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Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine
activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI.
A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the temporal regressors has
not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using
the equivalence of multivariate multiple regression (MVMR) and CCA. This extension will allow CCA to be used for inference
of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without
reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients
of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data
than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from
fMRI data were used to demonstrate the advantage of this novel test statistic.

1. Introduction

The General Linear Model (GLM) is a widely used mass
univariate analysis method to determine brain activations
in functional magnetic resonance imaging (fMRI) because
of its simplicity in both estimation and inference and its
greater sensitivity to regional effects than global multivariate
analyses [1]. The least-squares (LS) solution of the GLM
is the minimum variance unbiased (MVU) estimator when
Gaussian white noise assumption is satisfied, otherwise the
weighted LS solution (using the inverse of the noise covari-
ance matrix) becomes the best linear unbiased estimator
(BLUE) [2]. The estimated parameters and their variances
are used to construct various contrast statistics, either t or
F, to test the null hypothesis of effects of interest. Another
popular approach to analyze fMRI time series uses the
correlation coefficient [3]. The statistical significance of the
correlation coefficient is equivalent to a t-statistic testing
for a regression on one single regressor [4]. The correlation

coefficient is more restricted in assessing the significance
of regional effects than the t-test in fMRI data analysis
because the correlation coefficient does not allow more than
one regressor to be included for a direct calculation. It is
known, however, that the partial correlation coefficient is
also equivalent to a t-test and thus could potentially be
used instead. However, each contrast of interest need be
constructed and the residuals, after removing effects of no
interest, have to be calculated for each contrast. This process
is generally less computationally efficient than the t-test used
in the GLM.

While univariate (single voxel) analysis is extensively
applied in fMRI, and temporal correlations are the focus
of most investigations, only a few applications investigate
the spatial dependence of fMRI data. Univariate analysis
deals only with a uniform nonlocal spatial approach and
uses fixed isotropic spatial Gaussian smoothing routinely
to achieve more homogeneous regions of activation and
to control the family-wise error parametrically, based on
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the theory of random fields [5, 6]. These methods do
not utilize local spatial information in fMRI data, and
fixed spatial smoothing causes unnecessary blurring of the
edges of activation. More severely, if the fixed isotropic
filter kernel is larger than the activated area, it could
potentially miss the detection of activated regions. Small
focal regions of low contrast-to-noise ratios are rather
common in episodic memory paradigms where the task is to
detect activation in the medial temporal lobes (hippocampus
and parahippocampus). Therefore, fixed Gaussian spatial
smoothing can potentially result in missing important (but
subtle) focal activations. This is especially troublesome for
high-resolution fMRI data where the intrinsic point spread
function of the imaging sequence is not much larger than the
dimension of a voxel and there are sharp boundaries between
grey matter and surrounding cerebrospinal fluid (CSF) and
blood vessels (see, e.g., [7]).

A more effective method than fixed Gaussian spatial
smoothing uses locally adaptive spatial filter kernels. Using
the spatial dependence of fMRI data, local multivariate
methods such as canonical correlation analysis (CCA) [8]
and its variants [9–13] have the ability to significantly
increase the detection power of fMRI activations. However,
there are several drawbacks that prevent CCA methods from
being widely used in fMRI analysis. First, the original uncon-
strained CCA method [8] increases the number of false
positives due to more freedom in finding favorable linear
combinations with nonactive voxel time series leading to a
decrease in specificity. This drawback can be addressed by
either enforcing some constraints on the spatial coefficients
[10, 12, 13] or adaptively assigning the canonical correlation
to the most significant voxel [11]. Second, these modified
CCA methods [10, 11, 13] usually require much more com-
putation time than the GLM and the unconstrained CCA
method. Jin et al. [12] proposed a region-growing strategy to
solve the constrained CCA (cCCA) problem in a much faster
fashion than the traditional branch-and-bound method [10,
13, 14]. Third, in the form of previous implementations,
CCA applications in fMRI data analysis were very limited
because test statistics used were based on the significance of
the maximum canonical correlation coefficient, thus limiting
the analysis to a simple model accommodating only one
temporal regressor (i.e., on-off experimental design). This
drawback prevents researchers from using CCA for more
complicated paradigms with multiple explanatory variables
and nuisance covariates in fMRI. Though reparameterization
based on the linear contrast of interest can provide a
solution for this drawback [15, 24], the computational cost
is high because, for each different reparameterization, the
constrained CCA problem needs to be solved. The major goal
of this research is to find a suitable test statistic for CCA that
allows the testing of general linear contrasts and that is also
fast.

In this paper, we first establish the connection between
the multivariate multiple-regression (MVMR) model and
CCA. Although this is not totally new in statistics, we
found that there is lack of awareness for the development
of CCA methods in the fMRI data analysis community. By
treating the estimated spatial filter kernel of constrained CCA

as a linear transformation of the original MVMR model,
we further derive a novel univariate test statistic similar
to a t-statistic based on general hypothesis tests of the
MVMR model. This extension will allow CCA to be used
for inference of general linear contrasts in more complicated
fMRI designs without solving the constrained CCA problem
for each particular contrast of interest.

In the following, we start from the MVMR model and
its hypothesis test for general linear contrasts under a linear
transformation of the original model. Then, the simultane-
ous estimation of spatial and temporal parameters using the
LS rule in the MVMR model is derived and proved to be the
same as the CCA solution. By treating the adaptive spatial
smoothing as a linear transformation of the original MVMR
model, a novel directional statistic for CCA similar to a t-
statistic can be derived to allow for testing of general linear
contrasts. Using receiver operating characteristic (ROC)
techniques [16–18] on pseudoreal fMRI data [11, 19–21], we
quantitatively compare the sensitivity and specificity of the
proposed novel CCA statistic with the t-statistic of the GLM
without and with fixed Gaussian spatial smoothing. We also
apply a nonparametric approach [22] to estimate the family-
wise error rate for all methods using resampled resting-state
data and show the activation maps for real fMRI data for a
simple visual cortex activation paradigm and also for a more
complicated memory paradigm.

2. Theory

2.1. The MVMR Model. Considering a group of K local
neighborhood voxels, the MVMR model can be written as

Y = XB + E, (1)

where X is fixed (i.e., the n × p design matrix), Y =
(y1, y2, . . . , yK ) is the matrix containing K neighboring
voxels, B = (β1,β2, . . . ,βK ) is the parameter matrix to be
estimated, and E = (ε1, ε2, . . . , εK ) is the error matrix. With-
out of loss of generality, X and Y are column centered and
there is no constant column in X. When the error matrix
satisfies (i) E(E) = 0, (ii) cov(εi) = Σ for i = 1, . . . ,n, and
(iii) cov(εi, ε j) = 0 for i /= j, the LS solution of the model
(1) is equivalent to the BLUE, which is just the matrix
form of the univariate GLM estimator leading to equivalent
solutions, but a multivariate test need be adopted. Note that
conditions (i)–(iii) may not be true for fMRI data, but may
be reasonably satisfied using temporal whitening.

