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Abstract: The detection resolution of a giant magneto-impedance (GMI) sensor is mainly limited by
its equivalent input magnetic noise. The noise characteristics of a GMI sensor are evaluated by noise
modeling and simulation, which can further optimize the circuit design. This paper first analyzes
the noise source of the GMI sensor. It discusses the noise model of the circuit, the output sensitivity
model and the modeling process of equivalent input magnetic noise. The noise characteristics
of three modules that have the greatest impact on the output noise are then simulated. Finally,
the simulation results are verified by experiments. By comparing the simulated noise spectrum
curve and the experimental noise spectrum curve, it is demonstrated that the preamplifier and the
multiplier contribute the most to the output white noise, and the low-pass filter plays a major role
in the output 1/f noise. These modules should be given priority in the optimization of the noise of
the conditioning circuit. The above results provide technical support for the practical application of
low-noise GMI magnetometers.
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1. Introduction

Since the discovery of the giant magneto-impedance (GMI) effect in the CoFeSiB soft magnetic
material by the Mohri team in Japan in 1992, the GMI effect has been found in many soft magnetic
materials [1,2]. The magnetic field sensitivity can reach 2–1000%/Oe, and it has been paid more and
more attention by researchers all over the world [3–6].

Noise characteristics have always been a key indicator that determines the resolution of magnetic
sensors [7,8]. According to previous research results, the noise of a GMI sensor mainly comes from
three sources: GMI component intrinsic noise, conditioning circuit noise and external interference
noise [9]. The noise testing experiment of the sensor is carried out in the environment of a shielding
cylinder, the purpose of which is to shield the external interference noise. The intrinsic noise of GMI
components is the effect of multiple noise sources. In the middle and high frequencies (more than
1 kHz), Barkhausen noise is the mainstay, and it is caused by the complex magnetic domain structure
forming the ferromagnetic material and the displacement and rotation of the domain wall during
magnetization [10,11]. In the low frequencies (less than 1 kHz), the thermomagnetic noise caused by
the thermal fluctuation of magnetization contributes significantly to the intrinsic noise of the GMI
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component through impedance fluctuations [12,13]. The intrinsic noise of the GMI component is 2~3
magnitudes [14] lower than that of the conditioning circuit. Above all, the conditioning circuit is the
main factor of noise sources [15–17], and it is mainly studied in this paper.

Conditioning circuit noise is inherent noise inside an electronic system, which is caused by the
random motion of the charge carriers. It includes the thermal noise of the resistor [18,19], the shot
noise of the PN junction and the 1/f noise [20,21]. For the GMI sensor, the conditioning circuit structure
is divided into two parts: the excitation circuit and the detection circuit. The excitation circuit mainly
includes an incentive source and voltage-to-current converter [22]. The detection circuit includes a
preamplifier, a peak detection circuit and an instrumentation amplifier [23,24]. Each part contains
multiple noise sources, and the noise effect contributes differently to the total output noise of the sensor.
According to the Fries theorem, in order to achieve the best noise characteristics, the signal-to-noise
ratio and the equivalent input noise voltage are generally used to weigh and design the various parts
of the system [25,26]. Therefore, by modeling the noise of each module in MATLAB, the dominant
noise source is found, allowing further optimization of the dominant noise source and significantly
improving the noise characteristics of the conditioning circuit.

The work of this paper is divided into three steps: firstly, the modeling idea of the equivalent
input magnetic noise model of a GMI sensor is discussed. The output voltage noise model, sensitivity
model and equivalent input magnetic noise model are established. Then the noise contribution of each
module is computed, and the optimization scheme of the dominant noise source is discussed. Finally,
the effectiveness of the noise optimization method is verified by the noise test experiment, and the
characteristics of the low-noise GMI sensor conditioning circuit are summarized. This work provides
theoretical support for the design of low-noise GMI sensors.

2. GMI Sensor Noise Modeling

The GMI sensor is composed of seven parts: A. Excitation source; B. Voltage-to-current converter;
C. GMI components; D. Preamplifier; E. Multiplier; F. Filter and G. Instrumentation amplifier. The
output voltage of the instrumentation amplifier is used as the output signal of the GMI sensor. The
schematic is shown in Figure 1.
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Figure 1. Schematic circuit diagram of the giant magneto-impedance (GMI) sensor. 
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Figure 1. Schematic circuit diagram of the giant magneto-impedance (GMI) sensor.

