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Large Scale Brain Functional Networks Support Sentence
Comprehension: Evidence from Both Explicit and Implicit
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Abstract

Previous studies have indicated that sentences are comprehended via widespread brain regions in the fronto-temporo-
parietal network in explicit language tasks (e.g., semantic congruency judgment tasks), and through restricted temporal or
frontal regions in implicit language tasks (e.g., font size judgment tasks). This discrepancy has raised questions regarding a
common network for sentence comprehension that acts regardless of task effect and whether different tasks modulate
network properties. To this end, we constructed brain functional networks based on 27 subjects’ fMRI data that was
collected while performing explicit and implicit language tasks. We found that network properties and network hubs
corresponding to the implicit language task were similar to those associated with the explicit language task. We also found
common hubs in occipital, temporal and frontal regions in both tasks. Compared with the implicit language task, the
explicit language task resulted in greater global efficiency and increased integrated betweenness centrality of the left
inferior frontal gyrus, which is a key region related to sentence comprehension. These results suggest that brain functional
networks support both explicit and implicit sentence comprehension; in addition, these two types of language tasks may

modulate the properties of brain functional networks.
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Introduction

Sentence comprehension is the key step moving from word
recognition to higher level language abilities. Sentence compre-
hension constructs coherent utterances from very basic semantic
blocks such as word and phrase information [1,2]. When subjects
are asked to explicitly comprehend a sentence, such as when
making a semantic congruency judgment, widespread functionally
separate brain regions [3,4] are integrated into a functional
network that supports sentence comprehension. These regions
include the left middle temporal gyrus (M'TG), which is responsible
for representation retrieval [5]; the left anterior temporal lobe [6—
8] and the left angular gyrus [9], which are responsible for syntax
and semantic interactions; the left posterior superior temporal
gyrus (STG) [10,11] and left inferior frontal gyrus (IFG) [12-16],
which are responsible for sentence-level integration; and the
cingulate cortex [17,18], which is responsible for semantic control
processing. Functional connectivity analyses have revealed that the
inter-regional couplings between the frontal and temporal regions,
as well as between the frontal and parietal regions listed above, are
recruited in explicit sentence comprehension [19-21].

In contrast to widespread brain activation in explicit language
tasks, neuroimaging studies using implicit language tasks have
found brain activation in fewer regions of the frontal and temporal
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cortices. For example, in a study of sentence comprehension,
Crinion et al. [6] found that temporal regions and a small portion
of the left inferior frontal gyrus was active during an implicit
language task, while Scott et al. [22] found that only the left
superior temporal sulcus was recruited. Similarly, we found that
sentence comprehension in an implicit language task elicited
activation only in the left inferior frontal gyrus when increasing the
difficulty of sentence comprehension [15].

These discrepancies may result from differences between
various language tasks. Previous studies of sentence comprehen-
sion found that explicit language tasks may involve task-specific
strategy effects [17,23,24]. For example, when subjects are asked
to make congruency judgments regarding semantically congruent
and incongruent sentences, they may need to monitor for semantic
incongruence; however, this may not be necessary for sentence
comprehension. This type of task may also involve attentional
control [25], which is supported by activity observed in the
frontoparictal attention network [26]. Thus, brain activation
patterns in explicit language tasks may be confounded by effects
specified by the task itself. In our recent studies [12,27], a font size
judgment task was used as the implicit semantic task for
comparison with an explicit language task. Given that both the
explicit and implicit language tasks engage sentence comprehen-
sion, a conjunction analysis of the two tasks would effectively
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reduce brain activations associated with task-specific strategies; in
addition, this would provide a description of the neural basis of
semantic activation. Indeed, we found restricted activation in the
inferior frontal gyrus (IFG) using a conjunction analysis [12].

Considering that the functionally segregated regions were
integrated into a functional network to support sentence compre-
hension, we believe that the differences in activation observed
between explicit and implicit language tasks raise at least two
questions. One question is whether strategy effects can confound
brain activation patterns or if similar large brain networks will be
active in implicit language tasks as in explicit language tasks. The
other question is whether explicit and implicit language tasks can
modulate the properties of brain functional networks. By using an
mmplicit language task, Spitsyna et al. [28] found processing
streams including the left STS, temporal pole, fusiform gyrus
(FFG), temporo-occipital junction as well as the parietal cortices in
semantic processing. However, as within-subject task comparisons
are lacking, little is known regarding whether the brain networks
recruited in explicit and implicit language tasks are the same, or
how language tasks modulate the functional networks.

In this study, we used a graph theoretical approach which has
been widely used for characterizing brain network architectures
[29,30] to compare the topological properties of the brain
functional networks involved in explicit and implicit language
tasks [12]. In the explicit task, subjects were asked to make a
semantic congruency judgment on sentences. In the implicit
language task, subjects were asked to make font size judgments
during which their attention was not necessarily orientated to
semantic processing. We assumed that the brain functional
networks would fit small-worldness criteria regardless of task-
specific stimuli. We also expected that the shared active regions in
sentence comprehension during explicit and implicit language
tasks would be identified as hubs of the functional networks, and
the high local and global efficiency of the network can help us to
infer the functional integration and segregation, which are two
major organizational principles of the human brain [31]. The
explicit language task required elaborated semantic analysis, which
included different sub-processes, such as semantic retrieval and
semantic integration. As these processes involved widespread
regions of the entire brain, the explicit language task may thus
emphasize global information transfer and alter the properties of
the key regions in sentence comprehension, such as the left inferior
frontal gyrus (IFG).