The hypothesis tests in the MVMR model can be
conducted using the error matrix and the hypothesis matrix
for any estimable general linear contrast matrix C′. For a
linear transformation of the original MVMR model, say M,
Wilks’ Λ and other test statistics (e.g., Roy’s largest root)
can be used for testing the null hypothesis C′BM = O
[23]. In addition to the fixed linear transformation of the
MVMR model, we will introduce estimation of the spatial
filter kernel (leading to an adaptive smoothing) and treat it
as a spatially variable linear transformation in the following
development. This linear transformation can be estimated
from the data using CCA. Utilizing the spatial and temporal
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coefficients from CCA and the hypothesis test on the linear
transformation of the MVMR model, a directional (one-
sided) statistical test for CCA can be derived that is similar
to a t statistic in the GLM. This novel statistic allows
CCA to test hypothesis on general linear contrasts of an
fMRI design without reparameterization of the design matrix
and without reestimation of the CCA solutions for each
particular contrast of interest.

2.2. Adaptive Filtering through Canonical Correlation Analysis
(CCA). To increase detection power of weak activations,
local spatial filtering is usually applied to decrease the noise
variance. Let α be the vector containing the spatial filtering
coefficients, then multiplication of both sides of the MVMR
model of (1) with α gives

Yα = Xβ + ε, (2)

where β ≡ Bα, ε ≡ Eα, and multiplication by α defines a
linear transformation of the original MVMR model in (1).

When both Y and α are fixed and treated as known, such
as in conventional fixed Gaussian smoothing, β can be easily
estimated by linear regression as

˜β = (X′X)−1X′Yα. (3)

Given a general linear contrast C′, the null hypothesis of
C′Bα = C′β = 0 can be tested using Wilks’ Λ likelihood ratio
test (assuming independent identical normal distribution of
noise both spatially and temporally) by

Λ = |E|
|E + H| , (4)

where the error matrix is E = (Yα−X˜β)
′
(Yα − X˜β) and

the hypothesis matrix is H = (C′˜β)
′
[C′(X′X)−1C]

−1
(C′˜β).

Note that both matrices reduce to a scalar due to the linear
transformation of the original MVMR model by vectors α.

A fix-sized and isotropic smoothing kernel, such as a
Gaussian kernel, is not optimal, especially for weak and
small activations. Our goal is to increase detection power
by pooling the neighboring voxels with similar activation
pattern and by determining the spatial weights α from the
data as well. This adaptive smoothing can be achieved by
minimizing the square of fitting error (i.e., LS) for the model
in (2), which leads to the equivalent solution in CCA.

Assuming that the optimal configuration of Y is known
(please see [10, 12] for how to find this configuration), the
vectors α and β can be estimated by LS:

(

α̃, ˜β
)

= arg min
α,β

∥

∥Yα−Xβ
∥

∥
2
. (5)

There is a trivial solution for (5): α̃ = ˜β = 0, which can be
avoided by enforcing some normalization condition, such as
α̃
′Syyα̃ = 1 or α̃′α̃ = 1. Taking the partial derivative of the

square of fitting error over α, we get

∂
∥

∥Yα−Xβ
∥

∥
2

∂α
= 2

(

Y′Yα− Y′Xβ
)

. (6)

The solution α̃ requires (6) equal to zero so that

α = (Y′Y)−1Y′Xβ. (7)

Meanwhile, the relationship in (3) is still valid. Therefore,
only one vector needs to be estimated and the other can be
determined by (3) or (7). Substituting (3) in (7), we get

α = (Y′Y)−1Y′X(X′X)−1X′Yα

= S−1
yy SyxS−1

xx Sxyα,
(8)

where the sample covariance matrices are Syy = (1/(n −
1))Y′Y, Sxx = (1/(n − 1))X′X, and Sxy = S′yx = (1/(n −
1))X′Y. This is an eigenvalue problem for α with eigenvalue
1, whose solution may not exist because the eigenvalue
of S−1

yy SyxS−1
xx Sxy is not necessarily identical to 1. Thus, a

conventional method to solve (8) is to write it as an LS
problem by

α̃ = arg min
α

∥

∥

∥α− S−1
yy SyxS−1

xx Sxyα
∥

∥

∥

2
. (9)

Given that α /= 0 by enforcing the normalization condition
mentioned previously, the expression ‖α− S−1

yy SyxS−1
xx Sxyα‖2

can be minimized if α̃ is the eigenvector of S−1
yy SyxS−1

xx Sxy

which has the eigenvalue λm closest to 1 (or in other words,
the largest eigenvalue of S−1

yy SyxS−1
xx Sxy because its upper

bound is 1), that is,

S−1
yy SyxS−1

xx Sxyα̃ = λmα̃. (10)

Equation (10) results in the same solution for CCA, where
λm = r2 and r is the maximal canonical correlation. This is
not totally unexpected because

(

α̃, ˜β
)

= arg min
α,β

∥

∥Yα−Xβ
∥

∥
2

= arg min
α,β

∥

∥

∥

∥

∥

∥

Yα
√

α′Syyα
− Xβ
√

β′Sxxβ

∥

∥

∥

∥

∥

∥

2

= arg min
α,β

(n− 1)C1

+ (n− 1)C2 − 2(n− 1)
α′Syxβ

√

α′Syyα
√

β′Sxxβ
,

(11)

where C1 = α′Syyα and C2 = β′Sxxβ are nonzero constants.
Therefore, we can use CCA, which maximizes the third term
in the above equation, to find solutions for the model in (2).
Once α̃ has been determined, the temporal coefficients ˜β can
be obtained by (3) accordingly.

Normally, we can achieve a desired filtering effect by
adding constraints on the components of α in a constrained
CCA (cCCA) form. In this work, we constrain all com-
ponents of α to have the same sign. This constraint not
only enforces a smoothing effect, bus also has an optimal
solution through searching CCA solutions of the possible
configurations of Y in a prescribed local region to satisfy
this constraint [10, 12, 14]. In addition we add a center
voxel significance constraint by requiring that the spatial
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weight of the center voxel be at least 20% of the maximum
spatial weight in each 3 × 3 neighborhood [12]. Although
this introduces some nonlinearity to the optimization [24],
in the current implementation, this additional constraint
was found empirically to be effective in producing the best
performance. A similar approach was used in [10] to increase
the spatial specificity.