For the above GMI sensor circuit, the establishment process of the equivalent input magnetic noise
model is carried out in three steps. First, according to the superposition theorem, the output voltage
noise model of the sensor is established. Using the noise source model of the electronic components,
the internal noise model of each module is established as well. Further, considering the impact
of power gain, the contribution of each module noise to the total output voltage noise is obtained.
Second, the sensitivity model is established based on the inherent sensitivity of the GMI component,
the excitation voltage amplitude and the gain of the conditioning circuit. Third, an equivalent input
magnetic noise model is established from the above two models.
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2.1. Noise Model of the Output Voltage

According to the schematic circuit diagram in Figure 1, the noise power and power gain of each
module of the GMI sensor circuit are shown in Table 1.

Table 1. Internal noise and power gain description for each module.

Name Noise Power Power Gain

A. Excitation source E2
ng /

B. Voltage-to-current converter E2
nvi

∣∣∣Z(Hex)
∣∣∣2 ·G2

vi
C. GMI components E2

nGMI /

D. Preamplifier E2
npre G2

pre
E. Multiplier E2

nmul 2 · G2
mul

F. Filter E2
n f ilter G2

f ilter
G. Instrumentation amplifier E2

nINA G2
INA

In Table 1, E2
nX represents the sum of the noise power generated inside the module X. The output

of this module is also the input noise of the subsequent modules. G2
X is the power gain function

corresponding to the module, representing the gain of the input noise power, and X represents each
module. The next step is to solve the noise of each module.

2.1.1. Excitation Source

The Direct Digital Synthesis (DDS) excitation source used in this paper is AD9959. The source of
noise is mainly caused by phase noise and is characterized by noise spectral density (NSD). The output
noise power E2

ng of the excitation source is calculated as:

E2
ng =

 Vg/
√

2

10148/20


2

=

(
Vg

10151/20

)2

(1)

where Vg represents the peak-to-peak value of the output signal of the excitation source. The phase
noise is attenuated for the carrier frequency, and its value is −148dbc/Hz.

2.1.2. Voltage-to-Current Converter

The function of the voltage-to-current converter is to convert the high-frequency alternating
voltage signal into an alternating current signal. This alternating current signal is used as an excitation
for the GMI component. According to Norton’s theorem, the converter is equivalent to a current source,
and its power gain function G2

vi is expressed as:

G2
vi =

(
R2

R1
·

1
R5

)2

(2)

The internal noise sources of the subsequent modules are divided into the thermal noise power of
each resistor and the equivalent noise power of the Operational amplifier (op-amp). The internal noise
source of the Voltage-to-current converter is divided into two parts.

The Thermal Noise Power of Resistor

The thermal noise spectral density of each resistor is expressed as E2
ti, I = 1~14, representing the

thermal noise spectral density of resistors R1~R14 respectively. The contribution of the Voltage-to-current
converter at the output is E2

tvi.

E2
tvi = E2

t1

(
R2

R1
·

1
R5

)2

+ E2
t2

(
1

R5

)2

+ E2
t3

(
R2

R1
·

1
R5

)2

+ E2
t4

(
1

R5

)2

+ E2
t5

(
1

R5

)2

(3)
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when R1 = R3, R2 = R4, it is simplified to Equation (4).

E2
tvi = 2E2

t1

(
R2

R1
·

1
R5

)2

+ 2E2
t2

(
1

R5

)2

+ E2
t5

(
1

R5

)2

(4)

Equivalent Noise Power of the Op-Amp

The equivalent noise of the op-amp is calculated by the (en, in) model, where enX represents
the equivalent input voltage noise spectral density, inX represents the equivalent input current noise
spectral density, and X represents each module.

E2
vvi =

(
R1 + R2

R1
·

1
R5

)2

· e2
nvi +

(
1

R5

)2

· e2
nvi (5)

E2
ivi = 2 ·

(
R2 ·

1
R5

)2

· i2nvi + i2nvi (6)

The contribution of the voltage source noise of the two op-amps at the output is expressed as
E2

vvi in Equation (5). The contribution of the current source noise at the output is expressed as E2
ivi

in Equation (6). Thus, the total output noise power of the Voltage-to-current converter is expressed
as follows.