Methods

Subjects

We recruited twenty-seven healthy native Chinese speakers for
the present study. All participants were right-handed with normal
or corrected-to-normal vision. None had a current or past history
of any neurological disorder or brain injury. To obtain acceptable
data, five participants were removed because the top part of the
cortex was not imaged in the MRI scan, and another was removed
due to head motion artifacts larger than 2 mm. Thus, twenty-one
subjects were retained (12 F/9 M, aged 19-28 years, mean = SD
= 22%*2.2 years) for further data analysis. Written informed
consent was obtained from each subject and this study was
approved by the Ethics Committee of Shenzhen People’s Hospital,
Shenzhen, China.

Stimuli

To manipulate the difficulty of sentence comprehension, we
constructed three versions of sentences: high cloze (HC) sentences,
low cloze (LC) sentences, and violation sentences (SV). For the HC
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sentences, we first constructed a base set of 216 sentences with
high constraint contexts. Constraint refers to the probability that
the reader will expect a particular word in a given context. As
illustrated in Table 1, each of the HC sentences was then modified
to produce a LC sentence by replacing the selected noun with an
unexpected noun, which was semantically congruent with the
context of the sentence. A SV sentence was constructed by
replacing the critical word of a HC sentence with a word that was
incongruent with the context of the sentence. We thus constructed
three versions of each sentence that differed from each other by
only one critical word. Each sentence contained 11 Chinese
meaning blocks/words. In half of these sentences, the critical word
occurred in the 6™ position. In the other half of these sentences,
the critical word occurred in the 7" position. The critical words
were matched by frequency (mean and standard deviation, HC:
23.7%x47.1; LC: 23.6%£58.1; SV: 21.1+50.4; F < 1) [32] and
visual complexity (mean stroke number and standard deviation,
HC: 8.1%£2.3; LC: 7.9%2.3; SV: 8.0%£2.1; FF < 1) across the three
versions of each sentence.

The contextual constraint of each sentence was rated by thirty-
three subjects who did not participate in the cloze test but were
selected from the same subject pool used to select those who
participated in the cloze test [33]. During each rating, the sentence
stems up until the critical word was presented, and the subjects
were asked to continue the sentence with the first noun that came
to mind to make the sentence meaningful. The rating results were
as follows: the mean cloze probability was 63.5% (range = 30 —
100%, SD = 19.3%) for the HC sentences, while the values of
cloze probability were around zero for both the LC and SV
sentences.

The semantic acceptability of each sentence was rated by
another twenty new subjects from the same subject pool as used in
the final experiment. A 5-point scale in which 1 stood for
extremely unacceptable and 5 stood for completely acceptable was
used for this purpose. The average semantic acceptability ratings
were 4.3+0.3, 4.2+0.3, and 1.6=0.4 for the HC, LC, and SV
sentences, respectively. Statistical analyses revealed a significant
main effect of semantic acceptability in the three versions of
sentences (F (2,430) = 5028, p < 0.001), and all of the following
pair-wise comparisons differed significantly from each other (HC
> LC > SV, p-values < 0.001).

Sentence presentation was counterbalanced across tasks and
participants in two steps. First, the 216 sets of sentences were
divided into three groups, each containing 72 sets of sentences.
One group was used for a semantic congruency judgment (SEM)
task, another group was used for a font size judgment (FONT)
task, and the third group was used for a silent reading (READ)
task. MRI scans between these groups and tasks was counterbal-
anced between participants as well. The second control step
involved counterbalancing the three sentence conditions in each
task between participants. Therefore, each sentence frame would
be presented to each participant only once without any repetitions.
For each task, each subject was presented 24 HC sentences, 24 LC
sentences, and 24 SV sentences. Within each task, no two
sentences were associated with the same base sentence. In total, 9
sentence lists were constructed. To prevent explicit attention to the
critical word position, we constructed 54 incongruent filler
sentences with a violation occurring equally in the 8", 9™ or
0™ position of the sentence. The length of the filler sentences was
also 11 words. Eighteen filler sentences were pseudo-randomly
selected and added to each of the above lists. Within each list,
different versions of the sentences were randomly intermixed to
balance the presentation order.
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Procedure

The E-Prime software package (Psychology Software Tools,
Pittsburgh, PA; version 1.1) was used for stimulus presentation and
response collection. For each trial, subjects were asked to fixate on
a centrally located asterisk that was presented for 500 ms. A
sentence was then presented word by word. Each word was shown
for 300 ms and followed by a 300 ms blank screen before the next
word was displayed.

