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Summary

 

This work uncovers novel mechanisms of aging within
stem cell niches that are evolutionarily conserved between
mice and humans and affect both embryonic and adult
stem cells. Specifically, we have examined the effects of
aged muscle and systemic niches on key molecular iden-
tifiers of regenerative potential of human embryonic stem
cells (hESCs) and post-natal muscle stem cells (satellite
cells). Our results reveal that aged differentiated niches
dominantly inhibit the expression of Oct4 in hESCs and
Myf-5 in activated satellite cells, and reduce proliferation
and myogenic differentiation of both embryonic and
tissue-specific adult stem cells (ASCs). Therefore, despite
their general neoorganogenesis potential, the ability of
hESCs, and the more differentiated myogenic ASCs to con-
tribute to tissue repair in the old will be greatly restricted
due to the conserved inhibitory influence of aged differ-
entiated niches. Significantly, this work establishes that
hESC-derived factors enhance the regenerative potential
of both young and, importantly, aged muscle stem cells

 

in vitro

 

 and 

 

in vivo

 

; thus, suggesting that the regenerative
outcome of stem cell-based replacement therapies will be
determined by a balance between negative influences of
aged tissues on transplanted cells and positive effects of
embryonic cells on the endogenous regenerative capacity.
Comprehensively, this work points toward novel venues
for 

 

in situ

 

 restoration of tissue repair in the old and iden-
tifies critical determinants of successful cell-replacement
therapies for aged degenerating organs.
Key words: aged niche; aging; hESCs; myogenesis;
regenerative potential; satellite cells.

 

Introduction

 

Embryonic stem cells (ESCs) are distinguished by their ability to

self-renew and to differentiate into any other cell type via

asymmetric cell divisions, in which one daughter cell maintains

‘stemness’ while the other daughter cell differentiates into a

particular tissue type. ESCs, including those of human origin (hESCs),

are derived from the blastocyst and can be propagated 

 

in vitro

 

(Evans & Kaufman, 1981; Thomson 

 

et al

 

., 1998; Wobus & Boheler,

2005). Their tremendous potential for organogenesis has created

a great interest in using hESCs for replacing tissues and organs

lost to disease, or old age (reviewed in Wobus & Boheler, 2005).

As such, the use of hESCs is particularly important, due to the

fact that adult organ stem cells are often limited in number, cell-

fate plasticity, expansion capacity, telomere length, and lifespan

(Mayhall 

 

et al

 

., 2004). The general goal behind most cell-replacement

approaches is to expand and then differentiate hESCs 

 

in vitro

 

, thus

producing a cell type of interest, such as neuronal, blood, endo-

thelial, pancreatic, bone, and others. These differentiated cells

are expected to replace their dysfunctional counterparts 

 

in vivo

 

.

The scope of disorders that can be potentially treated with a

neoorganogenesis approach is large and includes many that are

currently incurable, such as muscle atrophy, diabetes, Alzheimer’s

disease, Parkinson’s disease, and other degenerative diseases that

often accompany human aging (McDonald 

 

et al

 

., 1999; Liu 

 

et al

 

.,

2000; Hori 

 

et al

 

., 2002; Kim 

 

et al

 

., 2002; Blyszczuk 

 

et al

 

., 2003).

While many studies have focused on the derivation, propa-

gation, and 

 

in vitro

 

 differentiation of hESCs (reviewed in

Hoffman & Carpenter, 2005; Wobus & Boheler, 2005), relatively

few have examined the properties of these cells and their more

differentiated progeny in the aged, as opposed to the young,

systemic and local organ environments. Recently published data

suggest that these extrinsic cues become altered with age in

ways that preclude activation of organ stem cells (such as

satellite cells), inhibit repair-specific molecular signaling (such as

delta-Notch), and interfere with productive tissue repair (Conboy

 

et al

 

., 2003, 2005; Janzen 

 

et al

 

., 2006; Krishnamurthy 

 

et al

 

.,

2006; Molofsky 

 

et al

 

., 2006). Furthermore, at least two lines of

evidence suggest that stem cell-based tissue-replacement ther-

apies might be hindered in the elderly, because all cells along

the developmental lineage (e.g., stem cells, more differentiated

progenitor cells or even tissues containing a pool of precursors)

might rapidly ‘age’ and fail to contribute to organ repair when

introduced into the old organism 

 

in vivo

 

. First, in heterochronic

tissue-transplantation studies, the age of the host environment

determined the regenerative outcome, as both young and old

skeletal muscle explants containing differentiated and precursor

cells effectively regenerated in young, but not in old animals

(Zacks & Sheff, 1982; Carlson & Faulkner, 1989). Second, using

parabiotically paired young and old mice, the regenerative

potential of muscle and liver was shown to be influenced by

the age of the systemic environment (Conboy 

 

et al

 

., 2005).

Thus, we sought to determine whether key molecular identifiers

of stem cell properties, the rate of cell proliferation, and the

myogenic capacity would be influenced by the age of extrinsic

milieu, regardless of whether stem cells are embryonic or the

more differentiated, muscle-specific satellite cells.
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Satellite cells are muscle stem cells situated in direct contact

with myofibers, the differentiated muscle cells. When myofibers

are damaged, quiescent satellite cells are activated to prolif-

erate and then differentiate into fusion-competent myoblasts

that continue to proliferate and can form primary cultures, but

are also capable of producing new, multinucleated myofibers

or myotubes 

 

in vitro

 

 and 

 

in vivo

 

 (Morgan 

 

et al

 

., 2002; Collins

 

et al

 

., 2005; Wagers & Conboy, 2005). Activated satellite

cells express myogenic markers, such as Myf5, M-cadherin,

and Paired box gene 7 (Pax7); fusion-competent myoblasts

express high levels of desmin, and de novo generated myofibers

or myotubes express embryonic myosin heavy chain (eMyHC)

and continue to express desmin (Schultz & McCormick, 1994;

Wagers & Conboy, 2005). While desmin can be also present

in smooth and cardiac muscle cells, the isolation of hind

limb skeletal muscle with subsequent purification of myofibers

away from all interstitial cells, as well as purification of asso-

ciated muscle stem cells results in primary cultures that are

uniformly of skeletal muscle lineage. Every desmin

 

+

 

 cell in such

cultures is a fusion-competent myoblast, and is able to

produce multinucleated myotubes after 48 h of culture in

differentiation-promoting medium [Dulbecco’s modified

Eagle’s medium (DMEM) with 2% horse serum]. Some of

these myogenic cells fuse into myotubes, even in the

mitogen-rich medium [(Opti-MEM (Invitrogen, Carlsbad, CA,

USA) with 5–10% mouse serum or DMEM with 10% fetal

bovine serum, FBS] (Conboy & Rando, 2002; Conboy 

 

et al

 

.,

2003; and see below).

