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inTRODUCTiOn

Long non-Coding RnAs (lncRnAs)—From ignorance to 
importance
One of the long-standing principles of molecular biology has been that DNA functions as a template 
for transcription of messenger RNAs, which are eventually translated into a protein. Thus, proteins 
were seen as the main mediators of nearly all aspects of cell and tissue function. However, this 
perception started changing rapidly when high-throughput sequencing platforms became available, 
unraveling that more than two-thirds of the human genome are transcribed into RNA but only <2% 
of transcripts encode proteins (1, 2). Thus, the majority of the transcriptome falls into the category of 
non-coding RNAs (ncRNAs). These include long-known and well-characterized classes of  ncRNAs 
with basic cellular housekeeping functions such as translation (transfer RNAs and ribosomal RNAs), 
splicing (small nuclear RNAs), or RNA editing (small nucleolar RNAs) (3, 4). Furthermore, short 
regulatory ncRNAs (20–30 nt in length) including microRNAs, piwi-associated RNAs, or endog-
enous short-interfering RNAs are highly conserved among species and have been proven to be 
crucial regulators of gene expression (5–7). Apart from these rather well-studied ncRNAs, the more 
recently identified class of lncRNAs has gained increasing scientific interest over the past years, and 
we are only beginning to appreciate their significance in a multitude of cellular processes and their 
complex modes of action (8, 9).

The original classification of lncRNAs is based on a length of at least 200 nt and lack of protein-
coding potential. lncRNAs can be spliced, capped, and/or polyadenylated and localize either to the 
nucleus or the cytoplasm of the cell (1, 10). Interestingly, several lncRNAs were recently shown to 
act as templates for small peptides, and a number of mRNAs appear to adopt additional non-coding 
functionality (11–16). These observations suggest that classification of RNAs based on  protein-coding 
potential might not in all cases be sufficiently exhaustive.

In contrast to mRNAs, lncRNAs generally show less primary sequence conservation among spe-
cies, contain fewer but longer exons, and exhibit an intriguingly cell type-specific expression (8, 9). 
In addition, lncRNAs have been proven essential for processes such as cellular differentiation and 
progenitor cell regulation, epigenetic imprinting, X-chromosome inactivation, promoter-specific 
gene regulation, and nuclear import (17–25). Moreover, aberrant lncRNA expression has been linked 
to several diseases, including many types of cancer, highlighting their functional relevance during 
these diverse processes and rendering lncRNAs a captivating and novel research field (26–30). The 
frequently observed high level of complexity and diversity of gene loci, however, can significantly 
complicate functional characterization of lncRNAs. Hence, careful analysis of lncRNA function 
should start with a close characterization of its genomic locus, especially if the lncRNA is not yet 
characterized or its gene locus not well annotated, to lower the chance of drawing wrong conclusions 
and dissipating time and money. Below, we will illustrate mechanisms of lncRNA isoform genera-
tion using selected examples, introduce several approaches for lncRNA locus studies, and discuss 
potential pitfalls in investigating lncRNA loci.
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FigURe 1 | Complexity in long non-coding RnA (lncRnA) loci. Diversity in lncRNA loci originates from the genomic organization of the lncRNA (1). A plethora 
of lncRNA isoforms arises from the combination of multiple transcription start sites (2), alternative cleavage and polyadenylation sites (3), as well as alternative 
splicing events (4). Finally, lncRNAs have been shown to harbor other non-coding RNAs such as snoRNAs, miRNAs, or tRNAs or to contain intronic protein-coding 
genes, increasing the potential complexity of lncRNA loci (5). In addition to diverse loci, lncRNAs can give rise to tRNA-like molecules, encode small peptides, or are 
subject to RNA modification and editing events (5).
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DiVeRSiTY in lncRnA LOCi AnD 
eXpeRiMenTAL STRATegieS TO 
eXpLORe THeM

The genomic Landscape of lncRnA Loci
Origins for lncRNAs within the Genome
With the lncRNA field still being in its infancy, novel lncRNAs are 
detected in human cells and tissues on a regular basis, resulting 
in several thousand predicted human lncRNAs to date (8, 31, 32). 
Studies focusing on the complexity within lncRNA loci revealed 
up to 40 different isoforms for the lncRNA PCBP1-AS1, with an 
average of 2.3–3.9 different isoforms per locus, accentuating the 
necessity to complement the functional analysis of an lncRNA 
with a thorough characterization of its gene locus (8, 9, 33). 
Scattered all over the genome, lncRNA genes can be found far 
away from other annotated genes, or lncRNAs can emerge in the 

opposite direction of a neighboring gene locus (divergent). In 
addition, several lncRNAs were found to reside within an intron 
(intronic) or being the antisense transcript of a protein-coding 
gene, thus sharing the same gene locus (see Figure 1) (34).