Three types of tasks were used. One was a reading task in which
subjects were asked to silently read the sentence to establish
activity related to comprehension. The SEM required subjects to
make semantic congruency judgments, which is an explicit
language task. After a sentence was presented, subjects were
required to indicate whether it was semantically congruent or
incongruent as fast and as accurately as possible by pressing a
button within a 4-s response window. The FONT required
subjects to make a judgment whether the font size changed
between trials; this is an implicit language task. In the FONT task,
a 500-ms cross fixation point was displayed following the sentence
presentation and was replaced by a Chinese word WA’ (this
Chinese word means “test”). Subjects were asked to judge whether
this word appeared in the same size font as the words in the
preceding sentence by pressing a button, which was also within a
4-s response window. In each of these three tasks, sentences were
always presented in 40-point Times New Roman font, and the
probe word was of the same font style but was either larger or
smaller in size (50-point or 34-point). The font size was determined
based on pilot studies for the appropriate level of task difficulty to
avoid ceiling and flooring effects. We assessed both response
accuracy and response time as appropriate. Responses given after
the 4-s window had passed were considered errors. The response
keys were counterbalanced across the subjects. An event-related
design was used within each task. For the READ and SEM tasks,
we selected three different inter-stimulus intervals (ISI): 2200 ms,
3200 ms, and 4200 ms; this yielded an averaged ISI of 3200 ms.
For the FONT task, we added an additional 500 ms between the
end of the sentences and the probe. The purpose of this was to
maintain the same duration for each trial of the FONT task as
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Table 1. Example stimulus materials used in the explicit and implicit language tasks in the present study.
Condition Sentence
Example 1
HC P A2 B S b Ay 9 A AR AR AL N B R3S 97
The patient got treatment in time after the doctor successfully finished the surgery.
LC P A2 B D b Ay 95 A S W0 N RT3 SR 97
The patient got treatment in time after the doctor successfully finished the diagnoses.
sV BR A T M S 95 A AR B 5 A R I 13 2 ¥ 7
The patient got treatment in time after the doctor successfully finished the tires.
Example 2
HC o R I T AL A AT A i
The people felt sorry for Liu Xiang as he missed the game due to disease.
LC ERRLP b | e N (W E I R i)
The people felt sorry for Liu Xiang as he missed the chance due to disease.
sV EERREPP | e NN e i)
The people felt sorry for Liu Xiang as he missed the judgment due to disease.
Note: Three types of sentences, high cloze (HC) sentences, low cloze (LC) sentences, and violation sentences (SV), were adopted to manipulate the difficulty levels of the
sentence-level semantic unification in both the implicit and explicit language tasks.
doi:10.1371/journal.pone.0080214.t001

those in the other two tasks. In the presentation phase of each trial,
we used three ISIs: 1700 ms, 2700 ms, and 3700 ms for the
READ, SEM, and FONT tasks, respectively. This yielded an
average ISI of 2700 ms across all tasks. Each run was thus 19 min
and 54 s in duration, including two 1-min rest periods.

Each subject completed three sessions of fMRI scans; one scan
was conducted for each task. The reading task was always
presented in the first session, but the order of the other two sessions
was counterbalanced to prevent contamination of the reading task.
For example, subjects may attempt to evaluate the semantic
congruency of a sentence or attend to the font size, even if neither
1s required for the reading task. Subjects completed 10 practice
trials using extra materials before each session. Except for in the
reading task, subjects were provided with feedback related to their
responses to ensure that they understood the task. No feedback
was provided regarding any task during the fMRI scans. In the
present study, we only analyzed the fMRI data that corresponded
to both the SEM and FONT tasks; both of these tasks required
manual responses. This was consistent with our aim to compare
the network properties observed in explicit and implicit language
tasks.

BOLD-fMRI data acquisition

Subjects were asked to lie in a supine position inside the MRI
scanner while wearing MRI-compatible earphones and goggles
(Resonance Technology Company, Los Angeles, CA) and holding
a button box. They were told not to move their head (which was
restrained by padding) while inside the MRI scanner, but they
could close their eyes for a short rest between two successive runs.

Image acquisition was performed using a 1.5 T Siemens Avanto
MRI scanner. BOLD-fMRI data were acquired using a T2%-
weighted gradient-echo echo-planar imaging (EPI) sequence with
the following parameters: repetition time (I'R) = 2000 ms, echo
time (TE) = 43 ms, flip angle = 90°, slice thickness = 5 mm
without gap, 26 interleaved transverse slices in ascending order
covering the whole-brain, and voxel size = 3.6x3.6x5 mm®. In
addition, we also acquired 3D high resolution brain structural
mmages with a T1-weighted MP-RAGE sequence (TR = 11 ms;
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TE = 3.3 ms; slice thickness = 1 mm; voxel size = 1x1x1 mm?,
and 192 sagittal slices).

Data preprocessing

The fMRI dataset of any subject was excluded if head motion
was greater than 2 mm of displacement or 2° of rotation in any
direction. Five patient datasets were removed because the top part
of the cortex was not visualized in the MRI scan, and another
dataset was removed due to a large head motion artifact (>
2 mm). Thus, twenty-one subjects were retained for further
analysis.

The fMRI datasets related to the FONT and SEM tasks were
selected and preprocessed with SPM8 (http://www fil.ion.ucl.ac.
uk/spm/) and DPARSF [34]. For each subject, we discarded the
first ten volumes to allow for MR signal equilibrium. The
remaining images were first corrected for the acquisition time
delay between slices within the same TR and were then realigned
to the first volume to correct for inter-TR head motion. This
realigning calculation provided a record of head motion within
each fMRI scan. For each subject, the fMRI datasets were then
spatially normalized based on the segmentation of the T1I-
weighted 3D brain structural images to the standard MNI-152
template; they were then resampled at a voxel size of
3x3x3 mm®, The waveform for each voxel was obtained through
a 0.01 Hz high-pass filter to reduce the effects of low-frequency
drift and high-frequency physiological noise. Figure 1 presents a
schematic of the data analysis.