E2
nvi =

∣∣∣∣Z(Hex)
∣∣∣∣2 · (E2

tvi + E2
vvi + E2

ivi

)
(7)

where Z(Hex) represents the impedance length value of the GMI component.

2.1.3. Preamplifier

The preamplifier acts as a buffer, which is used to collect the voltage across the GMI component.
To reduce the effect on the voltage of the GMI component during access, the input impedance should
be large enough, so the preamplifier is built with a non-inverting amplifier. Its power gain function
is G2

pre.

G2
pre =

(
1 +

R9

R8

)2

(8)

The internal noise source of the preamplifier is divided into the thermal noise of each resistor and
the equivalent noise of the input of the op-amp.

The Thermal Noise Power of Resistor

This part includes resistor R8, R9, and the equivalent resistance of the GMI component. The
resistance thermal noise power is E2

tpre.

E2
tpre = E2

tGMI

(
1 +

R9

R8

)2

+ E2
t8

(
R9

R8

)2

+ E2
t9 · 1 (9)

where EtGMI represents the thermal noise of the equivalent resistance of the GMI component, Et8

represents the thermal noise of the input resistor R8 at the inverting terminal, and Et9 represents the
thermal noise of the feedback resistor R9.

Equivalent Noise Power of the Op-Amp

The equivalent noise power of the op-amp is obtained according to the (en, in) model.

E2
vpre =

(
1 +

R9

R8

)2

· e2
npre (10)
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E2
ipre = R2

9 · i
2
npre +

(
1 +

R9

R8

)2

R2
GMI · i

2
npre (11)

where RGMI represents the equivalent resistance of the GMI component.
The total output noise power of the preamplifier E2

npre is expressed as:

E2
npre = E2

tpre + E2
vpre + E2

ipre (12)

2.1.4. Multiplier

The lock-in amplifier is made up by multiplier and low-pass filter, which achieve the amplitude
detection of input signal. In this process, the reference signal is input by the DDS source, the noise of
source is mainly caused by phase noise, which is smaller than the signal under test. After the signal
under test passes through the multiplier, the output noise power becomes

√
2 times of the input noise

power, and the power gain of the multiplier is expressed as:

G2
nmul =

(√
2 ·Gmul

)2
(13)

where
√

2 is the noise power gain factor. Gmul is the voltage gain of the multiplier, which is expressed as:

Gmul = Vr ·K (14)

where Vr represents the reference signal amplitude, K represents the gain coefficient of the multiplier,
whose value is 0.5 cosθ, and its unit is 1/V. θ represents the phase difference between the signal under
test and the reference signal.

Apart from the gain on the input noise, the multiplier itself generates noise, which is expressed as
an internal equivalent output noise source Emul So the total output noise power of the multiplier E2

nmul
is expressed as the following:

E2
nmul = E2

mul (15)

2.1.5. Filter

The filter is a 2nd order Butterworth low-pass filter. By filtering the signal output of the multiplier,
the DC component of the signal is obtained. Power gain of the filter is a function of frequency, which is
expressed as:

G2
f ilter =

 1√
1 + ( f / fc)

2

(16)

where fc is the cutoff frequency of the low-pass filter, it is determined by the values of resistance and
capacitance of the filter.

The internal noise source of the filter is divided into the thermal noise power of each resistor and
the equivalent noise power of the op-amp.

The thermal noise power of resistor

E2
t f ilter = E2

t12 + E2
t13 (17)

Equivalent noise power of the op-amp

E2
v f ilter = e2

n f ilter · 1 (18)

E2
i f ilter = (R12 + R13)

2
· i2n f ilter (19)
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Therefore, the total output noise power of the low-pass filter E2
n f ilter is expressed as:

E2
n f ilter = E2

t f ilter + E2
v f ilter + E2

i f ilter (20)

2.1.6. Instrumentation Amplifier

A zero-amplifier circuit is built based on the instrumentation amplifier, which realizes zero
adjustment and post-amplification of the output of the filter. Its power gain G2

INA is set by the gain
resistor Rgain.

G2
INA =

(
1 +

50000
Rgain

)2

(21)

The internal noise source of the instrumentation amplifier is divided into the thermal noise of
each resistor and the equivalent noise of the input of the op-amp.