Generally, we suggest scaling the solution α̃ of cCCA to
have a sum of magnitudes to be one. Although this is not
required because the scaling factor will be cancelled out in
calculating the novel CCA test statistic (refer to (14) in next
section), this treatment can keep the error term comparable
with GLM methods. A region-growing method [12] allowing
a much faster implementation than the traditional branch-
and-bound method [10, 14] will be used to obtain α̃.

Several advantages of the current implementation of
cCCA over the method proposed in [10] are listed here. (1) In
[10], a spatial Gaussian filter was divided into one isotropic
central part and three oriented parts. The weights for these
parts can be estimated using CCA to achieve anisotropic
filtering (steerable spatial filtering). In our method, we search
for the optimal voxel combinations and weights in a 3 × 3
neighborhood because the cortical layer in a typical fMRI
scan is less than 5 mm and spans only a couple of voxels. Our
smaller filter size can help better define activations leading
to higher specificity (2) A rather slow branch-and-bound
(BB) method was used in [10], which is not efficient to
search optimal combinations for the center voxel in a 3 ×
3 area (see Section 5). Our region-growing method takes
24 s for a 2D slice with 6317 in-brain pixels and is much
faster than the BB method (308 s) [12] (3) The statistic used
in [10] was the maximum canonical correlation coefficient,
which can only be used for simple on-and-off paradigms but
not for arbitrary linear functions (contrasts) in complicated
paradigms. The new statistic proposed in our work can
be applied for complicated paradigms without reestimating
for each contrast of interest. Although it would be an
interesting followup to compare different CCA methods,
such a comparison is beyond the scope of the current paper.

2.3. Novel Directional Test Statistic for CCA. As a simple
treatment, the estimated components of α̃ can be used
as local spatial filter coefficients to smooth the original
data. Then, the same univariate inference as the GLM can
be applied to get a statistical map for any general linear
contrast. However, this procedure has two drawbacks: (1) the
GLM estimation of β on the smoothed images adds extra
unnecessary computation time; (2) the resulting statistics
will be biased because it does not account for the loss of
degrees of freedom caused by the size of the spatial filter
kernel. For example, a single voxel configuration is more
significant than a multiple-voxel configuration having the
same value of the test statistic. To overcome these two
drawbacks, we derive the test statistic directly from the CCA

coefficients α̃ and ˜β and account for the spatial kernel size by
changing the degrees of freedom.

Given the general linear contrast C′, the null hypothesis:

H0 : C′Bα̃ = C′˜β = 0 can be tested by Wilks’ Λ in (4),

where α in the error matrix is replaced by α̃. In this paper, we
are particularly interested in a directional test statistic when
the contrast matrix C′ reduces to a vector c′. Thus, the test
statistic on c′˜β reduces to a univariate case with a signed
value and can be defined by

Λ± = sign
(

c′˜β
)

Λ = sign
(

c′˜β
) |E|
|E + H| , (12)

where Λ+ indicates the positive statistic for values c′˜β > 0

and Λ− indicates the negative statistic for values c′˜β < 0.
Going one step further, we can define a statistic tc bearing

a similar form as the conventional t-statistic by writing

Λ± = sign
(

c′˜βc
) 1

1 + t2
c /DF

, (13)

where DF = n−p−K specifies the degrees of freedom (DOF)
given that the number of observations is n, the number of
(nonconstant) regressors is p (linear equations for β), and
the size of voxel configuration in CCA is K (constraints
for α). As we will discuss next, tc is not a real t-statistic,
but rather using the concept of DOF to account for the
voxel configuration size similar to t-statistic. Thus, a non-
parametric estimation method [22] is essential to assess its
statistical significance. Since the right sides of (12) and (13)
are equal, this statistic can be written by using the definition
of E and H as

tc = c′˜β
√

DF
√

c′(X′X)−1c
√

(

Yα̃−X˜β
)′(

Yα̃−X˜β
)

. (14)

Note that the voxel configuration size has been accounted for

in (14) so that the same c′˜β values with less voxels become
more significant. The new statistic reduces to a traditional t-
statistic for the single voxel (K = 1) case (when the noise is
white and Gaussian distributed) given by

t = c′˜β
√

n− p − 1
√

c′(X′X)−1c
√

(

y −X˜β
)′(

y −X˜β
)

. (15)

Generally, (14) will not follow a t-distribution even
under the assumption of independent identical normal
distribution of noise in both space and time because of
the constrained CCA estimation for α. Without spatial
correlation in the single voxel case (K = 1), (15) can
approximate fairly well a t-distribution when prewhitening
is applied to decorrelate the temporal serial correlations.
Moreover, the spatial correlation of fMRI data will pose
a tricky problem for approximating a true t-distribution.
To deal with these difficulties, a non-parametric estimation
method [22] is adapted to assess the significance of the CCA
statistic of (14). The distribution of this novel statistic on null
data will be shown to deviate from the true t-distribution in
Section 4.

From (14), we can see the advantage of the newly
developed test statistic. First, if activations exist at the
center voxel and its neighbors, we get a more accurate
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estimate of ˜β (as shown in simulations in Section 4) by
pooling these voxels in the estimation. Second, the error term

(Yα̃−X˜β)
′
(Yα̃ − X˜β) is always smaller than (y −X˜β)

′
(y −

X˜β). Therefore, no matter what contrast vector c is used, tc
has a larger value than the univariate t. It would be expected
that tc values of active voxels increase more than tc values
of voxels in the null state, which will lead to an increased
sensitivity. Third, the better model fitting by pooling more
voxels is penalized by the degrees of freedom DF = n −
p − K . This penalty will cause considerable bias when n is
comparable to p+K . However, this scenario is not practically
meaningful because the length of the fMRI sequence is
usually much greater than the sum of the number regressors
and the size of the filter kernel (i.e., n� p + K).

Note that the proposed test statistic may not necessarily
be the optimal test for an arbitrary contrast because we
only minimize the square of fitting error in (2) that is
independent of the contrast [24]. Nevertheless, the new
statistic allows us to improve the detection power without
reparameterization of the design matrix and without re-
estimating each particular contrast of interest as shown in
Section 4.