An experimental system was developed that (i) provided the

ability to study the regenerative response of hESCs and of muscle

stem cells in various heterochronic environments 

 

in vitro

 

; and

(ii) allowed examination of the effects of hESCs on muscle repair,

 

in vivo

 

, after transplantation into young vs. old hosts. This model

allowed us to address both the negative effects of the aged

niche on key stem cell properties and the positive effects of

hESCs on the aged muscle-specific organ progenitor cells 

 

in
vitro

 

, and on the regenerative capacity of old muscle 

 

in vivo

 

.

The resulting data demonstrate that the composition of con-

served extrinsic cues, regulating stem cell responses, becomes

altered with age in ways that inhibit both hESCs and adult stem

cell regenerative potential. Specifically, molecular markers of

stem cell functionality, e.g. Oct4 (in hESCs) and Myf5 (in muscle

stem cells), the rate of cell proliferation, and the capacity for

myogenic differentiation are all dominantly inhibited by the aged

systemic milieu, and by the old differentiated muscle tissue.

However, while satellite cells are unable to deter the inhibitory

affects of aged systemic and local niches, hESCs are capable of

antagonizing the aged environments, thereby enhancing the

regenerative potential of both young and old muscle stem cells

 

in vitro

 

 and 

 

in vivo

 

.

Thus, a complex interplay between negative regulation of

hESCs and adult muscle stem cells by the aged niche, and

positive regulation of the host’s regenerative responses by hESCs

will likely determine the success of hESC-based cell-replacement

therapies in the old.

 

Results

 

Regenerative responses of adult muscle stem cells and 
hESCs are dominantly inhibited by the aged systemic 
milieu

 

Previous work established that the upregulation of repair-

specific molecular signaling mechanisms, such as Notch, and

successful engagement of resident muscle stem cells in tissue

repair are largely determined by the age of the systemic milieu,

rather than by the cell-autonomous age of muscle cells, or by

the differences in their numbers (Conboy & Rando, 2005;

Conboy 

 

et al

 

., 2005). Intriguingly, these experiments also hinted

at a small but persistent inhibitory effect of the aged systemic

milieu on the performance of young stem cells. Exploring this

further, we found that young serum permits satellite cells to be

myogenic, while old serum inhibits the satellite cell regenerative

potential not only alone, but also when mixed with young

serum, suggesting a dominant over-riding of ‘young’ serum fac-

tors (Fig. 1). Myofiber cultures, in which satellite cells have been

activated by injury 

 

in vivo

 

, were established from young (2–3

months) and old (22–24 months) C57-BL/6 male mice, as pre-

viously described (Conboy & Rando, 2002; Conboy 

 

et al

 

., 2005).

As previously shown, this method is well suited for the assess-

ment of satellite cell regenerative myogenic capacity (Conboy

& Rando, 2002; Wagers & Conboy, 2005). Isolated myofiber

explants with associated satellite cells were cultured overnight

in the presence of young or old serum (alone at 5% and 10%,

and mixed at 5% young + 5% old); bromodeoxyuridine (BrdU)

was added for the last 2 h of culture to measure the rate of cell

proliferation. The effects of heterochronic systemic milieu on

myogenic potential were examined as generation of proliferating

myoblasts that express desmin and Myf5, and that spontane-

ously form multinucleated nascent myotubes. As shown in Fig. 1A

and quantified in Fig. 1B, the age of sera clearly determined sat-

ellite cell regenerative potential and old serum strongly inhibited

the myogenic potential of young satellite cells either when

present alone, or when mixed with young sera. Similar data was

obtained by using another myogenic marker, Pax7 (Supplemen-

tary Fig. S1). Additionally, there were two to three times fewer

total cells generated in the presence of aged serum (not shown).

Importantly, it was not simply the dilution of young serum

factors that resulted in diminished myogenic capacity when

young and old sera were mixed, because young sera promoted

robust myogenesis both at 10% and 5%. Thus, old serum factors

dominantly inhibited the myogenic capacity of young satellite

cells even in the presence of young serum. This observation

suggests that satellite cells of young mice engage in efficient

myogenic responses, in part, because the inhibitory influence

of old circulatory milieu is absent.

These data reveal that the regenerative potential of young

muscle stem cells is determined by the age of the systemic

milieu, prompting us to investigate whether hESCs would

similarly succumb to inhibitory factors present in the aged

circulation.
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To determine the effects of aged serum on stem cell self-renewal/

pluripotency, we analyzed hESC expression of Oct4 and studied

the rate of hESC proliferation, by assessing BrdU incorporation

(Fig. 2) and Ki67 expression (Supplementary Fig. S2). Specifi-

cally, these determinants of hESC regenerative potential were

examined in the presence of heterochronic (young vs. old) mouse

sera added to typical hESC medium, e.g., MEF-conditioned

medium (MCM). Oct4 is expressed by self-renewing, pluripotent

ESCs in culture, by the totipotent inner cell mass of the blasto-

cyst and by the germ cells (Nichols 

 

et al

 

., 1998; Pesce 

 

et al

 

.,

1999). Most cells in control cultures or young conditions expressed

high levels of this marker of ‘stemness’, and maintained their

normal phenotype and morphology throughout the various

co-culture experiments performed in this study (see below).

Importantly, at 10% aged serum dramatically inhibited the

self-renewal and proliferative potential of hESCs, as judged by

highly diminished Oct4 expression and a lack of BrdU incorpo-

ration. Again, the inhibitory factors in the aged milieu were

dominant over the young, as evidenced by a decline in Oct4

expression, the low rate of BrdU incorporation, and Ki67 expres-

sion in young and old mixed environments (5% young + 5%

old sera in MCM). Similar to the data shown for adult stem cells

(ASCs) (Fig. 1), it was not simply a dilution of young serum factors

as hESCs robustly proliferated and expressed high levels of Oct4

when cultured with 5% young sera in MCM (Supplementary

Fig. S3). Quantification of multiple independent experiments

has demonstrated that hESC expression of Oct4 and BrdU incor-

poration have been reduced by two- to threefold in the aged

milieu (Fig. 2B).

As expected, hESCs cultured in control media, including

MCM alone that does not contain either young or old serum,

also displayed a high rate of proliferation and Oct4 expression

(Fig. 2, control medium). Additionally, in this experimental set-

up there was no general inhibitory effect of sera 

 

per se

 

 on hESC

proliferation and Oct4 expression, as 10% young mouse sera

(young) and 10–20% of FBS (growth medium and DMEM/FBS)

allowed for a high rate of cell proliferation and for uniformly

high Oct4 levels (Fig. 2).