Network analyses

Prior to performing the network analysis, we assessed the brain
activation during each sentence condition against baseline levels of
activation. We found similar brain activation patterns in
widespread regions, including the left STG/MTG, left FFG, left
precentral gyrus (PCG), left IFG, and bilateral occipital gyri at the
£ < 0.005 level (uncorrected). In a previous paper [12] that used
the same dataset, we reported monotonic brain responses that
increased from HC to LC and to SV in both tasks, especially in the
left IFG. These results suggested that similar brain regions
supported both explicit and implicit language tasks with varying
amplitude. Because few trials were used (24 trials) in each
condition and similar brain activation patterns were observed for
each condition versus the baseline, we combined the HC, LC and
SV conditions in each task to perform the network analysis.

The human brain functional networks were constructed
according to the widely used automated anatomical labeling
(AAL) brain atlas [35], which parcels the brain into 90 cortical and
subcortical regions. Table 2 lists these brain regions and their
abbreviations. We calculated the time series of each brain region
by averaging the time courses of all voxels within a corresponding
region. We also performed a linear regression to remove the effects
of the following nuisance covariates: 1) the global mean signal, 2)
the white matter signal, 3) the CSF signal, and 4) three translation
and three rotation parameters of head motion. Then, we used the
residuals of these time series for each brain region to calculate the
Pearson’s correlation coefficient between each pair of brain
regions. Thus, we obtained a 90x90 symmetrical connectivity
matrix for each task in each subject. We applied a threshold to
every element of the 90x90 connectivity matrix to obtain a
binarized connectivity matrix for each subject. For these
calculations, the sparsity, which is the ratio of the number of
existing edges over the maximum possible number of edges, was
used as the threshold to ensure that the networks corresponding to
each subject had the same minimum number of edges. The binary
connectivity matrix was represented by an undirected network by

PLOS ONE | www.plosone.org

Sentence Comprehension Network

setting each brain region as a node and the using the inter-regional
Pearson’s correlation as the edge. The topological properties of the
networks were then analyzed according to graph theory.

Network parameters. Graph theory was used to analyze the
topological properties of the human brain functional networks
[31,36,37]. We characterized the global topological organization
of the brain networks by using the following parameters: the
clustering coeficient, C,, characteristic path length, L,, global
efficiency, Egjp, and local efficiency, Ej,. Their definitions and
descriptions are listed in Table 3 [38]. C, and Ej,. quantify the
extent of local efficiency of information transfer within a network,
while L, and Eg,; measure the global communication efficiency
of a network.

A small-world network can be characterized by the normalized

clustering coefficient, y= C;wl / C;”"d, and the normalized char-

acteristic path length, A=L;m1 / L;‘"’d [39]. Typically, a small-
world network meets the following criteria: y> >1 and A~ 1 [39],
or 6="/3>1. Here C'I;”"d and Ll';‘”d represent the means of the
corresponding indices that were derived from the matched
random networks (100 random networks were created in the
calculation) created using a modified Maslov’s wiring program,
which preserved the same number of nodes, edges, and degree
distribution as the real brain networks obtained from actual
subjects.

We used the betweenness centrality (Np.) to characterize
regional properties of the human brain functional networks. Its
definition and description is also listed in Table 3 [38]. Np.(i)
measures the influence of node i over the information flow
between other nodes of the entire network and is the most widely
used parameter to quantify the nodal centrality in neural networks.

Integrated network parameters. We used a series of
sparsities as different threshold values to construct binary
networks. Considering that selecting different threshold values
could potentially cause changes in small-world network parame-
ters, we used a threshold-independent network assessment by
calculating the area under the sparsity curves of for each of the
global and nodal network metrics [41]. The integrated network
metrics were used for further analysis.

The integrated global parameters were defined as

49
X, =" X(kAs)As (1)

glob —
k=10

where As is the sparsity interval of 0.01, and X (kAs) is one of the
network parameters (Cp,Lp,7,4,Epe, and Egjop) at the sparsity of
kAs. Similarly, the integrated regional nodal parameters may be
calculated by

49
Xmi= " X(ikAs)As 2)
k=10

where X (i,kAs)represents any nodal parameter (in this example, it
is the betweenness centrality Np.) of node i at the sparsity kAs. The
topological properties of the obtained networks could also be
affected by the choice of sparsity values. After the calculation, we
found that in a range of sparsities (0.10 = sparsity = 0.49) at the
interval of 0.01, the brain functional networks of all of the subjects
exhibited prominent small-world characteristics.
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Figure 1. lllustration of the procedures used to construct brain functional networks. Raw functional MR images are preprocessed to
produce normalized data that are further parcellated by a prior brain atlas into 90 brain regions. Then we averaged the time series over all voxels in
each subject for each language task to generate the regional representative time course. The Pearson'’s correlations between all possible pairs of 90
time courses for each specific task is computed and averaged for the same task for each subject. A connectivity matrix for a subject is shown for the
explicit (SEM) and implicit (FONT) language tasks, respectively. The axial three-dimensional image of the template is shown using MRIcroN software