3. Methods

3.1. Imaging Data. Functional MRI (fMRI) was performed
at the Brain Imaging Center of the University of Colorado
Denver in a 3.0T GE HDx MRI scanner equipped with
an 8-channel head coil and parallel imaging technology.
Stimulus presentation was done with a rear projection system
(AVOTEC, Inc.). Two different paradigms (visual paradigm
and memory paradigm) were performed on two and eight
healthy adult subjects, respectively, and fMRI data were
collected according to local IRB approval. The pulse sequence
to collect fMRI data was EPI with the following parameters:
ASSET = 2, ramp sampling, TR = 2 sec, TE = 30 ms, FA =
70 deg, FOV = 22 cm × 22 cm, slice thickness = 4 mm, gap =
1 mm, 25 slices, and in-plane resolution 96 × 96. For the
visual paradigm we prescribed axial slices and collected 150
volumes, whereas for the memory paradigm we prescribed
coronal oblique slices perpendicular to the long axis of the
hippocampus and collected 288 volumes. The first 5 volumes
were discarded to establish signal equilibrium of the imaging
sequence.

To obtain an accurate gray matter mask that has
equivalent features of the echo-planar data (same geometry
and distortions), we collected for each subject an additional
coplanar IR-SE-EPI scan to get inverted T1 contrast with
the following parameters: TI = 505 ms, ASSET = 2, ramp
sampling, TR = 6 sec, TE = 30 ms, FOV = 22 cm × 22 cm,
slice thickness = 4 mm, gap = 1 mm, 25 slices, and in-plane
resolution 96× 96. This imaging sequence yields unique high
signals for gray matter so that we can easily threshold them to
get accurate gray matter masks. The IR-SE-EPI images were
first aligned to the mean EPI images using six-parameter
affine transformation and then were thresholded to get gray
matter masks. Visual inspection of masks for faithfulness was
conducted before calculating the activation voxels in gray
matter.

Furthermore, we acquired a coplanar standard high-
resolution T2-weighted anatomical scan (FOV 22 cm, resolu-
tion 256× 256, TR 3000 ms, TE 85 ms, NEX 2, slice thickness
4 mm, gap 1 mm). The mean EPI functional image of each
individual was coregistered to its corresponding T2 image,
and the same transformation was applied on all functional
images. The resultant activation map shown in Section 4 was
overlaid on the individual T2 image.

3.1.1. Visual Paradigm. For each subject we acquired two
fMRI data sets. The first data set was collected during
resting state where the subject tried to relax and refrained
from executing any overt task with eyes closed. The second
data set was collected while the subject was looking at a
flashing checkerboard (10 Hz flashing frequency, duration
2 sec) which alternated with a fixation period of random
duration (2 sec to 10 sec, uniformly distributed). During the
fixation period a black screen containing in the center a small
white cross (about 1 inch in size) was shown and the subject
was instructed to focus on this cross. The corresponding
design matrix using the canonical hemodynamic response
function (HRF) model is shown in Figure 1(a). The left
column in this figure represents the regressor for the fixation
and the right column represents the regressor for the visual
activation.

3.1.2. Memory Paradigm. Also here, we acquired two fMRI
data sets for each subject. The first set contained resting-state
data, and the second set was acquired while the subject per-
formed a memory task. Behavioral responses were collected
during the memory paradigm with button response pads that
the subject had in each hand. The memory paradigm started
with a fixation period of 16 sec followed by six identical
89 sec long cycles of “5 sec instruction,” “21 sec encoding,”
“5 sec instruction,” “11 sec control,” “5 sec instruction,” and
“42 sec recognition”. It ended with another fixation period of
16 sec. The short “instruction period” consisted of a single
sentence and reminded the subject of the following task to
be performed. The “encoding” task consisted of a series of
novel pictures, where each picture was displayed for 3 sec,
and the subject was instructed to memorize each picture.
During the “control” task the subject saw the letters “Y”
or “N” which appeared in random order every 100 ms on
the display screen. The subject was instructed to press, as
fast as possible, the right button when “Y” appears or the
left button when “N” appears. The purpose of the “control”
task was twofold. First, it served as a distraction task to
keep attention away from the just learned pictures. Second,
due to its simplicity it did not produce any activation in
regions associated with the memory circuit (hippocampal
complex, posterior cingulate cortex, precuneus, and fusiform
gyrus). During the “recognition” task the subject saw a series
of pictures where half of the pictures were novel and the
other half of the pictures were identical to the pictures from
the previous “encoding period.” The arrangement of these
pictures was random. Each picture was displayed on the
screen for 3 sec. The subject was instructed to press the
right button if the picture was seen before in the previous
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encoding period and to press the left button if the picture was
identified to be novel and not seen in the previous encoding
period. The design matrix using the canonical HRF model is
shown in Figure 1(b). The four conditions of “instruction,”
“encoding,” “recognition,” and “control” are denoted as “I,”
“E,” “R,” and “C,” respectively.

Due to the complexity of the memory paradigm, all sub-
jects were trained on a computer in a quiet room with
the paradigm using a different set of images before fMRI
scanning. The stimuli presentations were programmed in
EPRIME and all button presses were recorded.

3.2. Preprocessing. All data were preprocessed in SPM5 using
realignment to correct for motion artifacts, slice timing
correction to correct for differences in image acquisition
time between slices, and high-pass filtering using T = 150 sec
to remove low-frequency components and signal drifts.
The classic two-gamma HRF was used to construct the
design matrix. In the next section, we give examples for the
contrasts “Visual minus Fixation” (denoted as “V-F”) for
visual data and “Encoding minus Control” (denoted as “E-
C”) for memory data and ignore other possible contrasts of
interest.

3.3. Methods of Data Analysis. Three methods were investi-
gated using the statistics defined in (14) and (15). The first
two using (15) are (i) the GLM without smoothing, denoted
as “GLM-NS” and (ii) Gaussian smoothing followed by the
GLM, denoted as “GLM-GS.” The third one is cCCA with the
region-growing method [12] using (14), denoted as “cCCA-
RG.” The full width at half maximum (FWHM) of Gaussian
smoothing in the GLM was chosen as 2.24 pixels. This
number is not only falling in the generally recommended
smoothing size (2-3 times of the spatial resolution) in fMRI
data analysis, but is also equal to the average size of all
possible 256 configurations within a 3 × 3 pixel area that
includes the center pixel [24].

3.4. Construction of Simulated and Pseudoreal Data. In
demonstrating the estimation and detection performance
of different methods, real fMRI data, where the subject
performed a certain paradigm, are difficult to use since
the ground truth about the activated regions is unknown.
To draw any firm conclusions about the performance of a
method, it is better to use simulated/pseudoreal data, where
the important parameters are known and can be tested for
and the data features (especially the noise characteristics)
are similar to real fMRI data [11, 17]. In this work, we
always use the resampled resting-state fMRI data as the noise
background to preserve the noise characteristics of real data
and superimpose either artificial activations or activations
extracted from real activation fMRI data. Even though the
difference between simulated/pseudoreal data and real data
cannot be avoided, the evaluation provides a ranking of the
estimation and detection performance of difference methods
that is unlikely to change for real data.

