD1 antibody

Capecitabine plus
irinotecan

radiosensitized
NACRT (50 Gy)

3 cycles of anti-PD1
antibody

1–2 weeks
after the end

of neoadjuvant
therapy

6 cycles of
XELOX 50 pCR rate
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Table 1. Cont.

Long Course Chemo-Radiotherapy

NCT Number Phase Clinical Stage Microsatellite
Status Arm

Neo-Adjuvant Treatment Sequence
Time to
Surgery

Adjuvant
Treatment

Nb of
Patients

Primary
OutcomePre-Radiotherapy

treatment
Radiotherapy

Treatment
Post-Radiotherapy

Treatment

NCT03854799
AVANA study II cN+, cT4, high

risk cT3 - -

Capecitabine
radiosensitized

NACRT (50.4 Gy)
with anti-PD-L1

antibody (Avelumab)

-

8–10 weeks
after the end

of neoadjuvant
therapy

- 101 pCR rate

NCT04357587 II
Stage II or
stage III or

olimetastatic
dMMR -

Capecitabine
radiosensitized

NACRT (50 Gy) with
PD1 antibody

(Pembrolizumab)

1 cycle of anti-PD1
antibody

(Pembrolizumab)
n.a - 10 Rate of AE

Feasability

NCT03921684 II T3–4 N0 or TX
N+ - -

Capecitabine
radiosensitized

NACRT (50.4 Gy)

6 cycles of FOLFOX
and anti-PD-1

antibody
(Nivolumab)

4 weeks after
the end of

neoadjuvant
therapy

- 29 pCR rate
TRAE

NCT02921256 II Stage II or
stage III - C 8 cycles of

FOLFOX

Capecitabine
radiosensitized

NACRT (50 Gy) with
anti-PD1 antibody
(Pembrolizumab)

5 cycles of anti-PD1
antibody

(Pembrolizumab)
n.a - >100 Change in

NAR score

NCT03127007
R-IMMUNE

study

Ib/II
R*

Stage II or
stage III

- A -

5-FU radiosensitized
NACRT (50 Gy) with
anti-PD-L1 antibody

(Atezolizumab)

3 cycles of
anti-PD-L1 antibody

(Atezolizumab)

3 weeks after
the end of

neoadjuvant
therapy

-

54 pCR rate
AE rate

- B - 5-FU radiosensitized
NACRT (50 Gy) -

10 weeks after
the end of

neoadjuvant
therapy

-

NCT04443543 II T2–4 and/or
N+

MSS A -

Capecitabine plus
irinotecan

radiosensitized
NACRT (50 Gy)

XELIRI or
FOLFIRINOX

adaptive number of
cycles and regimen

No surgery for
those in cCR - 222 cCR rate

MSI-
H/dMMR B -

Capecitabine plus
irinotecan

radiosensitized
NACRT (50 Gy)

3 cycles of anti-PD1
antibody

(Tislelizumab)

No surgery for
those in cCR - NA cCR rate
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Table 1. Cont.

Long Course Chemo-Radiotherapy

NCT Number Phase Clinical Stage Microsatellite
Status Arm

Neo-Adjuvant Treatment Sequence
Time to
Surgery

Adjuvant
Treatment

Nb of
Patients

Primary
OutcomePre-Radiotherapy

treatment
Radiotherapy

Treatment
Post-Radiotherapy

Treatment

NCT04017455
TARZAN

study
II

Intermediate
risk rectal

cancer or low
risk distal

rectal cancer

- - Radiotherapy

3 cycles of anti-VEGF
antibody

(bevacizumab)
combined with

anti-PD-L1 antibody
(Atezolizumab)

3 weeks after
the end of

neoadjuvant
therapy

- 38 cCR rate
ncCR rate

NCT04124601
CHINOREC

Study

II
R*

NA - A -
Capecitabine

radiosensitized
NACRT (50 Gy)

- n.a -

80 TRAE rate

NA - B -
Capecitabine

radiosensitized
NACRT (50 Gy)