(http://www.sph.sc.edu/comd/rorden/mricron/).
doi:10.1371/journal.pone.0080214.g001

Hub identification. Hubs play important roles in the brain
functional networks. Hubs refer to the nodes that are connected to
the greatest number of other nodes in the network [42]. In the
small-world network, a small proportion of regions (hub) have a
large proportion of connection, while a larger proportion of
regions (non-hub) have a small proportion of connection. To
determine the hubs of the brain functional networks, we followed
previous studies [43,44] and calculated the normalized between-
ness centrality for each node as follows:

M

Z nod(l k)
- k=1
Xvnorm(l)= INM— (3)
ﬁ Z Z nod (/ k)
where  Xj4(i,k) represents the integrated nodal betweenness
centrality at node ¢ for the network of subject £, N the number of
nodes, and M the number of subjects.
For a network, an important characteristic is the efficiency of
information transfer among the network nodes. In general,
network hubs exhibit high betweenness centrality. To this end,
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the present analyses identified the node ¢ as a hub of the network if
the normalized betweenness centrality satisfies the criterion:
Xoorm (i) >mean+ SD, where mean stands for the mean value
and SD for the standard deviation of Xy (i) across all subjects
per task [44].

Statistical analyses

A t-test was used to detect the differences in the integrated
network parameters of the brain functional networks between the
SEM and FONT tasks. The threshold was p < 0.05 (FDR
correction). Notably, before the #test was conducted, we
constructed Lilliefors test [45] to explore whether the parameters
in our study followed a normal distribution. We found that the
related parameters were normally distributed.

Results

Behavioral performance

In the explicit language task, we found no significant main effect
of the sentence type in terms of accuracy (HC, LC and SV:
93.6%29.1%, 91.2%7.3%, 93.9%4.2%, respectively; F' < 1), but we
did detect a significant main effect of the sentence type in terms of
reaction time (RT) (mean = SD = 764*341 ms, 803426 ms,
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584+307 ms, F (2, 40) = 10.2, p < 0.001, HG = LC > SV).
These results are similar to those of our previous studies [12,17].
In the implicit language task, the significant condition difference
was neither found in terms of accuracy (HC: 83.3%219.4%; LC:
83.9%21.3%; SV: 86.1x17.9%; F < 1) nor in RT (HC:

Table 2. Brain regions used in constructing the human brain functional networks in the present study.

Index Regions Abb. Index Regions Abb.
(1,2) Precentral gyrus PreCG (47,48) Lingual gyrus LING
(3,4) Superior frontal gyrus (dorsal) SFGdor (49,50) Superior Occipital gyrus SOG
(5,6) Orbitofrontal cortex (superior) ORBsup (51,52) Middle occipital gyrus MOG
(7,8) Middle frontal gyrus MFG (53,54) Inferior occipital gyrus 10G
(9,10 Orbitofrontal cortex (middle) ORBmid (55,56) Fusiform gyrus FFG
(11,12) Inferiorfrontal gyrus (opercular) IFGoperc (57,58) Postcentral gyrus PoCG
(13,14) Inferiorfrontal gyrus (triangular) IFGtriang (59,60) Superior parietal gyrus SPG
(15,16) Orbitofrontal cortex (inferior) ORBinf (61,62) Inferior parietal lobule IPL
(17,18) Rolandic operculum ROL (63,64) Supramarginal gyrus SMG
(19,20 Supplementary motor area SMA (65,66) Angular gyrus ANG
(21,22) Olfactory OLF (67,68) Precuneus PCUN
(23,24) Superior frontal gyrus (medial) SFGmed (69,70) Paracentral lobule PCL
(25,26) Orbitofrontal cortex (medial) ORBmed (71,72) Caudate CAU
(27,28) Rectus gyrus REC (73,74) Putamen PUT
(29,30) Insula INS (75,76) Pallidum PAL
(31,32) Anterior cingulate gyrus ACG (77,78) Thalamus THA
(33,34) Middle cingulate gyrus MCG (79,80) Heschl gyrus HES
(35,36) Posterior cingulate gyrus PCG (81,82) Superior temporal gyrus STG
(37,38) Hippocampus HIP (83,84) Temporal pole (superior) TPOsup
(39,40) Parahippocampal gyrus PHG (85,86) Middle temporal gyrus MTG
(41,42) Amygdala AMYG (87,88) Temporal pole (middle) TPOmid
(43,44) Calcarine cortex CAL (89,90) Inferior temporal gyrus ITG
(45,46) Cuneus CUN

These regions are originally described in the Automated Anatomical Labeling (AAL) template by Tzourio-Mazoyer et al. (2002), and the abbreviations are listed
according to Salvador et al. (2005) and Achard et al. (2006). The same 45 brain regions were extracted from the right and left hemispheres to provide 90 regions in total
for each subject.

Note: Abb., abbreviations.

doi:10.1371/journal.pone.0080214.t002

1037%£293 ms; LC: 1034%=385 ms; SV: 10112268 ms; F < 1).
The results of the present study indicated that the behavioral
performances have not been explicitly interfered with by the three
different conditions that are manipulated in the implicit language
task.