When instead of immediate exposure to aged mouse serum,

hESCs were first cultured overnight in MCM, these cells were

no longer susceptible to the negative effects of old systemic

milieu (Fig. 3), suggesting that hESC-produced factors estab-

lished an embryonic microniche that may provide temporary

protection from the aged environment. It appears that satellite

cells do not have such anti-aging ability, because despite an ini-

tial activation in entirely young environments, e.g., after muscle

 

Fig. 1

 

The age of sera determined the regenerative potential of satellite cells. 
(A) Young satellite cells were cultured either in 5% or 10% young (Young), 
10% old (Old), or in a 5% + 5% mouse sera combination (young + old). 
Cells were analyzed by immunofluorescence microscopy, using anti-BrdU 
(red), antidesmin (green) or anti-Myf5 antibodies (green, small panels). Similar 

results are shown for Pax7 immunodetection (Supplementary Fig. S1). 
Hoechst (blue) labeled nuclei. (B) Three independent experiments were 
quantified [300 young myofibers per experiment] as percentage of desmin

 

+

 

/
Myf5

 

+

 

/BrdU

 

+

 

 de novo generated cells for each age and culture condition. On 
average, two to three fewer cells were generated when cultured in the 
presence of old. Shown are identical microscope fields at 

 

×

 

40 magnification. 
At least three independent experiments produced similar results. (*) indicates 

 

P

 

 

 

≤

 

 0.001 as compared to young sera.
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injury to young muscle, isolated satellite cells remain susceptible

to inhibition by the old mouse serum (Figs 1 and 4C). Similarly,

culturing satellite cells isolated from noninjured muscle in

growth-promoting medium for 1–2 days does not protect

against the inhibitory affects of aged systemic milieu (not

shown).

Comprehensively, these data establish that the inhibition of

stem cell regenerative potential by the aged systemic milieu is

conserved between species (mouse vs. human) and cell types

(adult vs. embryonic stem cells). As summarized in Table 1, aged

mouse sera similarly affected the expression of key molecular

identifiers of both embryonic and adult stem cells, e.g., Oct4

in hESCs and Myf5 in mouse ASCs. As expected, adult

mouse stem cells did not express Oct4, and hESCs did not

express Myf5 in these experimental conditions (not shown).

Moreover, aged systemic milieu had similar inhibitory effects

on proliferation of hESCs and ASCs, suggesting that not only

the regenerative capacity, but also the presence and expan-

sion of stem cells will be significantly restricted in aged organs.

Intriguingly, prolonged culturing of hESCs in their preferred

 

in vitro

 

 conditions enables generation of an embryonic

microniche that antagonizes the inhibitory influences of aged

circulatory factors.

Fig. 2 The regenerative potential of embryonic 
stem cells was negatively affected by aged mouse 
sera. (A) hESCs were cultured in MCM with 10% 
young (young) or old (old) mouse serum, or in three 
control media: MCM without mouse sera; GM 
(myoblast medium of Ham’s F10 with 20% FBS) 
and DMEM/FBS (hESC differentiation medium of 
DMEM with 10% FBS). BrdU was added for the last 
2 h of culture to measure the rate of cell 
proliferation. Immunodetection assays were 
performed for BrdU (red), Oct4 (red), and Ki67 
(Supplementary Fig. S2). Hoechst (blue) labels 
nuclei. A high rate of hESC proliferation and Oct4 
expression is displayed in all control media and in 
the presence of young mouse serum. In contrast, 
hESC proliferation and Oct4 expression are 
inhibited in the presence of old mouse serum, 
either alone or when mixed with young serum. 
MCM with mouse sera at 5% gave results similar 
to those observed with 10% young mouse sera or 
in control media (Supplementary Fig. S3). (B) Three 
independent experiments yielded similar results 
and were quantified as percentage of BrdU+ and 
Oct4+ cells for each culture condition. * indicates 
P < 0.001 as compared to young serum.

Table 1 Conservation of stem cell aging in the systemic environment

Rate of proliferation 

ESC/ASC 

(percentage of BrdU)

Call-fate identifier 

ESC (percentage of Oct4)/

ASC (percentage of Myf5)

10% young 59.5 ± 0.8, 59.3 ± 4.0 99.0 ± 0.1, 50.7 ± 9.5

10% old 32.7 ± 2.1, 27.3 ± 3.5 17.6 ± 3.2, 18.1 ± 5.9

5% young + 5% old 31.0 ± 2.6, 38.0 ± 2.0 20.6 ± 3.5, 17.1 ± 4.2

Quantified results from Figs 1, 2 are summarized and presented as mean 
percentages from experimental replicates ± SE. Rate of proliferation (BrdU) 
and cell-fate identifier (Oct4 or Myf5) are shown for both ESCs and ASCs 
cultured in heterochronic systemic conditions of 10% young (young), 10% 
old (old) or in 5% + 5% mouse sera combination (young + old). Results for 
5% young mouse sera are very similar to those for 10% young mouse sera 
and are shown in Fig. 1 (ASCs) and Supplementary Fig. S3 (hESCs).
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The regenerative potential of hESCs and ASCs is 
inhibited by aged differentiated muscle

 

After establishing that the aged systemic niche negatively

affects the regenerative capacity of hESCs and of ASCs, we then

assessed whether myogenic potential and the rate of cell pro-

liferation would be inhibited in hESCs and ASCs by the aged

local muscle niche. Myofibers with associated satellite cells were

isolated from young and old injured muscle, and were directly

co-cultured with hESCs in typical hESC differentiation medium

(DMEM/FBS). Similar to Fig. 1, the myogenic potential in these

co-cultures was assayed by the expression of desmin, which is

present in both fusion-competent myoblasts and newly formed

myotubes. To analyze whether hESCs, mouse myogenic pro-

genitor cells or both could express desmin in direct co-cultures,

we costained these cells with a mouse-specific antibody to a

myogenic marker, M-cadherin, which does not react with

human protein, and a desmin-specific antibody that recognizes

both mouse and human proteins. As shown in Fig. 4A, hESCs

underwent myogenic differentiation in co-cultures with young

myofibers (M-cadherin

 

–

 

/desmin

 

+

 

 mononucleated cells, white

arrow in young). These myogenic progeny of hESCs in co-cultures

with young myofibers could be of skeletal, smooth or cardiac

muscle lineages (Debus 

 

et al

 

., 1983; Fischman & Danto, 1985;

Schultz & McCormick, 1994). As expected, the young mouse

muscle progenitor cells (M-cadherin

 

+

 

/desmin

 

+

 

) were more

advanced in their degree of myogenic differentiation, which

was of skeletal muscle lineage, as judged by the formation of

large, multinucleated de novo myotubes (yellow arrow in young).

