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An implicit assumption underpins basic models of the evolution of cooperation, mutualism and altruism: The benefits (or pay-
offs) of cooperation and defection are defined by the current frequency or distribution of cooperators. In social dilemmas
involving durable public goods (group resources that can persist in the environment–ubiquitous from microbes to humans)
this assumption is violated. Here, we examine the consequences of relaxing this assumption, allowing pay-offs to depend on
both current and past numbers of cooperators. We explicitly trace the dynamic of a public good created by cooperators, and
define pay-offs in terms of the current public good. By raising the importance of cooperative history in determining the current
fate of cooperators, durable public goods cause novel dynamics (e.g., transient increases in cooperation in Prisoner’s
Dilemmas, oscillations in Snowdrift Games, or shifts in invasion thresholds in Stag-hunt Games), while changes in durability
can transform one game into another, by moving invasion thresholds for cooperation or conditions for coexistence with
defectors. This enlarged view challenges our understanding of social cheats. For instance, groups of cooperators can do worse
than groups of defectors, if they inherit fewer public goods, while a rise in defectors no longer entails a loss of social benefits,
at least not in the present moment (as highlighted by concerns over environmental lags). Wherever durable public goods have
yet to reach a steady state (for instance due to external perturbations), the history of cooperation will define the ongoing
dynamics of cooperators.
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INTRODUCTION

Social dilemmas
Cooperative or altruistic behaviours have long puzzled biologists

[1–14]: Given the presence of defectors or cheats, how can more

cooperative behaviours persist? The simplest and most common

models of cooperation present two interacting players with a simple

and symmetric choice, to cooperate or to defect [4]. If they both

cooperate, they each receive a reward, R, which is larger than the

punishment, P, obtained if they both defect. If one defects while

the other cooperates, the defector receives the ‘temptation’ payoff,

T, and the cooperator receives the sucker’s payoff S (methods).

This terminology was introduced for the Prisoner’s Dilemma,

which is defined by the ranking T.R.P.S. Given the relative

magnitude of the payoff values, a rational player should always

defect in one-off encounters, regardless of whether the other player

cooperates or not. Thus the problematic outcome is total

defection, despite a higher pay-off occurring when everyone

cooperates. (maintenance of cooperation in the Prisoner’s Di-

lemma requires additional mechanisms that ensure cooperators

are more likely to encounter other cooperators than expected by

chance [5]).

The Prisoner’s Dilemma represents the strictest form of a social

dilemma, however other payoff rankings in the 2-player game are

consistent with a social dilemma [10,15]. The Snowdrift Game

(related to the Chicken or Hawk-Dove Game [7,10,16]) is defined

by the payoff ranking T.R.S.P. Thus if the opponent

cooperates, it is best to defect (T.R). Yet if the opponent defects,

it is best to cooperate (S.P). The premium on following a distinct

strategy is illustrative of negative frequency-dependent selection,

ensuring coexistence between cooperators and defectors in a well-

mixed population. The Stag-hunt Game (an example of a co-

ordination game [10]) is defined by the payoff ranking

R.T.P.S. The Stag-hunt Game places a premium on co-

ordinated responses, thus if your partner cooperates, it is best to

cooperate (R.T), yet if your partner defects, it is best to defect

(P.S). The premium on coordinated responses is illustrative of

positive frequency-dependent selection, ensuring bistability in

a well-mixed population (a final outcome of either cooperators-

only or defectors-only, dependent on initial frequency of

cooperators).

Public goods
In addition to the study of two-player games akin to the Prisoner’s

Dilemma, ecological and economic social dilemmas are often

couched in the language of public goods (or related notions such as

common pool resources or the tragedy of the commons). In

contrast to the cooperator games presented above, public goods

dilemmas focus attention on an openly accessible ‘good’ or

resource that is potentially impacted by the actions of individuals

[17–20]. Human examples include air quality, scientific discovery

or national defence [17–20]; microbial examples include side-

rophores, colicins, signal molecules, extracellular enzymes and
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polymers [21–27]. Public goods raise significant social dilemmas as

in particular the lack of excludability from the benefits of the

public good ensure that defectors that exploit the public good but

make no efforts to generate or conserve it, can prosper.