The thermal noise power of resistor

Here we mainly consider the zero-potentiometer thermal noise, which is expressed as:

E2
tINA = G2

INA · E
2
t14 (22)

Equivalent noise power of the op-amp

It is worth noting that, unlike the commonly used single op-amp structure, the instrument op-amp
INA128 consists of three op-amps, which are divided into 2 levels. The first two op-amps serve
as input buffers of the non-inverting and inverting inputs. The third op-amp builds a differential
amplifier circuit, which realizes the amplifier circuit with high input impedance and high common
mode rejection ratio. The noise model is described by the (en, in) model. The equivalent voltage and
equivalent current noise power are expressed as:

E2
vINA = G2

INA · e
2
nINA (23)

E2
iINA = G2

INA ·R
2
14 · i

2
nINA (24)

Therefore, the total output noise power of the instrumentation amplifier E2
nINA is expressed as:

E2
nINA = G2

INA

(
E2

tINA + E2
vINA + E2

iINA

)
(25)

In summary, in the GMI sensor signal conditioning circuit, the noise expression of each module
and its power gain expression have been given. The system block diagram of the noise power and gain
transfer function is shown in Figure 2.
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It is worth noting that there are differences between the gain transfer functions in the system. For
linear systems, such as voltage-to-current converters and preamplifiers, the expression is the quadratic
of the voltage gain. For nonlinear systems, such as multipliers, the power gain is

√
2 times the voltage

gain, which is related to the amplitude–frequency characteristic of the multiplier.
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The expression of the total output noise power E2
ntotal of the GMI sensor is calculated as:

E2
ntotal = E2

ng

(
Z(Hex)

2
·G2

vi·G
2
pre·2G2

mul·G
2
f ilter·G

2
INA

)
+

E2
nvi

(
G2

pre·2G2
mul·G

2
f ilter·G

2
INA

)
+

E2
npre

(
2G2

mul·G
2
f ilter·G

2
INA

)
+

E2
nmul

(
G2

f ilter·G
2
INA

)
+

E2
n f ilter·G

2
INA + E2

nINA

(26)

The output voltage noise model of the conditioning circuit has been introduced. We will discuss
the sensitivity model of the sensor as follows.

2.2. Sensitivity Model

For GMI sensors, the output voltage sensitivity Sv is defined as

Sv =
dVout

dHex
(27)

where Vout represents the output voltage of the GMI sensor, and Hex represents the external magnetic
field, thereby the unit of Sv is V/T.

Based on the conditioning circuit of the GMI sensor, the expression of the output voltage sensitivity
is expressed as

Sv = SΩ · Ig ·
(
GpreGmulG f ilterGINA

)
(28)

Here SΩ represents the inherent sensitivity of the GMI component. Ig is the magnitude of the
excitation current flowing through the GMI component. GX represents the gain of each conditioning
circuit blocks. X represents each module.

The magnitude of the Ig is related to the amplitude of the excitation source voltage and the gain of
the voltage-to-current converter, which is expressed as:

Ig = Vg ·Gvi (29)

Combining Equations (28) and (29), the GMI sensor output voltage sensitivity expression is

Sv = SΩ ·Vg ·
(
GviGpreGmulG f ilterGINA

)
(30)

2.3. Model of Equivalent Input Magnetic Noise

By analyzing the above two models, the equivalent input magnetic noise level Bntotal of the GMI
sensor is inferred as:

Bntotal =
Entotal

Sv
(31)

where Entotal represents the output voltage noise spectral density of the GMI sensor, and its unit is
V/
√

Hz. From this, the unit of the equivalent input magnetic noise spectral density Bntotal is T/
√

Hz.
Combining Equations (26), (30) and (31), the model of equivalent input magnetic noise power is

inferred as:

B2
ntotal = 1

S2
Ω ·V

2
g
[(Eng ·Z(Hex) ·

√
2)

2
+

(Envi
Gvi
·
√

2
)2

+
(

Enpre
Gvi·Gpre

·
√

2
)2

+(
Enmul

Gvi·Gpre·Gmul

)2
+

(
En f ilter

Gvi·Gpre·Gmul·G f ilter

)2
+(

EnINA
Gvi · Gpre · Gmul · G f ilter ·GINA

)2
]

(32)
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3. Model Simulation Results