To quantitatively determine the performance of different
methods, we constructed both simulated and pseudoreal
data by defining

x =
{(

1− f
)

xact + f xnull, x ∈ active set,

xnull, otherwise.
(16)

In this equation x is the vector representing the time
series of a voxel with activation contribution xact and noise
contribution xnull. The noise fraction parameter f is a scalar
number to adjust the noise level in the data vector x given
that xact and xnull have the same power. For null data
xnull, Fourier resampling [25] of resting-state fMRI data was
used to randomize the phase of each time series without
destroying the inherent temporal and spatial correlations
in the data. Note that there are other resampling methods
for fMRI data, such as wavelet resampling [26, 27] and
whitening resampling [28–31], and some comparisons have
been made based on different criteria [27, 31–33]. Compared
to whitening resampling, both Fourier and wavelet resam-
plings do not assume a specific model (such as AR(p) or
ARMA(p,q)) to do model fitting and are thus more general
since different voxels may follow different whitening models.
To avoid complicating our simulation, we chose Fourier
resampling with the same phase permutation for all time
series to preserve the spatial correlations of resting-state
fMRI data. This resampling method is least computationally
demanding and was demonstrated to have a similar ROC
performance to that of wavelet resampling [33].

To define different spatial patterns of activations for
simulated data, 100000 randomly shaped activations within
a 3 × 3 grid of pixels having a size of 2 to 9 pixels were
generated. The center pixel was always assigned to be active.
The corresponding time courses for the activated pixels xact

were simulated to be linear combinations of the 4 random
temporal regressors with random amplitudes β1, β2, β3, and
β4 uniformly distributed in [0, 1]. Different levels of noise
introduced by resampled 3 × 3 patches of resting-state fMRI
were used for xnull. Both xnull and xact were normalized to
have unit variance before the mixture.

To quantitatively evaluate both sensitivity and specificity
of the novel CCA test statistic of (14) in comparison with
a GLM-based t-test in a more realistic setting using ROC
techniques [16–18], we constructed pseudoreal data [11]
using a combination of activation data and resting-state data.
First, GLM-NS was applied on the activation data. Next, the
groups of highly active voxels using an unadjusted P value
threshold of 10−8 for the t-maps of V-F in visual data and
of E-C in memory data were labeled as active, that is, xact.
Finally, we generated, by Fourier resampling of resting-state
data, the null data xnull and constructed the final pseudoreal
data according to (16).

To find the proper noise fraction parameter f in (16),
we applied GLM-NS on pseudoreal data for f ∈ (0, 1)
with step size 0.01. The median of corresponding t-values
of activations was compared with the median of t-values
with significance level in [10−8, 10−3] by applying GLM-NS
on real (non simulated) fMRI activation data. We plotted t-
values of contrasts V-F and E-C in Figures 2(a) and 2(b),
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Figure 1: Design matrices for visual (a) and memory (b) paradigms. From left to right, the regressors are fixation (F) and visual activation
(V) for the visual paradigm (a), and instruction (I), encoding (E), recognition (R), and control (C) for the memory paradigm (b). The SPM-
type two-gamma function was used as the HRF. Note that with centered data, (a) can be modeled by a single centered activation column and
(b) can be modeled by three centered columns. The redundant presentation was used to show all experimental conditions.

respectively. As can be seen, f = 0.6 is a value that two
medians match. Therefore, we picked two values for f :
0.55 representing the low noise case and 0.65 representing
the high noise case. By normalizing the peak variances of
noise and signal to be the same, these two values for f
correspond to a peak signal-to-noise ratio of 67% and 29%,
respectively. The logic of choosing these significance levels
for determining a proper f is the following. Voxels with
significance level P < 10−8 are signals with very high SNR
(which are almost certainly true activations), those with
significance level in the interval [10−8, 10−3] are the majority
of signals with medium or low SNR and of interests of
detection (whose median of the t-statistic was used to find
a matching f ), and those with significance level P > 10−3 are
dominated by noise and are therefore ignored.

The advantage of constructing pseudoreal data using real
activation data and resampled resting-state data is that the
spatial and temporal correlations of both the activations and
the noise are similar to real data and the locations of active
and nonactive voxels are known by construction. This type
of simulation then allows conventional ROC techniques to
be applied.

3.5. Determination of Proper P-Value. To compare different
test statistics using real visual and memory activation data, it
is necessary to get the proper P-values for the corresponding
t- or novel CCA statistic that is adjusted for multiple
comparisons. In this work, we used a non-parametric
technique [22]. A non-parametric technique is suitable for
a reliable comparison between different analysis methods
because the parametric distribution of the CCA statistic is
intractable due to the data-adaptive spatial filtering kernel.
In the following we outline how the family-wise error rate
(FWE) is being calculated using Fourier resampled resting-
state data using bootstrapping of the order statistics. For
more details, please see the publication [22].

The multiple comparison problem is relevant when we
have a family of hypotheses {Hω : ω ∈ Ω} at voxel ω.
Let the test statistics at voxel ω be denoted by Yω. Then
FWE is determined by the maximum statistic (maxYω),
and for any threshold u, we can calculate the P-value that
automatically adjusts for multiple comparisons. To estimate
the null distribution of {maxYω}, we use the bootstrap
method applied to the k largest order statistics {Y 1, . . . ,Yk}
from Fourier resampled resting-state data. This method is
quite general and may be applied to a broad class of test
statistics in fMRI. In the present context of CCA, the relevant
test statistic is given by (14) or (15). Although it is not
strictly necessary, it is preferable to make a transformation of
the test statistic using the known (approximate) distribution
or the kernel density estimation. We calculate the negative
logarithm of the P-value corresponding to the test statistic to
obtain our transformed variables. Due to the monotonous
nature of the transformation, without loss of generality, we
can assume that Y is already transformed. Define {di =
i(Yi − Yi+1), i = 1, . . . , k} as normalized sample spacings
for the k largest order statistics. If the observed samples at
the voxels are exponential i.i.d then so are the normalized
sample spacings [34]. This is true since the transformed test
statistic is an exponential random variable. The k largest
order statistics can then be expressed as a linear function of
the normalized sample spacings and Yk+1 as follows:

Y j = Yk+1 +
k
∑

i= j

i−1di, j = 1, . . . , k. (17)