Expanding the Picture—Translated lncRNAs and 
Hosts for ncRNAs
In addition to being part of another transcriptional unit, 
lncRNAs themselves can harbor protein-coding genes or other 
ncRNAs such as circular RNAs, tRNAs, miRNAs, and snoRNAs 
(8, 35–39). A prime example for this complexity is the lncRNA 
GAS5, which hosts 10 C/D box snoRNAs, five of which can be 
further processed to piRNAs (40, 41).

Despite their classification as long “non-coding” RNAs, sev-
eral studies showed that lncRNAs can be translated into small 
peptides and are associated with ribosomes, further increasing 
the complexity within lncRNA loci (14, 42, 43). In addition, 
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mRNAs can harbor regulatory RNA functions such as miRNA 
sponges, transcription elongation, or translational control (12, 13, 
16). One of the earliest observations of these bifunctional RNAs is 
that both SRA1 and its protein product SRAP can act as transcrip-
tional coactivators of nuclear receptors (11, 44). More recently, the 
peptide DWORF was identified in the lncRNA LOC100507537, 
and many additional putative peptides are predicted to arise from 
lncRNAs (15, 42, 43). On the other hand, Bánfai et al. correlated 
tandem mass spectrometry data with RNA sequencing (RNA-
seq) data (both generated in two different cell lines by ENCODE) 
and found over 90% of GENCODE lncRNAs to be unlikely to 
encode a peptide. This is in accordance to a similar approach by 
Gascoigne et al., suggesting that the majority of lncRNAs likely 
is truly non-coding (45, 46). Thus, experimental validation of 
a bioinformatically predicted small peptide is needed to verify 
translation, stability, and functional relevance.

Front to Back—Diversity Originating in 
lncRnA ends
Diversity within a lncRNA locus is not solely reflected by 
overlapping or embedded transcripts within a lncRNA but 
also the transcription initiation and termination sites can vary. 
Correspondingly, almost two different 3′ ends can be found for 
each transcriptional start of a given lncRNA (47, 48). One cause 
for alternative 3′ ends is alternative cleavage and polyadenyla-
tion (APA). Roughly, 70% of human and mouse genes undergo 
APA, and many lncRNAs exhibit alternative polyadenylation sites 
upstream of the most 3′ exon, whereas for mRNAs, alternative 
polyadenylation sites are often located within the last exon (49, 
50). Interestingly, 15–45% of the conserved elements in lncRNAs 
are located behind the first polyadenylation site, suggesting a 
switch in lncRNA function regulated by APA (49). Thus, it is 
not surprising that lncRNAs can be guided to different cellular 
compartments by alternative cleavage and polyadenylation as 
reported for CCAT-1 (51).

Besides alternative polyadenylation, 3′ processing of lncRNAs 
has been described, further expanding the potential diversity of 
lncRNA isoforms generated within the cell. As an example, the 
lncRNAs MALAT1 and NEAT1 feature a tRNA-like structure at 
their 3′ end, which is subject to RNAse P cleavage, resulting in 
a stable RNA triple-helix at the 3′ end of both lncRNAs, which 
serve as compensatory poly-A tails (52–54).

Similar to mRNAs, lncRNAs exploit the usage of alternative 
transcription start sites (55, 56). For the lncRNA Tsix, which is 
involved in the process of X-chromosome inactivation, two differ-
ent transcription start sites have been identified. Correspondingly, 
the gene locus of the lncRNA SOX2OT has at least two promoter 
regions (57, 58).

By using both alternative polyadenylation and transcrip-
tion start sites, a multiplicity of lncRNAs originating from the 
DM1-AS locus has been reported, which is even further increased 
through alternative splicing events (59).

Alternative Splicing of lncRnAs
Despite functioning in the regulation of RNA splicing, lncRNAs 
too can be alternatively spliced, which presumably alters their 
function within the cell (60, 61). One notable example is the 

lncRNA GNG12-AS1. Splicing of GNG12-AS1 results in a total of 
38 different isoforms with up to 10 exons. Furthermore, cohesin 
has been identified as a splice regulator of GNG12-AS1, evoking 
the idea of tight splicing regulation to be crucial for maintaining 
the isoform-specific functions of GNG12-AS1 (39). Another 
example for the complexity of the human transcriptome through 
alternative splicing can be found for the lncRNA HOTAIR, which 
can act as a molecular scaffold: the 5′ end of HOTAIR binds the 
polycomb repressive complex 2 (PRC2), and the 3′ end interacts 
with the histone demethylase LSD1 (62). By bringing these two 
chromatin modifying complexes in close proximity and guiding 
them to target chromatin, HOTAIR mediates epigenetic silencing 
of the HOXD locus, thus leading to increased cancer invasive-
ness and metastasis (19, 20). Through alternative splicing, the 
PRC2-binding domain of HOTAIR can be removed, potentially 
changing the functionality of this lncRNA.