Table 3. Definitions and descriptions of the global and regional parameters of brain functional networks used in the current study.

Network properties Definitions

Descriptions

Global parameters .. 1 E;
P Cluster coefficient Cp = L

1

Characteristic path length Lp = i i

v (2
NN -1) %Lﬁ
Global efficiency
1 1
Egioh = =5 ) 7
NWN=1) 22 Ly

- 1 ]
Local efficiency Ej,. = NZ Eqton(i)

ieG

Nodal parameters Betweenness centrality

Nutp= 3 20
kg

Given a network G(N, M) with N nodes and M edges, D; is the degree of node i. E;
is the number of edges in G, the subgraph consisting of the neighbors of node i.

Lj is the shortest path length between nodes i and ;.

Eg,5(i) is the global efficiency of G;.

e;; is the (i, j)th element in the formerly obtained binarized correlation matrix.

0jx is the number of shortest paths from node j to node k, and 6 (i) is the number
of shortest paths from node ;j to node k that pass through the node i within graph
G.

doi:10.1371/journal.pone.0080214.t003
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Small-world properties

We analyzed the topological properties of the brain functional
networks in the sparsity range from 0.10 to 0.49. We obtained
v>>1, Ax1, and ¢ >1.1 over the range of 0.10 = sparsity =
0.49 for each of the implicit and explicit language tasks (Figure 2);
these terms demonstrated that the brain functional networks in
both tasks exhibited prominent small-world properties.

Table 4 lists the statistical comparison of the integrated global
network parameters between the explicit and implicit language
tasks. We found significantly greater local efficiency and an
increased clustering coefficient in the implicit language task (p <
0.05), as well as a trend of increasing global efficiency and shortest
path length in the explicit language task. No effect of task was
detected on the integrated clustering coefficient or the integrated
weighted shortest path length.

Network hubs

In this study, we found that the hub regions were mainly located
in the association cortices (T'able 5); there were 12 hubs related to
the implicit language task and 17 hubs related to the explicit
language task. Among them, ten were common hubs shared in the
functional networks corresponding to both tasks, which included
the bilateral supplementary motor area (SMA), bilateral median
cingulate (MCG), bilateral middle temporal gyrus (MTG), left
middle occipital gyrus (MOG.L), left fusiform gyrus (FFG.L), right
superior temporal gyrus (STG.R), and right superior temporal
gyrus (TPOsup.R). Two brain regions were identified as hubs
specific to the implicit language task: the left superior temporal
gyrus (STG.L) and right inferior temporal gyrus (ITG.R).
Meanwhile, we identified 7 brain regions, which were hubs
specific to the explicit language tasks: the left precentral gyrus
(PreCG.L), PreCG.R, right medial orbitofrontal cortex (ORBmed.
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Figure 2. Small-world properties changing with the varied
sparsity of the functional networks for both the explicit and
implicit language tasks. Here y stands for the normalized clustering
coefficient, 1 for the normalized characteristic path length, and o for
the ratio of y to A. The values of y andi were evaluated on each
individual brain network and then averaged over all subjects in the
explicit and implicit language tasks, respectively. In a wide range of
sparsity (0.10 =< sparsity = 0.49), the functional networks for the implicit
or explicit language tasks exhibit y>1, 1=1, and &> 1.1, which
indicated prominent small-world properties.
doi:10.1371/journal.pone.0080214.9002
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R), right parahippocampal gyrus (PHG.R), FFG.R, right precu-
neus (PCUN.R), and left superior temporal gyrus (TPOsup.L).

Task related changes in betweenness

Table 6 lists the brain regions that exhibited significant
between-task differences in the integrated betweenness centrality
of the functional networks. Compared with the implicit language
task, the brain networks corresponding to the explicit language
task demonstrated significantly reduced integrated betweenness
centrality in the SMA.R and IPL.R and significantly increased
integrated betweenness centrality in the PreCG.R, ORBsup.L, left
opercular inferior frontal gyrus (IFGoperc.L), left triangular
inferior frontal gyrus (IFGtriang.L), ORBinfR, and PHG.R.
These brain regions were rendered on the cortical surface and are
shown in Figure 3.

Discussion

In the present study, we examined the topological properties of
brain functional networks involved in explicit and implicit
language tasks. These networks demonstrated prominent small-
worldness. We also observed widespread common hubs in
occipital, temporal, and frontal regions corresponding to both
the implicit and explicit language tasks. Moreover, we found
between-task differences of the global network parameters and of
betweenness centrality in key language regions. The details of
these findings and their implications are discussed below.

For the first aim of the study, we investigated whether the whole
brain functional networks shared common properties in both
implicit and explicit language tasks, regardless of task-specific
effects. We found that the brain functional networks corresponding
to both explicit and implicit language tasks exhibited small-
worldness, regardless of task-specific effects. Small-worldness
indicates that the networks with high clustering coefficients and
short path lengths [39]. In our study, it reflects the need of the
brain networks to satisfy the competitive demands of local and
global processing in both language tasks. Optimal brain function
requires balance between local specialization and global integra-
tion of brain functional activity [46]. Furthermore, we noticed that
several regions such as bilateral MTG and right STG shared
across both implicit and explicit tasks have been previously
reported in studies of sentence comprehension. The sentence
comprehension network that we found is also consistent with that
reported by previous studies [20,21] of explicit language task.