Whereas the discussion of public goods commonly invokes

material resources such as those listed above, theoretical and

experimental approaches to the study of public goods effectively

replace the public good with a focus on the underlying behaviour

of cooperators and defectors [10,11,28]. By focusing on the

frequency of cooperators, this approach makes the implicit

assumption that the public good is entirely defined by the current

frequency of cooperators, essentially allowing the ‘public good’

itself to drop out of the analysis, in favour of a study of cooperation

versus defection analogous to the two-player models presented

above. The ‘cooperation equals public good’ paradigm has been

strikingly successful in generating a diversity of approaches to

modeling social dilemmas ([1–14]; kin selection, group selection,

reciprocal altruism, etc).

Here we examine what are the consequences for relaxing the

linkage between cooperators and public goods. Details of our

modelling approach are presented in the methods section,

however the spirit of approach is simple–whereas classic game-

theoretic models of cooperation focus solely on the frequency of

cooperators p (defining public goods implicitly as p), we add

a second variable e, explicitly tracking the amount of public goods.

The addition of an explicit public goods variable allows for diverse

novel outcomes, for instance transient increases in cooperation in

Prisoner’s Dilemmas, shifts in invasion thresholds in Stag-hunt

Games, and multi-generational oscillations between cooperators

and their enduring public goods in Snowdrift Games.

RESULTS
If we normalise the payoffs for mutual cooperation R and mutual

defection P to 1 and 0 respectively, social dilemmas can be

described in game theoretic terms by two key parameters, the

‘temptation’ to cheat, T, and the ‘sucker’ reward for unilateral

cooperation, S [10,29] (Fig. 1a, methods). Traditional game-

theoretic analyses focus on the frequency of cooperators, p through

time, as a function of S and T. We extend this traditional one-

dimensional treatment [10,11,29] (methods) with an explicit

public-goods equation, tracking the dynamics of the public good

e (0#e,‘), created by cooperators at a production rate c, and lost

at a decay rate u (incorporating both intrinsic rates of decay and

extrinsic rates of removal or dilution),

dp=dt~p(1�p)(Sz(1�T�S)e)

de=dt~cp�ue
ð1Þ

The pay-offs to cooperators and defectors are now defined by

the current intensity of the public good e (methods, Fig. 1), which is

in turn produced by cooperators. The explicit representation of

public good as distinct from cooperators introduces an element of

memory into the system, large c and u (relative to the magnitude of

payoffs, T and S) implies a fast rate of production and decay of the

public good, ensuring p and e are in close agreement; in this case

the history of past cooperation is of little importance. In contrast,

when c and u are small, the public good changes only slowly in

response to time and current frequency of cooperators, and reflects

more strongly the past contributions to the public good. Initially

we focus on the special case where c = u = x, and look at the affects

of varying the general lag parameter, x.

Coexistence: Snowdrift Game
In agreement with the traditional one-dimensional model

(methods), when c = u = x the equilibrium analysis with snowdrift

parameters (T.1, S.0, Fig 1a,c) predicts a stable coexistence of

cooperators and defectors at p* = e* = S/(S+T-1). However, in

contrast to the traditional model, the approach towards the

coexistence point p* will follow damped oscillations if x is

sufficiently small (x,4S(T-1)/(S+T-1), methods, Fig 2). Decreasing

x beyond the threshold value acts to strengthen and lengthen the

oscillations, allowing both cooperators and defectors to effectively

fixate for long periods of time. In Fig. 2b we see that given an

initial absence of public good, and despite a predicted 50/50

coexistence point, for the first 250 arbitary time units (potentially

many generations), either cooperators or defectors are in near

complete domination, irrespective of the starting frequency of

cooperators. In Fig. 2c, public good is mapped against cooperator

frequency in a phase-plane plot, for differing levels of x

(summarising Figs 2a,b).

Bistability: Stag-hunt Game
Turning to the Stag-hunt Game (T,1, S,0, Fig. 1a,d), equilib-

rium analysis predicts bistability (pure cooperation or pure

defection at equilibrium) with the watershed or separatrix when

c = u = x passing through the unstable equilibrium at p* = e* = S/

(S+T-1). In Fig. 3 we illustrate the temporal dynamics of p and e

given that the public good is initially absent (e0 = 0), for both high

and low values of x

When equilibration is fast (x is large relative to the magnitude of

S and T, fig 3a), we see behaviour close to that predicted from the

traditional one-dimensional model, irrespective of the initial public

good status, e0. However, as x decreases, and the public good

becomes more durable (and slower to produce), we find that the

initial condition e0 has an increasing role in determining the

threshold to producer dominance in a Stag-hunt Game. Thus in

Fig 3b, we see that despite a predicted threshold at p* = 0.5, we

find that even when cooperators are initially numerically dominant

(p0 = 0.9), defectors go to fixation when e0 = 0.