In addition to the myogenically differentiated human cells, co-

cultures with young myofiber explants also contained some

small undifferentiated hESC colonies, as determined by immuno-

reactivity to a human-specific antibody to the nuclear mitotic

apparatus protein, NuMA and Oct4 expression (Supplementary

Fig. S4).

In contrast, when co-cultured with the aged mouse myofibers,

only mouse cells appeared desmin

 

+

 

 (Fig. 4A, yellow arrow in

old). These aged myogenic cells were of skeletal muscle lineage,

based on spontaneous generation of multinucleated myotubes

(see Fig. 5B) and based on induced differentiation into myotubes

in DMEM + 2% horse serum (not shown). Importantly, the

myogenic differentiation of hESCs failed in the aged co-cultures

(Fig. 4A, white arrow in old). Furthermore, colonies of hESCs

in co-cultures with aged myofibers typically differentiated into

cells with fibroblast morphology, which lacked Oct4 expression

(not shown). Spontaneous production of desmin

 

+

 

 myogenic

cells in control hESC cultures without myofibers, or with young/

old mouse sera was less than 0.1% (not shown).

In concert with the conservation of inhibitory affects of aged

systemic niche, the negative influence of local muscle niche was

also found to be conserved in its inhibition of hESC and ASC

regenerative responses. Specifically, the myogenic capacity

(generation of desmin

 

+

 

 myoblasts) was inhibited in young sat-

ellite cells co-cultured in a transwell system with aged myofibers

(Fig. 4B). In addition, hESC and ASC proliferation (BrdU incor-

poration) was also inhibited by aged differentiated muscle

(Fig. 4A,C). These data suggest that not only systemic but also

local organ niches would inhibit key stem cell properties, e.g.,

myogenic capacity and the rate of proliferation in the aged

organism. The conserved inhibitory influences of the differen-

tiated muscle niche on hESC and ASC regenerative responses

are summarized in Table 2.

 

hESCs indirectly enhance and rejuvenate the 
regeneration of skeletal muscle

 

While hESC properties were inhibited by aged differentiated

muscle, the myogenic potential of aged satellite cells seemed

Fig. 3 Embryonic stem cells produce youthful microniche in culture. 
(A) As opposed to immediate exposure to old mouse serum after passaging 
(10% old), preculturing of hESCs for 24 h in feeder-free conditions, e.g., 
Matrigel™ + MCM, prior to replacing MCM with MCM + 10% old mouse 
sera, resulted in continuously high BrdU incorporation and Oct4 expression 
(embryonic microniche + 10% old). BrdU was added for the last 2 h of culture 
to measure the rate of cell proliferation. Immunodetection of BrdU and Oct4 
(both in red) was performed as described in Experimental procedures. Hoechst 
(blue) labels nuclei. (B) Three independent experiments yielded similar results 
and were quantified as percentage of BrdU+/Oct4+ for each condition. 
* indicates P < 0.001 as compared to ‘old + MCM’.
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to be enhanced by co-cultures with hESCs (Fig. 4A). Therefore,

we further explored the enhancing and rejuvenating effects of

hESCs on myogenic potential 

 

in vitro

 

 and 

 

in vivo

 

, using human

mesenchymal stem cells (hMSCs) as a negative control. First, we

examined the effects of hESCs on myotube generation by co-

culture with primary myoblasts freshly derived from activated-

by-injury satellite cells (Conboy 

 

et al

 

., 2003). As shown in

Fig. 5A (Mb + hESC), primary myoblasts underwent very rapid

and robust nascent myotube formation, when co-cultured with

hESCs for 48 h in myoblast differentiation medium. Namely,

remarkably large fused myotubes containing approximately 50–

70 nuclei formed around hESCs colonies (Fig. 5A). In contrast,

when co-cultured with hMSCs, myotube formation was no

greater than in myoblast cultures alone (Fig. 5A, Mb + hMSC

and Mb alone). Encouraged by these data, we analyzed the

myogenic potential of young and old satellite cells co-cultured

with hESCs for 48 h. As shown in Fig. 5B, hESCs conferred a

much-enhanced myogenic capacity on both young and, impor-

tantly, old myofiber-associated satellite cells (rapid formation of

desmin

 

+

 

 myogenic cells, many of which formed de novo multi-

nucleated myotubes). Control co-cultures of these satellite cells

with hMSCs displayed no enhanced myogenicity. In summary,

while the myogenic potential (production of desmin

 

+

 

 fusion-

competent cells) was more pronounced in young vs. old myofiber-

associated satellite cells under all experimental conditions, a

finding that is consistent with previous data (Conboy 

 

et al

 

.,

Fig. 4 Aged muscle niche inhibits the regenerative potential of hESCs and satellite cells. (A) Immunodetection of a mouse-specific M-cadherin (green) or desmin 
(red; both human and mouse proteins are detected) revealed that hESCs underwent muscle lineage differentiation when co-cultured with young, but not old 
myofibers. The myogenic progeny of hESCs appears M-cadherin–/desmin+ (white arrow in young), as opposed to M-cadherin–/desmin– hESCs that lack myogenic 
commitment (white arrow in old). M-cadherin+/desmin+ cells are the myogenic progeny of mouse satellite cells (yellow arrows). To assess the effects of secreted 
factors produced by young vs. old myofibers on the rate of hESC proliferation, transient, 2 h BrdU incorporation was examined in hESCs cultured for 48 h 
with supernatants produced by heterochronic myofiber explants (See Experimental procedures for details). As compared to young myofiber-derived supernatants 
(young myofiber supernant), exposure to old myofiber-derived supernatants (old myofiber supernant) inhibited hESCs proliferation, as judged by BrdU 
immunodetection (red). As expected, the rate of hESCs proliferation was high in control media (shown in Fig. 2). Hoechst (blue) labels nuclei in all experiments. 
Quantification of desmin+/BrdU+ hESCs in direct myofiber cocultures, or with muscle supernatants, is shown in (B). * indicates P ≤ 0.001 as compared to young. 
(C) Transwell co-cultures between purified young satellite cells and myofibers isolated from uninjured young (young myofiber) and old (old myofiber) muscle 
demonstrated that satellite cell regenerative myogenic capacity was inhibited by the aged differentiated muscle. Myogenic potential was determined by the 
ability of satellite cells to generate proliferating desmin+ myoblasts (immunodetection shown in green) and by rate of proliferation (2 h BrdU incorporation; 
immunodetection shown in red). (D) Satellite cell regenerative potential was quantified as percentage of desmin+/BrdU+ cells for transwell co-cultures with 
young or old uninjured myofibers (i.e., RM, resting muscle). n = 3; * indicates P ≤ 0.05 as compared to young.
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2003), a clear increase in myogenic potential of old satellite cells

was noted in co-cultures with hESCs, as compared to control

cultures devoid of hESCs (Fig. 4A,B).