According to the output voltage noise model, the output voltage noise spectral density curve of
the GMI sensor is obtained. The parameters of the model simulation are set as follows: the amplitude of
the excitation voltage Vg is 1 V, the gain of the voltage-to-current converter Gvi is 0.01 A/V, the excitation
current amplitude is 0.01 A, the frequency fg is 5 MHz and the analysis bandwidth is 10 kHz. According
to the sensitivity model, the output voltage sensitivity is calculated as 1 × 104 V/T. Finally, the output
voltage noise spectral density curve of each module is obtained, as shown in Figure 3.
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As shown in Figure 3, the analysis bandwidth is 1 Hz to 10 kHz. For the four modules before
modulation and demodulation (A. Excitation source, B. Voltage-to-current converter, D. Preamplifier
and E. Multiplier), the main source of noise is white noise. For the two modules after demodulation
(F. Filter and G. Instrumentation amplifier), the noise is mainly concentrated in the low frequencies,
which is a superposition effect of 1/f noise and white noise. Therefore, the total output noise voltage
spectral density is the sum of the output voltage spectral densities of all the individual modules. In the
range of white noise (100 Hz~10 kHz), the total output noise entotal is 1.39 × 10−5 V/

√
Hz, where the C

module (enpre = 7.53 × 10−6 V/
√

Hz) and D module (enmul = 1 × 10−5 V/
√

Hz) contribute the most noise
of the total output, while the noise of the B and F modules has less effect on the total output noise.
In the range of 1/f noise (1~100 Hz), the total output noise @1 Hz is entotal = 5.52 × 10−5 V/

√
Hz, and the

module F @1 Hz is en f ilter = 5.11 × 10−5 V/
√

Hz. Hence the total output noise is mainly determined by
the F module.

Therefore, according to the contribution of each module to the total output voltage noise spectral
density, it is not difficult to find that the D and E modules are the main source of output noise in the
range of white noise, and the F module is the main source of output noise in the range of 1/f noise.
In the following work, according to the noise model of the conditioning circuit, the noise of the D, E
and F modules is studied and optimized.

3.1. Module D—Preamplifier

The noise model of the preamplifier shows that the noise source includes two parts: the resistance
thermal noise and the noise of the op-amp. The simulation parameters are shown in Table 2.
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Table 2. Simulation parameters of the preamplifier.

Configurations
Parameter R8 Ω R9 Ω en nV/

√
Hz in pA/

√
Hz

1 1000 Ω 9100 Ω 2.6 2.7
2 100 Ω 910 Ω 2.6 2.7
3 100 Ω 910 Ω 1.2 2.8

In Table 2, according to the datasheet of the preamplifier, three different configurations are set. For
configurations 1 and 2, the op-amps are OPA842, while the values of resistors R8 and R9 are different.
For configuration 2 and configuration 3, the resistors R8 and R9 have the same value, while the op-amp
of configuration 3 is OPA846. The noise contribution in different configurations is shown in Table 3.

Table 3. Noise contribution of each part under different configurations.

Configurations
Resistance Operational Amplifier Total

Thermal Noise
Power E2

t

Voltage Noise
Power E2

vvi

Current Noise
Power E2

ivi

Total Output
Noise Power E2

nvi

1 15.37 × 10−16

V2/Hz 6.92 × 10−16 V2/Hz 6.00 × 10−16 V2/Hz 28.30 × 10−16

V2/Hz
2 1.69 × 10−16 V2/Hz 6.86 × 10−16 V2/Hz 6.10 × 10−18 V2/Hz 8.64 × 10−16 V2/Hz
3 1.69 × 10−16 V2/Hz 1.46 × 10−16 V2/Hz 6.55 × 10−18 V2/Hz 3.20 × 10−16 V2/Hz

As shown in Table 3, the calculation result of configuration 1 shows that the resistance thermal
noise contributes the most to the preamplifier noise, while the op-amp voltage noise and current
noise do not differ much. By changing the value of R8 and R9, the result is shown in configuration 2.
In comparing of the noise of configurations 1 and 2, the output noise level is significantly reduced in
configuration 2, which is mainly limited by the equivalent input voltage noise. If an op-amp with a
lower voltage noise is used, as shown in configuration 3, the noise level of the preamplifier is further
reduced. Therefore, in the preamplifier module, the selection of resistance and op-amp should be paid
more attention.