In Fig. 3c, the dependence on initial conditions of both p and e is

illustrated for varying levels of x in a phase-plane plot. When x is

large, p and e are intimately tied together, so p is a good predictor

of e and hence of whether cooperators or defectors go to fixation,

in keeping with the implicit assumption of the traditional model. In

contrast, as x drops, p and e can become dissociated (with e being

increasingly weighted in favour of past cooperation), so that the

current frequency of cooperators p is no longer a good predictor of

the current strength of the public good e, hence it becomes

essential to explicitly measure e in order to predict the fitness and

fate of cooperators and defectors. Thus for example in Fig. 3c we

see that when x = 0.01, defectors will go to fixation regardless of

their current frequency if e,0.2, and similarly cooperators will go

to fixation regardless of their current frequency if e.0.8.

Generally, when the lag effect is strong (x is small), the history of

cooperation becomes central. In the context of invasion biology,

the Stag-hunt analysis illustrates the importance of considering

whether invaders bring their public goods with them (e.g.

microbial supernatent or plant soil).

Prisoner’s dilemma
Turning to the Prisoner’s Dilemma (T.1, S,0 Figs 1a,b,d), we

find the same conclusion as for the traditional model, ie

cooperators are doomed to extinction (sole stable equilibrium is

p* = 0, e* = 0). However, when selection against cooperators is

weaker for increasing values of the public good (T+S,1, red line,
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Fig 1d), then cooperators may transiently increase and even

transiently exclude defectors if e is sufficiently large (black lines,

Fig. 4). Nonetheless, pure cooperation remains unstable as the

total production of cooperators when p = 1 is insufficient to

maintain the public good in sufficient excess. Eventually (with time

dependent on x) e will decline below S/(S+T-1), and then

cooperators will inevitably be sent to extinction in the absence of

further external perturbations (Fig. 4).

Changing the game
The nature of a game (whether a Snowdrift Game or a Stag-hunt

Game, etc) will be sensitive to the ecology underlying the game

parameters (in our framework, T, S, c and u). We can now ask what

is the affect of a perturbation in the durability parameter u, relative

to a reference game (pre-perturbation), defined by e*(p = 1) = c/u = 1

(methods). Changes to the decay of public goods u relative to their

production c (i.e. movement away from u = c) can change the

Figure 1. Social dilemmas and payoffs to cooperators and defectors. a, Common social dilemmas organized on the ‘sucker’, ‘temptation’ (S, T)
plane (R and P normalised to 1 and 0; see text for details). b–d, expected relative payoff of cooperators as a function of public goods e is fc-fd = S+e(1-
T-S), for 0#e,‘. Cooperator and defector payoffs are equal on the dashed lines (fc = fd). b, Dominance games. Red line, Prisoner’s Dilemma, S = 20.5,
T = 1.6. Blue line, cooperator dominance, S = 0.3, T = 0.4. c, Coexistence games. Red line, Snowdrift Game, S = 0.5, T = 1.5. Blue line, cooperator
dominance, S = 0.5, T = 0.9 (but becomes snowdrift if u/c decreases sufficiently to allow e*p = 1.S/(S+T-1), here if u/c,4/5). d, Bistability games. Blue
line, Stag-hunt Game, S = 20.5, T = 0.5. Red line, Prisoner’s Dilemma, S = 20.5, T = 1.1 (but becomes Stag-hunt if u/c decreases sufficiently to allow
e*p = 1.S/(S+T-1), here if u/c,4/5). Unless otherwise stated, game identities are consistent with u = c. See methods for more details.
doi:10.1371/journal.pone.0000593.g001

Figure 2. Impact of durability on Snowdrift (coexistence) game dynamics. Snowdrift game (T = 1.5, S = 0.5, c = u = x), stable coexistence of
cooperators and defectors at p* = e* = S/(S+T-1) = 0.5, threshold to oscillations x,1 (see methods). a, b Temporal dynamics of cooperators p (black)
and public good e (grey). Initial values of p range from 0.1 to 0.9. Initial value of e is zero. a, x = 10. b, x = 0.01. c public good (e)–cooperator (p) phase
plane. Lines illustrate simulated trajectories for differing values of x (10, 0.1, 0.01) from initial position p0 = e0 = 0.05.
doi:10.1371/journal.pone.0000593.g002
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equilibrium nature of games, by moving the maximal equilibrium

value of public goods away from 1 (e*p = 1 = 1 when u = c, Fig. 1).