Since {di, i = 1, . . . , k} are i.i.d., we can use the bootstrap
method to obtain resamples of normalized spacings {d∗i ,
i = 1, . . . , k}. The latter can be used to generate resamples
{Y∗1, . . . ,Y∗k} of the k largest order statistics from which
the distribution of {maxYω} can be obtained numerically.
Since Fourier resampled resting-state data are considered to
be null, the obtained distribution can be considered to be the
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Figure 2: Determination of the proper value for the noise fraction f for pseudoreal data. The solid horizontal lines represent the medians
of t-statistics at the significance level 10−8 < P < 10−3 (uncorrected) for the contrasts V-F (a) and E-C (b) by applying GLM-NS on real
fMRI activation data. The dashed curves are the medians of the t-statistics of activation-defined voxels for the contrasts V-F (a) and E-C
(b) by applying GLM-NS on pseudoreal data where the true activations were defined by thresholding real activation data using a very high
significance level (P < 10−8 uncorrected) and adding resampled noise according to (16) for different noise fractions f ∈ [0, 1]. The medians
of the t-value matched at around f = 0.6. Therefore, we picked two values for f : f = 0.55 representing the low noise case and f = 0.65
representing the high noise case.

null distribution of {maxYω}. It can be shown that, under
certain regularity conditions, for a suitably chosen k, the
normalized spacings are i.i.d. asymptotically [35]. Due to
the large number of voxels in consideration, the asymptotic
result is applicable in the present context. The chosen value
for k was 100 for the bootstrap method and FWE was
computed for P = 0.05.

4. Results

4.1. Estimation of Temporal Coefficients for Simulated Data.
We computed the mean square errors (MSE) between the
estimated temporal coefficients of the linear combination
and the original ones generating the simulated data (Table 1)
for a random noise fraction parameter f uniformly dis-
tributed in [0, 1]. The GLM-GS method is inferior to GLM-
NS due to the small and irregular defined activations. The
cCCA-RG method performs best and has an improvement
of more than 25% of MSE in estimating the temporal
coefficients. This experiment demonstrates the superior
estimation performance of temporal coefficients ˜β by the
adaptive smoothing capability of cCCA.

4.2. Null Distribution of the Proposed Test Statistic. Although
the proposed novel CCA test statistic has a similar form as the
t-statistic in the GLM, its null distribution deviates signifi-
cantly from the theoretical t-distribution as we mentioned
previously. To shed more light on this issue, we applied
different methods using Fourier resampled resting-state data
and the contrast vector for the memory paradigm to get

Table 1: Mean square errors (MSEs) of estimated coefficients for
different methods. To define different spatial patterns of activations,
100000 randomly shaped activations within a 3 × 3 grid of pixels
having a size of 2 to 9 pixels were generated. The corresponding
time courses for the activated voxels were simulated to be linear
combinations of the 4 random temporal regressors with random
amplitudes. Different levels of noise were introduced by resampling
3 × 3 patches of resting-state fMRI data. The mean square errors
between the originally simulated amplitudes of regressors and
estimated ones are shown. The cCCA-RG method achieves more
than 25% less MSE compared to GLM-NS. The GLM-GS method
is worse than GLM-NS due to the small and irregularly defined
activation patterns.

Δβ2
1 Δβ2

2 Δβ2
3 Δβ2

4

GLM-NS 0.1331 0.1837 0.2200 0.1488

GLM-GS 0.1627 0.2047 0.2336 0.1769

cCCA-RG 0.0979 0.1339 0.1538 0.1091

the null distributions of the contrast E-C. The results were
plotted in Figure 3. The theoretical t-distribution with a DOF
of 278 is also plotted for reference. It can be seen that all
distributions are wider than the theoretical t-distribution,
even for the GLM methods. Meanwhile, since n is much
greater than p and K in this case, the adjustment induced
by K in (14) is almost negligible. Since the distribution
of the novel CCA test statistic has a complicated structure
and is difficult to parameterize, it is necessary to use
non-parametric methods to determine significance values
accurately.
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Figure 3: Distributions of the proposed CCA statistic (“cCCA-
RG novel”) along with the conventional t-statistic used in the
GLM using resampled resting-state data and contrast E-C for the
memory paradigm. The difference of the GLM-based t-statistic
from a theoretical t-distribution (blue solid curve, DOF = 278) was
mainly caused by the temporal correlation in fMRI signal. The novel
CCA statistic has the widest profile because of the additional spatial
modeling.

4.3. Area under the ROC Curve for Pseudoreal Data. We
computed the area under the ROC curve (called “AUR”)
for a false positive fraction (FPF) less than 0.1 as an index
of detection performance. The AUR quantity provides a
weighted measure of detection power for specificities larger
than 0.9 (which is the most interested range for fMRI data).

The AUR quantities for the contrast V-F of the visual
data and for the contrast E-C of memory data are shown in
Figure 4. Since the induced activations at the visual cortex
are spatially extended, Gaussian smoothing (GLM-GS) yields
better detection performance than GLM-NS. However, when
activations are more irregular in shape and spatially localized
as in the memory task, Gaussian smoothing produces adverse
effects and GLM-GS consequently performed worse than
GLM-NS. As can be seen, cCCA-RG always yields the top
performance in all cases. The biggest advantage of cCCA-
RG is in detecting small activations from a high noise
background (“MEM 0.65”).

In addition, we plotted the curves for the total false
fraction (TFF) (including both false positives and false
negatives) versus the false positive fraction (FPF) in Figure 5
(for the contrast V-F of the visual data) and Figure 6 (for
the contrast E-C of the memory data). This measurement
provides another perspective on the detection performance
of different methods. For the extended activations of the
contrast V-F, cCCA-RG achieves the smallest TFF at f =
0.55 (Figure 4(a)), followed by GLM-NS and GLM-GS.
The GLM-GS method is effective in the high noise case
(Figure 4(b) f = 0.65) and performs similar to cCCA-RG. In
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Figure 4: Detection performance of different data analysis methods
showing the area under the ROC curve (AUR), integrated over
FPF∈ [0, 0.1], using pseudoreal data. The AURs for the contrast V-F
of the visual paradigm (“VIS 0.55” and “VIS 0.65”) and the contrast
E-C of the memory paradigm (“MEM 0.55” and “MEM 0.65”) are
shown for the low noise case ( f = 0.55) and the high noise case
( f = 0.65), respectively. The cCCA-RG achieves the greatest AUR
values in all cases.

Figure 5, for the small activations of the contrast E-C, cCCA-
RG remains the optimum and yields much more improved
performance over other methods in the high noise case ( f =
0.65). The GLM-GS method works poorly even in the high
noise case. This demonstrates that it is destructive to apply
fixed Gaussian spatial smoothing on the data with small
activations. Constrained CCA combined with the proposed
test statistic is more reliable and thus a better alternative to
detect these activations.