Furthermore, we found that common hubs in widespread
regions supported the semantic processing in both the implicit and
explicit tasks. Hubs of the networks for both tasks were identified
in the bilateral SMA, bilateral MCG, bilateral MTG, MOG.L,
FFG.L, STG.R, and TPOsup.R, which were consistently engaged
in language related processes [1—4,47,48]. Previous studies have
indicated that the temporal lobe is engaged in semantic
representation storage and access [2,5], the FFG is a key region
involving in word recognition and semantic processing [2,49,50],
and the MTG is a region sensitive to both semantic access [5] and
semantic control [5,51,52]. In addition, several previous studies
found that the cingulate cortex may contribute to semantic control
during sentence comprehension [17,53,54] or to general cognitive
control processes [55], and the occipital region was involved in the
sentence comprehension when hard or odd sentences were
presented to support visual function [17,56]. These results were
consistent with previous findings in explicit language task contexts
[19-21], suggesting that large common network supports sentence
comprehension in both explicit and implicit language tasks.
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Table 4. Integrated global parameters mean (SD) of the human brain functional networks and their statistical difference between

loc

Parameters Implicit language task Explicit language task t-value p-value
C[ijm 0.225 (0.010) 0.220 (0.011) 2.46 0.02
LL“‘ 0.654 (0.013) 0.652 (0.013) 1.27 0.22

pint 0.676 (0.045) 0.679 (0.055) 0.26 0.80

Aint 0.406 (0.003) 0.405 (0.003) 1.52 0.14
E;?;b 0.239 (0.003) 0.240 (0.003) 172 0.10
En 0.299 (0.005) 0.297 (0.005) 3.01 0.007

. cint yint int jint pint int
Note: C), L, "™, 4™, Eqlyp, and Ejg,

doi:10.1371/journal.pone.0080214.t004

For the second aim of the study, we asked whether and how
tasks modulate network properties. We found that the brain
functional networks involved in explicit and implicit language
exhibited significantly reduced levels of local efficiency while an
increasing trend in global efficiency in the explicit language task
compared with the implicit language task (Table 4). The
differences in local and global efficiency between the two language
tasks may due to the fact that the optimized brain requires a

Table 5. Hub regions of the brain functional networks
corresponding to the explicit and implicit language tasks,
respectively.
Normalized
betweenness
Region Classification centrality
Implicit language Explicit language
task task
PreCG.L Primary - 1.77
PreCG.R Primary = 1.79
SMA.L Association  1.96 1.54
SMAR Association  1.73 1.6
ORBmed.R Paralimbic - 1.65
MCG.L Paralimbic 2.02 1.78
MCG.R Paralimbic 1.85 1.75
PHGR Paralimbic - 1.65
MOG.L Association  1.88 1.53
FFG.L Association  2.27 2.06
FFG.R Association - 1.53
PCUN.R Association - 1.6
STG.L Association  2.46 -
STGR Association  2.63 2.19
TPOsup.L Paralimbic - 1.83
TPOsup.R Paralimbic 2.57 19
MTG.L Association  2.22 2.19
MTG.R Association  2.26 2.79
ITGR Association  2.19 -
Note: “~" indicates that the value of the normalized betweenness centrality in
the region was within one standard deviation from the mean. The shaded texts
were the shared hub regions detected under both the two tasks.
doi:10.1371/journal.pone.0080214.t005
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correspond to the integrated clustering coefficient, integrated characteristic path length, integrated normalized clustering
coefficient, integrated normalized shortest path length, integrated global efficiency, and integrated local efficiency, respectively.

suitable balance between local specialization and global integra-
tion of brain activity [46]. As the global efficiency is a measure of
the information transfer in the brain, whereas local efficiency is a
measure of the information exchange of each sub-area of the brain
[57], the differences in both the global and local efficiency between
these two tasks may reflect the brain optimization in different
language tasks. In the explicit language task, subjects must
participate in semantic retrieval, semantic integration, and
semantic control to elaborately analyze semantic information.
While in the implicit language task, subjects were required to
visually match the font size as part of a feature detection paradigm.
This means that performance of the explicit language task relies on
information transfer across widespread regions of the brain (such
as IFG, MTG, STG etc). As a consequence, the explicit language
task should involve higher levels of global efficiency than the
implicit language task, which in turn made the local efficiency
lower than the implicit language task.

Furthermore, we also found between-task differences in the
betweenness centrality in varying language tasks (Table 6). The
integrated betweenness centrality was higher in the left IFG
(IFGoperc.L. and IFGtriang.L) during the explicit language than
that in the implicit language task. The left IFG is an area of the
brain that is important for language comprehension [2,3,48,58].
Particularly, several previous studies have indicated that the
IFGoperc.. and IFGtriang.l. are important for elaborated
semantic analysis [3,12,15-17,59-62], such as semantic candidate
selection and inhibition.