Anti-CTLA-4
antibody

(Ipilimumab) on day
7 and anti-PD1

antibody
(Nivolumab) on day

14, 28 and 42)

n.a -

NCT04293419
DUREC study II

High risk
MRI-defined
rectal cancer

-

6 cycles of
FOLFOX + 4 cycles

anti-PD-L1
(Durvalumab)

Capecitabine
radiosensitized

NACRT (50.4 Gy) +
anti-PD-L1

(Durvalumab)

2 cycles anti-PD-L1
(Durvalumab)

2–6 weeks
after the end

of neoadjuvant
therapy

- 58 pCR rate

NCT03102047
FR-2 study II Stage II–IV

rectal cancer MSS -
Capecitabine

radiosensitized
NACRT (50.4 Gy)

4 cycles anti-PD-L1
(Durvalumab)

1–4 weeks
after the end

of neoadjuvant
therapy

- 47 NAR

NCT02948348
VOLTAGE

trial
Ib/II T3 and T4, N

any - -
Capecitabine

radiosensitized
NACRT (50.4 Gy)

5 cycles anti-PD1
antibody

(Nivolumab)

2 weeks after
the end of

neoadjuvant
therapy

- 50 pCR rate

NCT03299660 II

T3bN1-N2M0,
T3c/dN0-

N2M0,
T4N0-N2M0

- -
Capecitabine/5FU

radiosensitized
NACRT (50.4 Gy)

4 cycles of
anti-PD-L1 antibody

(Avelumab)

8–10 weeks
after the end

of neoadjuvant
therapy

- 45 pCR rate
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Table 1. Cont.

Long Course Chemo-Radiotherapy

NCT Number Phase Clinical Stage Microsatellite
Status Arm

Neo-Adjuvant Treatment Sequence
Time to
Surgery

Adjuvant
Treatment

Nb of
Patients

Primary
OutcomePre-Radiotherapy

treatment
Radiotherapy

Treatment
Post-Radiotherapy

Treatment

NCT04083365
PANDORA

study
II

cT3/4N0/M0
or Tx

N1-2/M0
- -

Capecitabine
radiosensitized

NACRT (50.4 Gy)

3 cycles of
anti-PD-L1 antibody

(Avelumab)

1–2 weeks
after the end

of neoadjuvant
therapy

- 60 pCR rate

Only Immune Checkpoint Inhibitors

NCT Number Phase Clinical Stage Microsatellite
Status Arm

Neo-Adjuvant Treatment Sequence
Time to
Surgery

Adjuvant
Treatment

Nb of
Patients

Primary
OutcomePre-Radiotherapy

Treatment
Radiotherapy

Treatment
Post-Radiotherapy

Treatment

NCT04643041
BASKET study II T × N × M0 MSI-

H/dMMR
6 cycles of

anti-PD1 antibody No radiotherapy - No surgery - 47 1 year DFS
rate

Other Immunotherapies

NCT Number Phase Clinical Stage Microsatellite
Status Arm

Neo-Adjuvant Treatment Sequence
Time to
Surgery

Adjuvant
Treatment

Nb of
Patients

Primary
OutcomePre-Radiotherapy

Treatment
Radiotherapy

Treatment
Post-RadiotherApy

treatment

NCT03300544 I cT3–4, N+ -
Four injections of

T-VEC with 2 cycle
of FOLFOX

Capecitabine
radiosensitized

NACRT (50.4 Gy)
-

8–12 weeks
after the end

of neoadjuvant
therapy

21 DLT

NCT02688712
ExIST Study II Stage II or

stage III -

TGFβ Type I
Receptor Inhibitor
(LY2157299) for 15

days

Capecitabine
radiosensitized

NACRT (50.4 Gy)
with (LY2157299) 15

days after start

-

6–10 weeks
after the end

of neoadjuvant
therapy

50 pCR rate

NCT04130854
INNATE study

II
R*

cT4 or within
3mm of MR

fascia

- A -
CD-40 agonist

antibody with scRT
(5 × 5 Gy)