4.4. Activation Maps Using Real Data (with Corrected P <
0.05). In the following, we show the activation maps with
corrected P < 0.05 that are overlaid on their corresponding
T2 images. Images in the figures are in radiological con-
vention (left is right and vice versa). We only show them
in 2D slices because the current application of cCCA-RG
was in 2D, so was GLM-GS for a fair comparison and the
(coregistered) activation maps were laid on each individual
co-planar T2 image. In Figure 7, we show the activation
maps of the contrast V-F of visual data for different methods
from one representative subject. It can be seen that GLM-GS
yields the smoothest activation map at the expense of loss
of the visual cortex structures and GLM-NS preserves these
folded structures much better but with some unappealing
broken links. The activation map of cCCA-RG provides a
good compromise between the smoothness of activations
and preservation of fine cortical structure.

The activation maps of the contrast E-C of memory data
from another representative subject are shown in Figure 8.
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Figure 5: The total false fraction (TFF) (including false positives and false negatives) versus the false positive fraction (FPF) for the contrast
V-F of the visual paradigm for pseudoreal data: (a) the low noise case ( f = 0.55) and (b) the high noise case ( f = 0.65). Note that all TFF
curves have minima in the interval [0.001, 0.01]. The cCCA-RG performs nearly optimal in both cases by achieving the minimum value of
TFF.

10−5 10−4 10−3 10−2 10−1 100
10−3

10−2

10−1

100

False positive fraction (FPF)

To
ta

l f
al

se
 fr

ac
ti

on
 (

T
FF

)

GLM-NS
GLM-GS
cCCA-RG

(a) f = 0.55

10−5 10−4 10−3 10−2 10−1 100

False positive fraction (FPF)

10−2

10−1

100

To
ta

l f
al

se
 fr

ac
ti

on
 (

T
FF

)

GLM-NS
GLM-GS
cCCA-RG

(b) f = 0.65

Figure 6: The total false fraction (TFF) (including false positives and false negatives) versus the false positive fraction (FPF) for the contrast
E-C of the memory paradigm for pseudoreal data: (a) the low noise case ( f = 0.55) and (b) the high noise case ( f = 0.65). Note that all TFF
curves have minima in the interval [0.001, 0.01]. The cCCA-RG method is optimal in both the low and high noise cases.

The slices shown in the upper row contain an anterior por-
tion of the hippocampal complex. Symmetrical activations
in hippocampus and parahippocampal gyrus are detected by
GLM-NS and cCCA-RG. The missing activation at the left
hippocampus (see white arrows) of GLM-GS demonstrates
the undesirable effects of a fixed isotropic Gaussian spatial
smoothing on localized weak activation patterns. A more

posterior slice is shown in the bottom row. Memory encoding
activation is obtained in the posterior cingulate cortex and
precuneus. Using the GLM-GS method, activations appear
overly bulgy and have some unlikely connections through
white matter (shown by the black arrow). Also, small and
weak activations in the posterior cingulate cortex (see white
arrows) are not shown in the activation map of GLM-GS.
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Figure 7: Activation maps for the contrast V-F of the visual paradigm using corrected P-values (P < 0.05). The GLM-GS method yields the
smoothest activation map at the expense of showing activations reaching outside of gray matter. The GLM-NS method preserves activations
in gray matter much better but with unappealing broken links among activated voxels. The activation map using cCCA-RG provides a
compromise between the smooth appearance of activations and preservation of fine cortical structure.
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Figure 8: Activation maps for the contrast E-C of the memory paradigm using corrected P-values (P < 0.05). Upper row: activations in the
anterior portion of the hippocampal complex; lower row: activations in the posterior and middle cingulate cortex and in the precuneus. Note
that GLM-NS and cCCA-RG lead to symmetric (left and right) activation patterns in the hippocampus and parahippocampal gyrus and also
to weak and localized activations in the posterior/middle cingulate cortex (see white arrows). Using GLM-GS, strong activation patterns
become overly bulgy (see black arrow). Compared to GLM-NS, cCCA-RG yields more activated voxels and better connected activations
confined to gray matter.

The GLM-GS method leads not only to missing activations
but also to artifactual activations where a large fraction of
false activations show up in white matter and CSF regions
due to the spherical (nondirectional) smoothing kernel. The
cCCA-RG method yields more activated voxels and better
connected activations in gray matter than GLM-NS.

To make a quantitative comparison of the locations of
activations of different methods, we used the gray matter
mask from the acquired IR-SE-EPI scan and calculated the
ratio of the number of activated voxels detected in gray
matter and the number of activated voxels detected outside of
gray matter (listed in Table 2). This ratio reflects the degree
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Table 2: Ratio of activations in gray matter and outside of gray
matter for different analysis methods. The number in the table
is the ratio of the number of voxels detected in gray matter and
the number of voxels detected outside of gray matter. Note that
the GLM-NS has the highest value because there is no smoothing
involved. Compared to fixed Gaussian spatial smoothing (GLM-
GS), cCCA-RG yields higher ratios demonstrating less blurring and
better confinement to gray matter.

GLM-NS GLM-GS cCCA-RG

V−F 6.21 2.84 3.35

E−C 1.81 1.32 1.53

of activations confined to gray matter. As expected, GLM-
NS has the highest value because of no smoothing involved.
Compared to fixed Gaussian smoothing (GLM-GS), cCCA-
RG yields higher ratios, which demonstrates that the adaptive
smoothing suffers less blurring outside of gray matter than
fixed Gaussian spatial smoothing.

5. Discussion

Using the newly developed directional test statistic for cCCA
of fMRI data, we are able to compare cCCA with traditional
GLM methods for a more complicated memory paradigm.
The quantitative results from the simulated and pseudoreal
data and the qualitative results from real fMRI data clearly
demonstrate that the proposed method (directional test
with cCCA) outperformed the conventional GLM with and
without Gaussian smoothing. This work paves the way for
applying CCA methods for testing general linear contrasts in
a more complicated fMRI experimental design.