However, the different results between two task conditions
obtained in the present study may reflect a mixture of both
semantic and non-semantic task-specific processes. For example,
we observed extra hubs in the explicit language task compared
with the implicit language task. Previous studies have found that
activation of the PCG is associated with phonological rehearsal
[63] and that activation of the ORBmed.R and PCUN.R
corresponds to the theory of mind analyses [54,64]. These results
demonstrate that neural semantic processing in explicit language
tasks is more widespread than that observed in implicit language
tasks [65]. Moreover, we also found increased integrated
betweenness centrality in the SMA.R and IPL.R during the
implicit language task. As the subjects were asked to make font size
judgments, they may need to maintain representations of the font
size of the sentence words in working memory to compare with
those of the probe. Thus, the IPL.R which contribute to working
memory [66] and attention control [67] was engaged in the
implicit language task. Additionally, the SMA and pre-SMA were
associated with motor function such as response preparing [68];
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Table 6. Brain regions showing significant difference in the mean (SD) integrated betweenness centrality between the brain
functional networks corresponding to the explicit and implicit language tasks.

Region Classification

Implicit language task

Explicit language task t-value (p-value)

Implicit > Explicit

SMA.R Association 0.717 (0.454)
IPLR Association 0.370 (0.149)
Implicit < Explicit

PreCGR Primary 0.507 (0.226)
ORBsup.L Paralimbic 0.221 (0.111)
IFGoperc.L Association 0.306 (0.159)
IFGtriang.L Association 0.220 (0.107)
ORBinf.R Paralimbic 0.373 (0.214)
PHG.R Paralimbic 0.315 (0.224)

0.574 (0.303) 2.74(0.013)
0.288 (0.150) 2.58(0.018)
0.650 (0.335) 2.28(0.034)
0.345 (0.183) 2.81(0.011)
0.416 (0.223) 2.93(0.008)
0.305 (0.145) 2.58(0.018)
0.508 (0.315) 2.34(0.030)
0.433 (0.310) 2.53(0.020)

doi:10.1371/journal.pone.0080214.t006

the observed difference in betweenness centrality of the SMA.R
may due to poorer performance in the implicit language task, as
the accuracy was much lower and the RT was longer in this task
than those in the explicit language task.

It should be noted that the left IFG was not recognized as a hub
for language processing in the present study. Although the
activation in the left IFG was often reported in sentence
comprehension studies [2,3,69], there was a report showing lack
of activation in left IFG when bilateral temporal regions activation
was involved [6]. It’s possible that the left IFG contributes to
effortful semantic control but is not necessary participating in the
simple sentence comprehension. Yet, with the dataset, we did
found enhanced BOLD signal change in the left IFG in simple
sentence comprehension relative to fixation baseline in the two
language tasks [12]. These results made the explanation less likely
relevant to the left IFG.

FONT>SEM

FONT<SEM

Figure 3. Brain regions exhibited significant alterations in the
integrated betweenness centrality of the functional networks
between the explicit and implicit language tasks. Regions color-
coded in cold (warm) represent the increased (decreased) value of
integrated betweenness centrality in the implicit language task
compared to the explicit language task. Abbreviations: L, left
hemisphere; R, right hemisphere.
doi:10.1371/journal.pone.0080214.9003
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Interestingly, many prior studies did not identify the IFG as a
network hub [20,43,44,57,70]. For example, Ye et al. [20] used a
graph theoretical approach to reveal network activity during
sentence comprehension, and did not identify the IFG as a hub.
One may speculate whether these results were due to the selected
AAL template was based on single person’s brain. We also used
the Harvard-Oxford atlas (HOA) to test the probability that the
left IFG would be recognized as hub. The HOA was gene-
rated from a probabilistic atlas of the Harvard-Oxford Structural
Atlas (http://neuro.debian.net/pkgs/fsl-harvard-oxford-atlases.html)
that defines regions (see Table S1, supplemental material) based
on standard anatomical boundaries (probability threshold =
25%). The results of this analysis revealed similar between-task
differences in network parameters, such as global and local

efficiency, as did the AAL (see Table S2, supplemental
material). We also found similar hubs (see Table S3,
supplemental material) and regions which indicated task

differences in terms of betweenness centrality (sce Table S4,
supplemental material). Nevertheless, the left IFG was not
recognized as hub. Additional reasons may be the differences in
nodes and edges definition which may influence the calculated
network properties [41,71-75].

In conclusion, the present study revealed that the human brain
functional networks involved in sentence comprehension met
small-worldness criteria in both explicit and mmplicit language
tasks. The task related differences in the network properties
indicated different effects of the explicit and implicit language tasks
on the brain functional networks. These findings increase
understanding of the neural basis of language comprehension.

Supporting Information

File S1 Table S1. Brain regions used in constructing the human
brain functional networks in the present study. The HOA atlas is
generated from a probabilistic atlas of Harvard-Oxford Structural
Atlas that defines regions based on standard anatomical
boundaries (probability threshold = 25%). Table S2. Integrated
global parameters of the human brain functional networks and the
statistical difference in the integrated global parameters between
the implicit and explicit language tasks (Mean = SD). Table S3.
Hub regions of the brain functional networks corresponding to the
implicit and explicit language tasks. Table S4. Brain regions
showing significant difference in the integrated betweenness
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centrality between the brain functional networks corresponding to
the implicit and explicit language tasks.
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