6 cycles of FOLFOX
and CD-40 agonist

antibody (APX005M)
n.a

58 pCR rate

- B - scRT (5 × 5 Gy) 6 cycles of FOLFOX n.a

NCT03916510
CEDAR study I cT3mrf+ or N+

or low tumors -

Three
enadenotucirev
loading doses in

weeks 1-2

Capecitabine
radiosensitized

NACRT (50.4 Gy)
+/− Enadenotucirev

+/− Enadenotucirev n.a 30 DLT
MRI-TRG
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Table 1. Cont.

Other Immunotherapies

NCT Number Phase Clinical Stage Microsatellite
Status Arm

Neo-Adjuvant Treatment Sequence
Time to
Surgery

Adjuvant
Treatment

Nb of
Patients

Primary
OutcomePre-Radiotherapy

Treatment
Radiotherapy

Treatment
Post-RadiotherApy

treatment

NCT04304209 II
R*

cT3–4N0M0 or
cT×N+M0

dMMR or
MSI-H A

4 cycles of
anti-PD1 antibody

(Sintilimab)
No Radiotherapy

4 cycles of anti-PD1
antibody (Sintilimab)

+/− CAPEOX
chemotherapy

Surgery or
watch and

wait

195 pCR

pMMR/MSS/
MSI-L

B1
4 cycles of

anti-PD1 antibody
(Sintilimab)

Capecitabine
radiosensitized

NACRT (50.4 Gy) +
CAPEOX

-
Surgery or
watch and

wait

B2 -

Capecitabine
radiosensitized

NACRT (50.4 Gy) +
CAPEOX

-
Surgery or
watch and

wait

AE: adverse event; CAPOX (also called XELOX): capecitabine and oxaliplatin; cCR: clinical complete response; DLT: dose limiting toxicities; dMMR: deficient mismatch mechanisms of repair; FOLFOX:
leucovorin, 5-FU and oxaliplatin; FOLFIRINOX: leucovorin, 5-FU, irinotecan and oxaliplatin; IMRT DT: 50Gy in 25 fractions; MR: mesorectal; MRF: MR fascia; MRI: magnetic resonance imaging; MSI-H:
microsatellite instability high; MSS: microsatellite stable; NACRT: neoadjuvant chemo-radiotherapy; NAR: neoadjuvant rectal cancer; ncCR: near-complete response rate; pCR: pathological complete response;
R*: randomized; scRT: short course radiotherapy (5 × 5 Gy); TME: total mesorectal excision; TRAE: treatment-related adverse event; TRG: tumor regression grade; XELIRI: irinotecan and capecitabine; n.a.:
information not available.
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7. Conclusions

In conclusion, the results from these first clinical and pre-clinical studies combining RT
with ICIs are promising. Nevertheless, in the absence of a comprehensive understanding of
the biological effect of dose/time/fractionation factors and their contribution to patient out-
come, combination therapies and treatment regimens remain largely empirical. Therefore,
more efforts should be directed towards designing rational and robust pre-clinical studies
dissecting these aspects. A better understanding of the dynamic interaction between the im-
mune and cancer cells and how this interaction changes after therapeutic interventions will
help defining the optimal radio-immunotherapy combination to achieve the best clinical
results. This may also include the addition of a third agent. For instance, Son et al. showed
that injection of immature DCs in a CC xenograft model potentiated anti-tumor responses
of anti-CTLA-4 therapy with RT [199]. In addition, the combination of RT with IL-12/GM-
CSF and anti-PD-L1 antibody enhanced tumor regression and accumulation of CD8+ T cells
and tumor-associated neutrophils at the primary and metastatic site in vivo [200]. Lastly,
radiation combined with macrophage depletion was shown to promote adaptive immunity
and potentiate checkpoint blockade [201]. While further studies need to be performed
to optimize the effect of these treatment combinations, radio-immunotherapy offers an
exciting new therapeutic modality for RC.
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