For instance, increasing the decay rate u in a Stag-hunt Game

(blue line Fig 1d) reduces e*p = 1 below one, to the limit (u = c(S+T-

1)/S) where defection becomes dominating and a Prisoner’s

Dilemma is recovered. Reversing this logic, certain Prisoner’s

Dilemmas (red line, Fig. 1d) can become Stag-hunts with locally-

stable cooperation simply due to an increased durability of the

public good (when u,c(S+T-1)/S) and therefore a higher stable

equilibrium value of public good e*p = 1.1, irrespective of the

productivity c of cooperators. Just as changing the production-

decay ratio c/u can cause shifts between bistability and defector

domination, changing this ratio can also cause shifts between

coexistence (Snowdrift Games) and cooperator domination

(Fig. 1c). Increasing the decay rate of public good u (depressing

e*p = 1 below one) in a Snowdrift Game (red line, Fig 1c) can lead to

the exclusion of defectors, as defectors have insufficient equilib-

rium public goods e*p = 1 to exploit, and so cannot invade. In

addition to changing the equilibrium behaviour of games, altering

the c/u ratio can also modify game dynamics (methods,

supplementary materials).

Finally, we note that ‘public bads’ such as pollution, government

debt, etc are of course social dilemmas and can be viewed

explicitly as the negative space of e in our existing models. If we

now return to Fig 1b (which has no game changes in positive space

of e), and extrapolate into the negative space of e we see that the

blue line (cooperator dominance) has a ‘hidden staghunt’ for

sufficiently low e (i.e. if the environment is really bad (e,S/(S+T-

1)), then best to keep on defecting to oblivion), whereas in contrast

we find a ‘hidden snowdrift’ for the Prisoner’s Dilemma game in

Fig 1b (i.e. if the environment is really bad, then best to start

cooperating until e returns to moderate negative at e = S/(S+T-1).

DISCUSSION
Building on the simplest models of social dilemmas, we have

moved from a world consisting only of cooperators and defectors,

to a world of cooperators, defectors and their environmental

consequences. We present models where the payoffs depend on

the state of a public good, that in turn depends on both current

and past levels of cooperation. Such an approach is likely to be

particularly important in any situation where cooperators and

public good are out of steady state equilibrium with each other, as

for instance when either genetic or technological innovations or

environmental or political perturbations (storms, war) at least

transiently displace any equilibrium leading to continued change

in both cooperators and public goods. For some examples of

cooperation, for instance anti-predator vigilance, the act of

cooperating is at least at first sight inseparable from the ensuing

rewards. However, there are many more examples of cooperative

behaviour where there is a clear separation between the

cooperative act and the subsequent generation of reward, with

physical intermediates ranging from extracellular microbial

enzymes to ant nests to bridges to scientific papers [17–27]. By

highlighting the capacity for social organisms and their environ-

ments to engage in feedback loops, our findings tie social dilemmas

into niche construction fields [30–32]. We show here that

increasing the lag (reducing x) between changes in cooperator

and public good densities can lead to diverse novel outcomes, for

instance multi-generation oscillations between cooperators and

their enduring public goods in Snowdrift Games (Fig 2), shifts in

invasion thresholds and resulting equilibria in Stag-hunt games

(Fig 3) and transient increases in cooperation in Prisoner’s

Dilemmas (Fig 4).

Figure 3. Impact of durability on Stag-hunt (bistable) game dynamics. Staghunt game (T = 0.5, S = 20.5, c = u = x), repellor at p* = e* = S/(S+T-
1) = 0.5. a,b Temporal dynamics of cooperator p (black) and public good e (grey). Initial values of p range from 0.1 to 0.9. Initial value of e is zero. a,
x = 10. b, x = 0.1. c public good (e)–cooperator (p) phase plane. Lines illustrate simulated separatrices demarcating the basins of attraction for pure
cooperator and pure defector equilibria (closed circles). Unstable equilibrium (open circle) at p* = e* = S/(S+T-1) = 0.5. Lines represent differing values
of x (10, 1, 0.1, 0.01).
doi:10.1371/journal.pone.0000593.g003

Figure 4. Prisoner’s dilemma (defector dominance) game dynamics
given durable public goods. Public good (e)–cooperator (p) phase
plane. T = 1.1, S = 20.5, c = u = x = 0.1. Sole stable equilibrium, p* = e* = 0.
Lines illustrate simulated trajectories for differing initial values of e (0.2
to 1.2 in red; 1.3 to 1.9 in black) for initial p = 0.5
doi:10.1371/journal.pone.0000593.g004
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Replicator dynamics formalism [29,33] is a convenient and

well-studied baseline for a generic treatment of social dilemmas.