Interestingly, in addition to the rejuvenating effects of direct

co-cultures shown in Fig. 5, soluble factors present in hESC-

conditioned culture supernatants were also able to enhance

myogenesis of aged satellite cells (Supplementary Fig. S5). Thus,

in agreement with the notion that an established embryonic

microniche antagonizes the inhibitory effects of the aged

environment on stem cell responses (Fig. 3), the hESC-produced

factors enhanced myogenic capacity of even old mouse satellite

cells.

Establishing that hESC-produced factors enhance adult

myogenesis and rejuvenate the regenerative capacity of even

aged satellite cells 

 

in vitro

 

 prompted us to examine whether the

regeneration of old injured muscle will be improved by hESC

transplantation 

 

in vivo

 

. Additionally, based on the data shown

above, we speculated that even if the host’s repair capacity is

improved, hESCs themselves will not be efficiently maintained

or expanded in the context of old systemic and local organ envi-

ronments, and will not directly contribute to the repair of aged

skeletal muscle. To test these hypotheses, we injected 5 

 

×

 

 10

 

5

 

hESCs or control hMSCs into the tibialis anterior (TA) and

gastrocnemius muscles of young and old mice at 24 h after

cardiotoxin-induced injury, when activation/proliferation of

endogenous satellite cells normally begins (Conboy 

 

et al

 

., 2003,

2005; Wagers & Conboy, 2005). To avoid immune response

against hESC antigens, mice were immunosuppressed using

FK506 (Ito & Tanaka, 1997; Dumont, 2000). Muscle was isolated

5 days post-injury, when nascent differentiated myofibers

normally replace the damaged tissue (Conboy 

 

et al

 

., 2003), and

10 

 

µ

 

M

 

 cryosections were analyzed for the success in tissue repair

using hematoxylin and eosin (H&E) histochemistry and eMyHC

immunodetection. H&E analysis reveals newly formed myofibers,

based on their smaller size and centrally located nuclei. Addition-

ally, de novo myofibers in the damaged area appear positive for

eMyHC, while undamaged myofibers remain negative. As shown

in Fig. 6A and quantified in 6B, injection of hESCs significantly

enhanced regeneration of skeletal muscle. Remarkably, this pos-

itive embryonic effect was especially pronounced in old tissue.

Importantly, such enhanced and rejuvenated muscle repair

stems from an indirect induction, as hESCs themselves (or control

hMSCs) did not physically contribute to the mouse myofibers,

as judged by near absence (less than 0.1%) of human-specific

NuMA

 

+

 

 nuclei in de novo desmin

 

+

 

 myofibers, analyzed through

multiple injury sites. An example of one regenerated myofiber

from young muscle injected with hESCs, with NuMA

 

+

 

 nucleus

in a field of NuMA

 

–

 

/desmin

 

+

 

 mouse myofibers, is shown in Sup-

plementary Fig. S6. No such NuMA

 

+

 

/desmin

 

+ myofibers were

detected in aged regenerated muscle (not shown).

In agreement with the in vitro data, establishing that aged

systemic and local niches inhibit hESC proliferation and Oct4

expression (Figs 2 and 4 and Supplementary Fig. S2), hESCs

failed to expand or even persist in old muscle, as judged by the

absence of NuMA+/Oct4+ hESC-derived cells in the aged tissue.

In contrast, colonies of Numa+/Oct4+ hESC-derived cells that

Fig. 5 In vitro co-culture with hESCs enhanced myogenesis of mouse cells. 
(A) 1 × 105 hESCs or control hMSCs were co-cultured with 5 × 106 primary 
mouse myoblasts. hESCs expressing Oct4 (immunodetection shown in red) 
dramatically enhanced myotube formation of co-cultured mouse myoblasts 
(immunodetection of eMyHC is shown in green), as compared to co-cultures 
between mouse myoblasts and human mesenchymal stem cells (Mb + hMSCs) 
or myoblasts alone (Mb alone). Experiments were carried out in myoblast 
differentiation medium. Hoechst (blue) labels nuclei throughout this figure. 
(B) 1 × 105 hESCs or control hMSCs were co-cultured with young or old 
myofiber-associated satellite cells, as described in Experimental procedures. 
Co-culture with hESCs (myofiber + hESC), but not hMSCs (myofiber + hMSC) 
or control medium (DMEM/FBS), greatly enhanced the myogenic potential of 
both young and old myofiber-associated satellite cells, based on 
immunodetection of percentage of desmin+ de novo generated myoblasts 
and multinucleated myotubes. These experiments were carried out in GM. 
Shown are myogenic responses of mouse cells only, judged by lack of 
immunoreactivity to human-specific/hESC-specific antigens, such as NuMA 
and Oct4; and presence of mouse-specific immunoreactivity, e.g., M-cadherin 
(not shown). Both young and old myofiber associated satellite cells exhibited 
considerable myogenic improvement over control conditions. n = 3.

Table 2 Conservation of stem cell aging in the local organ niche

Rate of proliferation 

ESC/ASC 

(percentage of BrdU)

Myogenic differentiation 

ESC/ASC 

(percentage of desmin)

Young myofiber 60.2 ± 2.5, 40.5 ± 2.6 7.4 ± 0.9, 47.6 ± 5.0

Old myofiber 30.1 ± 4.3, 21.5 ± 4.1 1.3 ± 0.7, 19.7 ± 4.7

Quantified results from Fig. 4 are summarized and presented as mean 
percentages from experimental replicates ± SE. Rate of proliferation (BrdU) 
and myogenic differentiation (desmin) are shown for both ESCs and ASCs, 
in the presence of young vs. old differentiated muscle environments (young 
myofiber or old myofiber).
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did not undergo myogenic differentiation were easily detected

in young regenerating muscle (Fig. 6C). This finding validates

several technical aspects of these experiments, and confirms the

contrasting effects of young and old systemic and local organ

niches on hESC self-renewal.

These data further confirm and extrapolate our findings and

demonstrate that when exposed to both aged systemic and

local organ niches, hESCs fail to persist and do not contribute

to tissue repair directly. At the same time, these embryonic cells

indirectly but significantly improve the repair of aged injured

muscle in vivo.