3.2. Module E—Multiplier

From the noise model of the multiplier, the noise mainly comes from the equivalent output noise
voltage. It determines the inherent noise level of the multiplier, which is closely related to the multiplier
output bandwidth. The carrier frequency fg of the GMI component is 5 MHz. If the bandwidth of the
chip is low, it tends to cause nonlinear distortion at the input end. On the contrary, the high bandwidth
causes the broadband noise to accumulate in the multiplier, which reduces the signal-to-noise ratio of
the multiplier module output. Therefore, the chip’s bandwidth and equivalent input noise need to be
fully considered in the selection.

3.3. Module F—Low-Pass Filter

In the case of satisfying the cutoff frequency of 200 Hz, the parameters of the resistor and capacitor
are set as follows: R12 and R13 are 10 kΩ, C2 is 3.9 µF, C3 is 620 nF and the op-amp is selected as
the high precision op-amp OPA227. From this, the noise spectral density curve of each noise output
voltage in the low-pass filter is calculated as shown in Figure 4.

The filter output total noise Enfilter is the sum of superposition of the resistance thermal noise
Ent, the operational amplifier voltage noise Env and the current noise Eni. It is seen that the current
noise of the op-amp contributes the most noise to the total output noise, especially in the range of 1/f
noise. When the frequency f is equal to 1 Hz, En f ilter is 2.56 × 10−7 V/

√
Hz and Eni is 2.53 × 10−7 V/

√
Hz.

Hence in the design of low-pass filters, the choice of op-amps is critical.
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Above all, we analyzed the contribution of each module to the total output noise level, and then
optimized the internal noise source of the dominant module to improve the total output noise level,
which would provide a theoretical basis for the latter experimental part.
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4. GMI Sensor Noise Test Experiment

According to the previous model research, to verify the correctness and feasibility of the circuit
design and noise optimization scheme, the GMI magnetic sensor noise test system was built.

As shown in Figure 5, the GMI sensor probe and solenoid are placed in a magnetic shielding
cylinder, which can effectively shield the external magnetic field from interference. The generated
sensing signal is connected to the spectrum through the sensor conditioning circuit. The voltage noise
spectrum of the sensor is obtained by analyzing the output data.
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Figure 5. GMI magnetic sensor noise test system diagram.

The conditioning circuit’s parameters are the same as the simulation. The output voltage of the
instrumentation amplifier is connected to the Spectrum analyzer.

The voltage noise spectral density of the GMI sensor is shown in Figure 6. In the frequency range
below 10 Hz, the experimental results are larger than the simulation results, which were caused by
ignoring the potentiometer noise in the zeroing circuit. The output noise is dominated by 1/f noise,
and the noise level is proportional to the reciprocal of the frequency. Taking the point of 1 Hz as the
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reference, the total output noise @1 Hz (5.65 × 10−5 V/
√

Hz) is slightly larger than the simulation result
(5.52 × 10−5 V/

√
Hz). This is caused by the intrinsic noise of the GMI components.
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In the frequency range of 10–1000 Hz, the experimental results agree well with the simulation
results, and the measured value is slightly larger than the simulated value because the actual layout
and routing of the circuit components were not considered in the simulation. The white noise level of
the GMI sensor obtained by the actual test is 1.62 × 10−5 V/

√
Hz.

Further considering the sensitivity of the sensor, it is calculated that the equivalent input magnetic
noise level of the GMI sensor is 5.66 nT/

√
Hz.

5. Conclusions

According to the relevant theory of weak signal detection technology, the noise model of a GMI
sensor was established. It includes the noise model of the conditioning circuit, the sensitivity model and
the equivalent input magnetic noise model. The simulation calculation was carried out by MATLAB,
and the influence of conditioning circuit parameters on the noise performance of a GMI sensor was
studied. The simulation results show that in the range of white noise, the multiplier module and the
preamplifier module contribute the most to the output noise. The equivalent output voltage noise of
the multiplier, the resistance thermal noise of the preamplifier and the op-amp’s voltage noise are the
dominant noise sources. In the range of 1/f noise, the output noise of the low-pass filter is dominant,
and the current noise of the op-amp is the dominant noise source in the low-pass filter. Subsequently,
the output voltage noise spectrum curve within the analysis bandwidth of 1000 Hz was measured.
Comparing the measured results with the simulation results, it is seen that the two results have good
agreement, which indicates that the experiment effectively verified the simulation. The results provide
a theoretical basis for the practical application of low-noise GMI magnetic sensors.

This paper only carried out a preliminary experimental verification of the noise simulation model,
and further performance improvement will be made based on this model later.
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