However, our generic treatment leaves many more dimensions to

be addressed–for instance the effects of more complex public

goods dynamics, population structure, demography, strength of

selection, stochasticity, finite populations, and so on. The

dynamics of durable public goods are potentially more diverse

than our current model allows, for instance characterized by

different patterns of production and degradation as a function of

their interactions with cooperators (producers or protectors of

a public good) and defectors (non-producers or exploiters of

a public good). In more complex scenarios, the public goods (or

‘public bads’ such as pollution or public debt) themselves are

subject to independent dynamics due to extrinsic environmental

forces (periodic and/or stochastic perturbations), or even to self-

replication, making an intriguing bridge between durable public

goods and symbionts–both ‘good’ (e.g. crops, livestock) and ‘bad’

(e.g. parasites) (see also [34]). A number of intriguing consequences

of playing durable public goods games in a spatially-explicit setting

are plausible. Whereas classic approaches to spatially-extended

cooperative games have focused on the role of aggregation in

cooperators [7,9], a spatially-extended durable public goods game

would focus equally on the role of aggregation in public goods, and

would track the degree of concordance between aggregates of

cooperators and of public goods to ask in general what conditions

would favour aggregations (‘cities’) of public goods? And how

resistant are these ‘cities’ against invasion by defectors?

In the absence of any of these potential complications, our

generic two state variable model of social dilemmas highlights that

dissociating the dynamics of cooperators and public goods has

suprising consequences, for instance groups of cooperators can do

worse than groups of defectors, if the defectors inherit superior

public goods. This notion in turn changes the meaning of defectors

or social cheats. In this enlarged view, it is no longer the case that

a rise in defectors entails a loss of social benefits–at least not in the

present moment (as highlighted by many environmentalist

concerns). At best, given sufficiently long-lived public goods,

a defector may be a social ‘cheat’ with regards to future

generations, having no immediate impact on its social group.

Thus an early cheat in a dominant cooperative phase in Fig. 2b

has little immediate impact on the rising public good, yet their

more numerous strategic descendents can lead to its fall. The

recognition that durable public goods are ubiquitous and violate

an implicit assumption underpinning all basic models of the

evolution of cooperation implies that our work will have diverse

consequences across the fields of evolutionary biology, molecular

biology, ecology, economics, and political science, and be of

practical relevance across many levels of biology, from bio-

technology and medicine (concerned with microbial public goods)

to the maintenance of environmental services.

MATERIALS AND METHODS
Payoffs for cooperation C and defection D in a Prisoner’s Dilemma

(and related games) can be expressed in matrix form as follows

C D

C R S

D T P

Payoffs are illustrated for the row player, dependent on the

strategy of their partner (column player) and themselves. A

necessary condition for a social dilemma is that the reward for

mutual cooperation is greater than the reward for mutual

defection (i.e. R.P). Assuming R.P and normalising to R = 1

and P = 0, we can reduce the parameter set to T and S [10,29], ie

the payoff matrix becomes

C D

C 1 S

D T 0

Given this matrix, the expected payoffs for cooperators and

defectors as a function of the proportion of cooperators p can be

simply derived under the assumption of random mixing, ie the

probability of interacting with a cooperator is p and the probability

of interacting with a defector is 1-p, regardless of a focal

individual’s strategy. Under the assumption of random mixing,

the expected payoffs for cooperators and defectors are fc = p+(1-p)S

and fd = pT respectively, for 0#p#1.

By relating expected payoffs with fitness, the dynamics of

cooperators and defectors in a large well-mixed population can

now be described by the replicator equation dp/dt = p(fc–f), where f is

the mean payoff, f = p fc+(1-p)fd (for further details on replicator

dynamics and derivation of the replicator equation, see [29,33]). The

replicator equation for 2-player games can now be simplified to

dp=dt~p(1�p)(Sz(1�T�S)p)

The system has three potential equilibria; pure cooperators

(p* = 1), pure defectors (p* = 0) and mixed cooperators and

defectors (p* = S/(S+T-1)). When T.1 and S,0 (Prisoner’s

dilemma) only pure defection is stable. When T.1 and S.0

(Snowdrift Game), only the mixed equilibrium is stable, the system

tends towards coexistence at p* = S/(S+T-1). In contrast, when

T,1 and S,0 (Stag-hunt Game), only the pure equilibria are

stable, ie the system is bistable, with p* = S/(S+T-1) serving as

a repellor, separating the basins of attraction for pure cooperation

and pure defection.