Discussion

The data presented here establish for the first time that both

the local environment of old differentiated organ, e.g., skeletal

muscle and the systemic milieu dramatically affect the regen-

erative potential of both hESCs and mouse post-natal myogenic

progenitor cells. Not only are the factors promoting myogenic

differentiation and proliferation of hESCs likely to become

depleted with age, but the aged systemic and local organ niches

are likely to contain dominant inhibitors of ASC and hESC

regenerative potential (Figs 1, 2, and 4, summarized in Tables 1

and 2). Importantly, the similar inhibitory effects of old mouse

serum and old myofibers on satellite cell (Figs 1 and 4C) and

hESC (Figs 2 and 4A) proliferation and regenerative capacity

suggest the conservation of elements in age-specific extrinsic

regulatory mechanisms between evolutionarily distinct species

and stem cell types. Additionally, a similarity in the inhibitory

properties between systemic and local organ niches is also of

interest and may indicate that molecules produced by old tissues

have circulatory/endocrine activity; and/or that age-specific

systemic inhibitory components become deposited in the old

tissues.

Fig. 6 Skeletal muscle regeneration following 
hESC transplantation is a balance between the 
inhibitory influence of aged niches and the 
rejuvenating effects of hESCs. Young and old 
tibialis anterior and gastrocnemius muscles were 
injured by cardiotoxin injection. hESCs or hMSCs 
were transplanted at the site of injury and were 
analyzed by cryosectioning at Day 5 after injury (as 
described in Experimental procedures). (A) Newly 
regenerated myofibers were detected using 
eMyHC-specific antibody (green) and staining with 
H&E. In H&E staining, newly regenerated areas 
contain smaller, immature myofibers with centrally 
located nuclei. Uninjured myofibers are much 
larger, by comparison, with peripherally restricted 
nuclei. Poorly regenerated areas lack new 
myofibers and contain areas of fibrosis and 
inflammation. eMyHC immunodetection is specific 
for regenerating areas of muscle only. Both assays 
showed dramatic enhancement of muscle 
regeneration in ‘old + hESC’ vs. ‘old + hMSC’. 
Regeneration improvement was also seen in young 
+ hESC, as compared to young + hMSC. 
(B) Quantification of muscle regeneration was 
performed by analyzing the density of newly 
formed myofibers per mm2 of injury site, which is 
the volume that typically covers the whole injured 
area. Multiple, 10 µM H&E sections were examined 
through the entire volume of injury in multiple, 
independently injured muscles. n = 20; * indicates 
P < 0.001 (‘old + hMSC’ compared to young + 
hMSC and ‘old + hMSC’ compared to ‘old + hESC’. 
(C) H&E and immunofluoresence staining for Oct4, 
and a human-specific antibody to NuMA, revealed 
the failure of hESCs to expand or persist in old, but 
the presence of hESCs in young muscle at 5 days 
post-transplantation. Hoechst (blue) labels nuclei.
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Humans display broad genetic polymorphisms and behavioral

variations, which makes the identification of age-specific molecular

changes complicated. In contrast, laboratory mice are genetically

and environmentally controlled. Establishing that age-specific

signals, regulating stem cell responses, are evolutionarily con-

served and soluble enables the formation of rational approaches

for the identification and characterization of the inhibitors involved,

and for revealing the precise timing of their first appearance in

serum and differentiated tissues with advancing age.

Significantly, these experiments have also revealed that not

only are hESCs able to protect themselves against the negative

influences of aged mouse sera (Fig. 3), but these cells also pro-

duce factors that dramatically enhance the myogenic capacity

of primary myoblasts and young and old satellite cells (Fig. 5),

and also significantly improve repair of young and old injured

muscle in vivo (Fig. 6). Identification of these embryonic factors

would allow us to potentially enrich the arsenal of therapeutic

tools for combating age-specific degenerative disorders.

The interactions between hESCs and heterochronic differen-

tiated niches, initially identified in vitro, have been confirmed

by in vivo experiments. Namely, while the regenerative capacity,

or presence, of hESCs is greatly restricted in aged, as compared

to young skeletal muscle (where transplanted cells experience

both old systemic and local environments), embryonic cells indi-

rectly enhance and rejuvenate muscle repair when introduced

at the time of muscle stem cell activation in the host, e.g., at

Day 1 after the injury (Fig. 6). It remains to be determined

whether the percentage of hESCs direct contribution to desmin+

myofibers in young muscle will be increased by transplanting

these cells at a different time-point after muscle injury, e.g., at

Days 3–5 (as in co-cultures with myofibers pre-injured for

3 days, Fig. 4A). In any case, the virtual lack of hESC and hMSC

direct contribution to the newly regenerated skeletal muscle,

when small numbers of these cells were injected into injured

tissue, is completely consistent with the body of previous data

demonstrating that myofiber-associated satellite cells conduct

rapid and robust muscle repair and greatly outnumber injected

human cells (Collins et al., 2005; Wagers & Conboy, 2005); that

compared to muscle-specific satellite cells, the myogenic differ-

entiation of hESCs in vitro remains very small (Fig. 5, Table 2),

and that control hMSCs are not normally myogenic unless these

cells overexpress exogenous constitutively active domain of

Notch (Dezawa et al., 2005).

Intriguingly, the failure of hESCs to strive in old skeletal muscle

might represent a therapeutically desirable outcome. For example,

while in young tissue hESC derivatives putatively would go on

to produce teratomas, it is unlikely that teratoma formation would

occur after hESC transplantation into aged skeletal muscle.

Thus, the indirect beneficial effects of hESCs on tissue repair

are unlikely to be compromised by the oncogenic properties of

these embryonic cells in the context of old skeletal muscle.

Comprehensively, the results of this work increase our under-

standing of aging as a process, reveal evolutionary conserved

age-specific interactions between stem cells and their differen-

tiated niches, and suggest novel therapeutic approaches for

improving the regenerative responses of endogenous or trans-

planted stem cells in old individuals.

Experimental procedures

Animal strains

Young (2–3 months), C57-BL/6 male mice were obtained from

pathogen-free breeding colonies at Jackson Laboratories (Bar

Harbor, ME, USA). Aged 22–24 months C57-BL/6 male mice were

obtained from the National Institute on Aging (NIH). Animals

were maintained in the North-West Animal Facility of the

University of California, Berkeley, CA, USA, and handled in

accordance with the Administrative Panel on Laboratory Animal

Care at UC Berkeley.

Muscle injury and isolation

Myofiber cultures, in which satellite cells were activated by

in vivo injury, were set up as previously described (Conboy &

Rando, 2002; Conboy et al., 2005). Briefly, mice were injured

by direct injection with 5 ng cardiotoxin (CTX-1) (Sigma, St Louis,

MO, USA) into the tibialis anterior and gastrocnemius muscles

using a 28-gauge needle. After 1–5 days post-injection, injured

or uninjured muscle tissue was dissected out. Once isolated,

whole muscle was prepared for cryosectioning (see below) or

myofiber fragments were obtained from hind limb muscles by

enzymatic digestion (see below), trituration, and multiple sed-

imentation and washing procedures. Additionally, blood was

collected from mice for the isolation of sera. Briefly, blood cells

were coagulated at 37 °C for 15’ and then were centrifuged

repeatedly at 5900 g, 4 °C in a microfuge for 3’ to isolate sera.