Along these lines, another study focused on the transcriptome of 
hepatocellular carcinoma (HCC) patients. As a result, Zhang et al. 
found that in addition to differential expression, lncRNAs also dis-
played alternative splicing in HCC specimens compared to controls, 
suggesting a potential role for those splice variants as biomarkers 
and therapeutic targets for HCC (63). Taken together, alternative 
lncRNA splicing may alter the function of a given lncRNA.

Strategies and Drawbacks in Studying 
lncRnA Loci
Given the examples above, which illustrate multiple means of 
RNA isoform generation, we can assume that our current knowl-
edge of diversity within gene loci in general is far from being 
complete, and current annotations are not always exhaustive. 
Accordingly, comprehensive analysis of gene loci might in many 
cases be necessary to enable accurate functional and mechanistic 
investigation of the resulting isoforms. Below, we will discuss 
approaches to identify expressed lncRNA isoforms and further 
explore a given lncRNA locus.

The gold standard in elucidating lncRNA expression and 
isoform discovery on a large scale is RNA-seq. In general, this 
sensitive method requires significant bioinformatical expertise, 
especially when investigating lncRNA isoforms or alternative 
splicing [for a review, see Ref. (64, 65)]. Nevertheless, there 
are some useful tools that require only limited bioinformatical 
knowledge and are publicly available, which can be seen as a start-
ing point for isoform prediction. Employing genome browsers 
such as UCSC allows direct uploading of aligned RNA-seq data 
from the cell or tissue type of interest. This enables locus-specific 
mapping and comparison with potentially annotated lncRNA 
isoforms or publically available histone mark occupancy data 
as well as further expression tracks to support predictions of 
lncRNA isoforms from genomic areas devoid of any annota-
tion (66). When inspecting RNA-seq reads, one should keep in 
mind that many lncRNAs are rather low expressed and exhibit a 
tissue-specific expression pattern, so adequate sequencing depth 
is required for isoform analysis (8, 9). Attention should also be 
attributed to the employed library preparation technique. Using 
oligo-dT-based enrichment strategies will result in loss of the 
non-polyadenylated lncRNA population within the transcrip-
tome. Usage of non-poly-A selective library preparation methods 
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can circumvent this problem, but at the cost of sequencing depth 
and the requirement for additional means of rRNA removal 
(67). Furthermore, strand-specific library preparation protocols 
offer the possibility to distinguish between sense and antisense 
transcripts (68).

Even though RNA-seq is very sensitive and bioinformatical 
tools are constantly improving, the experimental validation of 
potential isoforms employing methods such as northern blot 
or rapid amplification of cDNA ends (RACE) is still required to 
complement the bioinformatic predictions. With RACE, the RNA 
ends can be deciphered; however, most approaches utilize a 3′ 
poly-A tail, circumventing the detection of non-polyadenylated 
transcripts (69). For 5′ RACE, protocols exploiting the 5′ cap have 
been established, ensuring only detection of intact transcripts 
rather than also picking up potential degradation products (70). 
Identification of uncapped transcripts on the other hand requires 
classic 5′ RACE approaches, which might result in an overestima-
tion of isoforms and transcription start sites (70). Supplementing 
RACE, cap analysis gene expression (CAGE) may unravel the 5′ 
end of capped RNAs, and recent modifications to the original 
protocol such as nanoCAGE or nAnT-iCAGE have been devel-
oped to work with minimal starting material and exclude bias 
from PCR amplification or tag cleavage (71, 72). Before perform-
ing own CAGE analysis, the recently published FANTOM5 data 
set can be mined for the occurrence of 5′ start sites for a given 
locus (73).

Once a pool of potential isoforms has been established, 
northern blots can be used to verify their presence and predicted 
length (74). Moreover, the abundance of approved isoforms can 
be determined by (q)RT-PCR using isoform-specific primer sets 
(75). Overall, none of the mentioned techniques alone might 
be sufficient for verification and mapping of multiple isoforms 
because each technique not only has certain strengths but also has 

weaknesses. However, using these methods as complementary 
approaches and compiling insights from all analyses may allow 
isoform prediction as well as isoform verification.

COnCLUDing ReMARKS

With new lncRNAs being continuously identified, this exciting 
research field is rapidly growing. In the hunt for new functions 
and mechanisms, close attention has to be paid to the wealth 
of lncRNA isoforms and their potential to being processed to 
other ncRNAs or translated into small peptides to discover new 
facets of lncRNAs. Recently, the presence of lncRNA modifica-
tions and lncRNA editing has been reported and associated 
with structural and functional changes, increasing the variety of 
lncRNAs (52, 53, 76–78). For example, m6A on position 2,577 
of MALAT1 was found to alter its secondary structure, resulting 
in tighter binding of heterogeneous nuclear ribonucleoprotein 
C (77, 78).

Within this article, we highlighted the complexity of lncRNA 
isoform generation and outlined approaches for lncRNA isoform 
detection and their drawbacks, which should be rather seen as 
impulses than an exhausting discussion and motivate researchers 
to move forward into this very intriguing and challenging field 
of study.
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