Durable public goods
In the above classic framework, the expected payoffs for

cooperators and defectors, namely fc and fd, are simple and

direct functions of the current frequency of cooperators, p. We

now wish to challenge this framework by assuming that payoffs

are directly determined by the extent of a shared public good, e,

which in turn depends on frequency of cooperators both past

and present. We begin by normalizing e so that when

cooperators (producers of a public good) are fixed in a population

for a sufficient period of time to allow the public good e to go to

equilibrium, this equilibrium is set to one (e*p = 1 = 1). Likewise,

when defectors go to fixation, the public good at equilibrium is

set to zero (e*p = 0 = 0). Considering that T describes the initial

payoff of a lone defector in a population of pure cooperators,

and conversely, that S describes the initial payoff of a lone

cooperator in a population of pure defectors, we can define the

following payoffs as a function of e

e~1 e~0

C 1 S

D T 0
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If we again assume that expected payoffs are linear functions of

the rewarding element (now e instead of p), we can now extrapolate

between the e = 1 and e = 0 payoffs, and express expected payoffs

as a direct function of the public good, i.e. fc = e+(1-e)S and fd = eT,

for 0#e,‘. These payoff functions are clearly analogous to the

classic functions fc = p+(1-p)S and fd = pT, and are identical under

the classic assumption that the public good is determined by the

current frequency of cooperators, ie e = p. Given these expected

payoffs, the dynamics of cooperators and defectors in a large well-

mixed population (random encounters) can again be described by

the replicator equation [10,33], which now becomes dp/dt = p (fc–

f) = p(1-p) (S+(1-T-S)e). To this point, we have specified how public

goods e influence the dynamics of cooperators, but not the reverse.

In order to complete the feedback loop between cooperators p and

public goods e, we consider that cooperators produce public goods

at a rate c, while public goods decay or are lost at rate u, specifying

de/dt = cp–ue, and returning us to model (1). Note that our

specification that when cooperators dominate (p = 1), the equilib-

rium level of public good is normalised to one (ie e*(p = 1) = c/u = 1),

entails c and u are expressed in units ensuring c = u.

Next we outline the stability conditions for the three fixed points of

model (1). When c = u, the conclusions of the stability analysis

described above for the one-dimensional model holds for the two-

dimensional model. Generalising for any positive combination of c

and u, the stability conditions for the three fixed points are as follows.

Pure defection (p* = e* = 0) is locally stable if S,0. Pure cooperation

(p* = 1, e* = c/u) is locally stable if T,1+S(u-c)/c. Finally, mixed

cooperators and defectors (p* = Su/c(S+T-1), e* = S/(S+T-1)) is stable

if S.0, T.1+S(u-c)/c and S/(S+T-1),u/c. The approach to this

equilibrium (when stable) will follow damped oscillations when the

decay of the public good is sufficiently small, namely if u,4cS(S+T-

1)/[c(S+T-1)+4S2]. Under the constraint c = u = x, the condition for

oscillations reduces to x,4S(T-1)/(S+T-1).

For any public good e, governed by parameters S, T, u and c, we

have defined the scale of e so that when cooperators dominate (p = 1),

the equilibrium level of public good equals one (ie e*(p = 1) = c/u = 1).

But what if the relative strength of the parameters governing the

production and decay of the public good (c and u) were to

subsequently change? We can now ask what is the affect of

a perturbation in the durability parameter u, relative to a reference

game (pre-perturbation), defined by e*(p = 1) = c/u = 1. In the

Snowdrift Game, decreasing the removal rate u (for constant c) has

the expected consequence of reducing the equilibrium share of

producers, as defectors are able to more effectively parasitize the

durable public good (Fig. S1). Furthermore, we see that reducing u

also has the effect of introducing oscillations (if u,4cS(S+T-1)/

[c(S+T-1)+4S2]) that become increasingly severe as the public good

becomes long lasting. In the Stag-hunt Game, if we vary u

independently of c, we see that decreasing u linearly reduces the

repelling equilibrium point (Fig S2), potentially enlarging the basin of

attraction for the pure cooperation equilibrium (cooperation has the

highest payoff in the context of high levels of the public good, e).

However, the extent to which the threshold to cooperator invasion is

lowered depends on the history of cooperation, represented by the

current value of the public good e. When e is absent (bottom of Fig

S2), the threshold to cooperator invasion is raised, and altering the

decay rate of the public good has only a minimal impact on the

threshold position.
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