Mixtures of young and old sera were made 1 : 1. For example, in

5% + 5% conditions, 50 µL of young and 50 µL old serum were

added to 900 µL of culture medium (Opti-MEM or MCM, see

co-culture procedures below).

Myofiber explant cultures

Explant and primary cell cultures were generated from C57-BL/

6 mice, as previously described (Conboy & Rando, 2002; Con-

boy et al., 2003). Dissected gastrocnemius and tibialis anterior

muscles underwent enzymatic digestion at 37 °C in DMEM

(Invitrogen)/Pen-Strep (Invitrogen)/0.2% Collagenase Type IIA

(Sigma) solution. Isolated fibers were resuspended in GM (Ham’s

F10 nutrient mixture (Mediatech, Inc., Herndon, VA, USA), 20%

FBS (Mediatech), 5 ng mL−1 bFGF (Chemicon, Temecula, CA,

USA) and 1% Pen-Strep, and cultured on ECM-coated (BD

Biosciences, San Jose, CA, USA) plates (diluted 1 : 500 in PBS).

Cultures of primary myoblasts were derived from isolated fibers,

through repeated passaging, and were maintained in GM.

Myoblast differentiation medium [DMEM, supplemented with

2% horse serum (Mediatech)] was used to promote rapid

formation of myotubes from cultured myoblasts (Morgan &

Partridge, 2003).
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Human embryonic and mesenchymal stem cell culture

The federally approved hESC line, H7 (NIH no. WA07, obtained

from WiCell Research Institue, Madison, WI, USA), was used in

accordance with the UC Berkeley and UC San Francisco Com-

mittee on Human Research guidelines, and in accordance with

NIH guidelines. To propagate hESCs, routine culturing and

maintenance was performed using standard in vitro conditions

for both feeder-dependent and feeder-free cultures (Geron

Corporation, 2002). Briefly, hESCs grown on MEFs were cultured

in standard hESC medium [Knockout™ DMEM, 20% KSR, 1%

NEAA, 1 mM L-glutamine (Invitrogen), 0.1 mM β-mercaptoethanol

(Sigma)] and were supplemented with 4 ng mL−1 hbFGF

(Invitrogen). Feeder-free hESC cultures were maintained in MEF-

conditioned hESC medium (MCM), 4 ng mL−1 hbFGF. Differen-

tiation medium for hESCs (DMEM/FBS) was made by replacing

KSR with 20% FBS (Hyclone, Logan, UH, USA). hMSCs were

maintained in mesenchymal stem cell GM, MSC-GM™ and were

cultured according to supplier recommendations (Cambrex

Walkersville, MD, USA). hESCs and hMSCs were typically seeded

onto chambered slides coated with a 3% GFR Matrigel™ (BD

Biosciences) substrate in PBS. Cells were typically incubated for

48 h at 37 °C, 5% CO2, under the various experimental condi-

tions employed, then were fixed with 70% EtOH/PBS at 4 °C.

hESCs and hMSCs were analyzed 24–48 h after experimental

treatments, during which no apoptosis-related differences in cell

numbers were observed.

Heterochronic co-culture systems

Heterochronic systemic cultures were established by culturing

myofiber explants (in GM) or hESCs (in MCM) in the presence

of young, old or young + old sera for 48 h (Figs 1 and 2 and

Supplementary Figs S1–3). In such cultures, hESCs were passaged

immediately prior to sera exposure. In contrast, preculturing of

hESCs for 24 h in MCM, prior to replacing MCM with MCM +

10% old mouse sera was done for embryonic microniche experi-

ments (Fig. 3). For heterochronic local organ niche cultures,

hESCs were co-cultured directly with myofiber explants for 48 h

in GM, or were cultured in the presence of supernatants derived

from cultured myofiber explants for 48 h (Figs 4A and 5). Spe-

cifically, 1 × 105 hESCs or control hMSCs were co-cultured with

identical volume, e.g., 100 µL, of young or old myofiber frag-

ments with their associated satellite cells (Fig. 5). In experiments

shown in Supplementary Fig. S5, culture-conditioned superna-

tant produced by hESCs grown in MCM was used as a medium

in which 1 × 105 of myofiber-associated young or old satellite

cells were cultured for 48 h. In direct co-cultures, mouse vs.

human cells were distinguished by immunodetection with

human-specific/hESC-specific and mouse-specific antibodies

(Supplementary Fig. S4 and see below). To prepare muscle

supernatants, explants were cultured for 24 h in GM and cellular

debris was removed from conditioned media by multiple rounds

of centrifugation. The absence of cells was confirmed by micro-

scopic examination. To mimic the local organ niche for satellite

cell assays (Fig. 4B), 1.0 µm transwell (Corning, NY, USA) co-

cultures of uninjured explants with activated satellite cells were

established. Activated-by-injury (24 h post-injury) satellite cells

were seeded onto ECM-coated 12-well plates in Opti-MEM

(Invitrogen) and 5% FBS. Transwells were placed over satellite cells

and contained isolated myofiber explants from uninjured young

or old muscle (i.e., resting muscle). Satellite cells were cultured

for 72–96 h in the presence of myofiber explants and were fixed

for immunodetection, as described above.

Cell transplantation

hESCs were grown on MEFs and expanded in 6-well plates. Cells

were treated with 1 mg mL−1 Collagenase Type IV (Invitrogen)

for 5–10 min, were washed and then incubated with 0.5 mg mL−1

Dispase (Invitrogen) to lift only human cell colonies. Isolated

hESCs were washed several times and resuspended in 100 µL

hESC medium. Similarly, hMSCs were expanded in 6-well plates,

lifted with Trypsin/EDTA (Invitrogen), washed and resuspended

in 100 µL hESC medium. Approximately 5 × 105 hESCs or

hMSCs were injected into 24 h post-injured gastrocnemius and

tibialis anterior muscles of young and old mice, using a 21-

gauge needle. Immunosuppression of animals was achieved by

intraperitoneal injection of 1 mg kg−1 FK506 (Sigma) at 48 h

prior to cell transplantation, and on each day following

transplantation.

Immunodetection and histological analysis

To assay the affects of heterochronic local and systemic en-

vironments on stem cell regenerative potential, hESC, hMSC, and

myofiber-derived precursor cell cultures were fixed with 70%

EtOH/PBS at 4 °C, and were analyzed by indirect immunofluo-

rescence. Combinations of antibodies were used to co-stain cul-

tures and histosections, in order to determine the percentages

of cells that proliferated or differentiated and to distinguish

hESCs from mouse cells. Antibodies to the myogenic transcrip-

tion factors, Myf5/Pax7, the intermediate filament protein,

desmin, and the marker of newly formed myotubes, eMyHC,

were used to reveal commitment to myogenic differentiation.