Our comprehensive evaluation study also provides valu-
able insights for applying smoothing in fMRI data analysis.
The pseudoreal data used in this study can be divided into
four situations: (1) spatially extended and strong activation
(VIS 0.55); (2) spatially extended and weak activation (VIS
0.65); (3) focal and strong activation (MEM 0.55); (4) focal
and weak activation (MEM 0.65). As expected, the smooth-
ing does not provide much benefit for detecting strong
activations. The Gaussian smoothing is only effective for
the second situation—spatially extended and weak activation
(Figures 4 and 5) because the smoothing helps little for
detection of strong signals and the isotropic smoothing
adversely eliminates the small or irregular weak activation
patterns. The adaptive smoothing by cCCA always per-
formed best in all four situations and the biggest advantage
takes place for the last situation—focal and weak activations
(Figures 4–6). For real fMRI data, the Gaussian smoothing
can yield a large block of smooth activations, which are
appealing to human visual perception. However, there is a
risk of overlooking important subtle activations as well as
overestimating the extent of strong activations (Figure 7).
As can be seen in Figures 7 and 8, the adaptive smoothing
by cCCA yields activation maps that are not only visually
appealing (smoothness) but also well localized (along the
gyri and sulci of gray matter).

The improved detection performance of cCCA is at the
expense of computation. If an exhaustive search is used for

the optimization of constrained CCA, the number of CCA
computations will be equal to the number of possible voxel
configurations in the chosen neighborhood. This number is
of the order O(2N−1), where N is the number of voxels in the
search area [12, 24]. That means 256 CCA computations for
a 3 × 3 in-plane neighborhood and 226 for a 3 × 3 × 3 voxel
volume. Heuristic search methods, such as the branch-and-
bound algorithm [10, 14] and a region-growing algorithm
[12], were used to reduce the computational cost and to
maintain the detection performance. The current implemen-
tation of cCCA-RG in 2D [12] is feasible for routine fMRI
data analysis. For the estimation of a 2D slice with 6317 in-
brain pixels, using MATLAB on a computer equipped with
Intel Core 2 2.4 GHz CPU and 4 GB memory, cCCA-RG takes
about 24 seconds. Although it is about 10 times slower than
GLM-NS and GLM-GS, a fully 3D brain volume sequence
can be processed within 10 minutes. On the other hand, the
rapid evolving computer hardware and parallel computing
techniques, for example, GPU computing, can dramatically
shorten the time for cCCA in future applications.

Besides CCA [8–13, 24], there exist other methods that
use adaptive smoothing techniques for fMRI data analysis
(e.g., [36–38]). A quite different method is used in [38],
where a propagation-separation procedure is applied on
contrast and residual images, obtained by the GLM, to
achieve adaptive smoothing of the estimated parameters.
The final activation detection is based on random field
theory [6]. However, the advantage of preserved shape and
geometry of the activation areas and increased signal-to-
noise ratio was only demonstrated by simulated data and
real motor data, thus the effectiveness of this postestimation
smoothing on focal weak activations is unclear. Another test
statistic similar to canonical correlation, proposed in [36],
is defined as a ratio between the energy of signal space and
the energy of residuals. Its power relies on the optimal spatial
weighting based on different signal spaces. This method is
equivalent to conventional CCA. However, the maximum
energy ratio, in its current formulation, does not allow for
a more general contrast design, as well as a directional test.
Moreover, the estimate and inference have to be done for
each signal space, which is computationally expensive. Our
test statistics is more general and outperforms the GLM
with or without Gaussian smoothing. In addition to its
improved sensitivity, advantages are that general contrasts
can be defined after the estimation and a directional test
is readily available. It is worthwhile to note that adaptive
smoothing can also be achieved through spatial priors
defined in a Bayesian framework (e.g., [39, 40]), which
produces posterior probability maps instead of statistical
parametric maps as in classical inference. Though Bayesian
methods hold some advantages over classical inference, such
as capability of inferring an effect size and no need for
multiple comparison correction, the specification of the
priors and the likelihood functions may have a large impact
on the final results and the computation is usually more
complex and time consuming. For comparing all these
adaptive smoothing methods, a thorough study needs to
be conducted to evaluate their performance from detection
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performance of different types of brain activations to their
computational cost.

It is important to keep in mind that the advantage of
adaptive smoothing may diminish in conventional group
analysis, where isotropic smoothing is necessary to improve
correspondence of imperfectly registered homologous areas.
Nevertheless, the usefulness of adaptive smoothing will be
greatly appreciated for fMRI-aided neurosurgical planning
[41] and region-of-interest analysis of localized brain func-
tions [42].

One issue that this paper has not addressed is the tempo-
ral correlation of the noise and a possible correction of the
test statistic by prewhitening, as usually done in data analysis
using the GLM. Based on the Gauss-Markov theorem, the LS
solution of the GLM is the MVU estimator when Gaussian
white noise assumption is satisfied, otherwise the weighted
LS solution (using the inverse of the noise covariance matrix)
becomes the BLUE. For cCCA, a BLUE does not exist
because the optimization of the spatial constraints leads to
a nonlinear model even though the spatial constraints can
be linear [24]. Therefore, unbiasedness of constraint CCA by
prewhitening is not possible and non-parametric methods
need to be used to obtain accurate P-values.

The purpose of this research is to develop a simple
directional test statistic for cCCA similar to a t-statistic.
Given that the HRF is modeled perfectly, a t-test, as a
likelihood ratio test in the univariate case, is the most
sensitive test. For block designs, the canonical 2-gamma
function is a good choice for the temporal modeling of the
BOLD response. However, in event-related designs, more
complicated temporal regressors may be useful (such as
first and second derivative of the HRF function) to model
the delay and dispersion of the BOLD response. In such a
scenario, an unsigned test statistic, for example, F-statistic, is
preferred to test for the evoked regional effects. A test statistic
for CCA similar to F-statistic can be derived from Wilks’ Λ
as

F
(

v
˜H, v

˜E

) = 1−Λ

Λ

v
˜E

v
˜H

, (18)

where v
˜H and v

˜E are the degrees of freedom of the hypothesis
matrix and the error matrix, respectively. The delay and
dispersion regressors can be included in our proposed
CCA method in the same way as for the GLM since the
temporal modeling of the HRF response is the same for both
methods.

6. Conclusions

In this paper, we derived a novel directional test statistic
for CCA so that CCA can handle general linear contrasts
in more complicated fMRI paradigms. Using this novel test
statistic, different contrasts can be tested after model fitting
without reparameterization of the design matrix and reesti-
mating each individual contrast of interest. With the proper
constraints on the spatial coefficients of CCA, this CCA
statistic can yield a more powerful test than the traditional
t-test in the GLM, especially for weakly evoked and localized
brain activations. This behavior was demonstrated not only

by superior performance using simulations and traditional
ROC techniques but also by activation maps of real fMRI
applications. Since the trend in fMRI is to move toward
high-resolution imaging where the signal is weak, the spatial
correlation is strong, and the amount of data is enormous,
we envision that our method with improved detection power
and computation time will be important for future fMRI data
analysis.
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