Cell commitment to this differentiation program was assessed

by the efficiency of myotube formation, estimated by the

number of nuclei per myotube. Ki67, a cell cycle related nuclear

protein consistently absent in quiescent cells, was used as a

marker for proliferation. Whereas Ki67 appears in all active

phases of the cell cycle, BrdU staining allowed exclusive detec-

tion of cells in S-phase, thereby enabling accurate quantification

of DNA synthesis. In select cultures, 10 µM BrdU was added for

2 h prior to fixation. BrdU-specific immunostaining required

nuclear permeabilization with treatment of 4N HCl. hESCs were

distinguished from mouse cells by using a species-specific anti-

body to the cell-surface marker M-cadherin for murine and the

nuclear marker NuMA for human cells. Antibodies to Oct4 were

used as a marker of hESC self-renewal/pluripotency. Following

permeabilization in PBS, +1% FBS, +0.25% Triton X-100, cells
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were incubated with primary antibodies (concentration determined

as per manufacturer’s recommendations) for 1 h at room tem-

perature in PBS, +1% FBS, washed several times, and then incu-

bated with fluorophore-conjugated, species-specific secondary

antibodies (diluted 1 : 500 in PBS + 1% FBS) for 1 h at room

temperature. For histological analysis, dissected muscle was

treated in a 25% sucrose/PBS solution, frozen in OCT compound

(Tissue Tek) and cryosectioned at 10 µM. Immunostaining was

performed in the manner described above, or H&E staining of

cryosections was performed. Nuclei were visualized by Hoechst

staining for all immunostains. Samples were analyzed at room

temperature by using a Zeiss Axioscope 40 fluorescent micro-

scope, and imaged with an Axiocan MRc camera and Axio-

Vision software. All images depict identical microscope fields at

×20 magnification, unless otherwise noted.

Reagents

Antibodies to Oct4 (ab18976), BrdU (BU1/75 (ICR1), and Ki67

(ab15580) were purchased from Abcam (Cambridge, MA, USA).

Antibody to M-cadherin (clone 12G4) was acquired from Upstate

Biotechnology (Lake Placid, NY, USA), and NuMA antibody

(Catalog number NA09L) from EMD Biosciences (San Diego, CA,

USA). Antibody to developmental eMyHC (clone RNMy2/9D2) was

acquired from Vector Laboratories (Burlingame, CA, USA). Myf5

(GTX77876) and Pax7 (GTX77888) antibodies were obtained

from GeneTex (San Antonio, TX, USA). Desmin antibodies (clone

DE-U-10 and Catalog number D8281), BrdU labeling reagent

and FK506 (Catalog number F4679) were obtained from Sigma.

Fluorophore-conjugated secondary antibodies (Alexa Fluor) were

obtained from Molecular Probes (Eugene, OR, USA).

Statistical analyses

A minimum of three replicates were undertaken for each experi-

mental condition. Quantified data are presented as means ±
SE. Significance testing was performed using one-way analysis

of variance (ANOVA) to compare data from different experimental

groups. P values of < 0.05 were considered as statistically

significant.
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Supplementary material

The following supplementary material is available for this article:

Fig. S1 The expression of Pax7 was reduced in satellite cells

cultured in the presence of aged sera. Young satellite cells were

cultured in 10% young (young) or 10% old (old). Immuno-

detection was performed using Pax7 antibody (green). Hoechst

(blue) labels nuclei. High numbers of Pax7+ myogenic cells were

detected in the presence of 10% young, but not in the presence

of 10% old. Shown are identical microscope fields at ×40 mag-

nification. At least three independent experiments produced

similar results.

Fig. S2 Aged mouse serum negatively affected the regenera-

tive potential of hESCs. Ki67 expression (immunodetection

shown in red) by hESCs cultured in the presence of 10% young,

old or 5% young + 5% old mouse sera or control medium

(DMEM/FBS or GM) revealed a high rate of hESC proliferation

in young mouse serum, and an inhibition of hESC proliferation

in old or in young + old combinations. Hoechst (blue) labels

nuclei. Three independent experiments yielded similar results

and were quantified, as percentage of Ki67+ cells for each

culture condition (P < 0.001 as compared to young).

Fig. S3 hESCs cultured with 5% young mouse serum robustly

proliferated and expressed Oct4. Immunodetection of BrdU

incorporation (green) and Oct4 expression (red) by hESCs was

robust in cultures with 5% young mouse serum (5% young) in

MCM medium. Hoechst (blue) labels nuclei. At least three in-

dependent experiments produced similar results.

Fig. S4 Small colonies of undifferentiated hESCs persisted in

co-cultures with mouse myofibers. Nuclear Oct4 (immuno-

detection is shown in red), co-localizes with a human-specific

nuclear mitotic apparatus protein (NuMA immunodetection is

shown in green). Hoechst (blue) labels nuclei. hESCs are shown

as Oct4+/NuMA+. Mouse cells appear only as Hoechst stained.

Fig. S5 The regenerative potential of aged satellite cells is

improved by secreted, soluble hESC-derived factors. Immuno-

detection with an antidesmin antibody (green) shows that myo-

genic capacity (generation of desmin+ de novo myoblasts and

myotubes) is high in young myofiber-associated satellite cells,

and is rejuvenated in old myofiber-associated satellite cells cul-

tured in hESC-conditioned supernatants Hoechst (blue) labels

nuclei. Three independent experiments yielded similar results.

Fig. S6 The majority of injured myofibers were regenerated by

endogenous mouse cells, and not by hESCs in vivo. Observed

enhancement of muscle repair is not from direct contribution

of hESCs to newly formed myofibers, as judged by near absence

(< 0.1%) of human-specific NuMA+ nuclei in de novo desmin+

myofibers (desmin immunodetection is shown in green). White

arrow depicts a single regenerating myofiber from young mus-

cle injected with hESCs, with NuMA+ nucleus (immunodetection

is shown in red) in a field of NuMA–/desmin+ mouse myofibers.

NuMA+/desmin+ myofibers were not detected through injury

sites in aged regenerated muscle. Multiple, 10 µM NuMA/

desmin sections were examined through the entire volume of

injury from independently injured muscles. Myofibers were

examined per total area of injury. n = 20.

This material is available as part of the online article from:

http://www.blackwell-synergy.com/doi/abs/10.1111/j.1474-

9726.2007.00286.x

(This link will take you to the article abstract).

Please note: Blackwell Publishing is not responsible for the

content or functionality of any supplementary materials sup-

plied by the authors. Any queries (other than missing material)

should be directed to the corresponding author for the article.
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