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Interface dermatitis is a histopathological pattern mirroring a distinct cytotoxic immune
response shared by a number of clinically diverse inflammatory skin diseases amongst
which lichen planus and cutaneous lupus erythematosus are considered prototypic.
Interface dermatitis is characterized by pronounced cytotoxic immune cell infiltration and
necroptotic keratinocytes at the dermoepidermal junction. The initial inflammatory reaction
is established by cytotoxic immune cells that express CXC chemokine receptor 3 and
lesional keratinocytes that produce corresponding ligands, CXC motif ligands 9/10/11,
recruiting the effector cells to the site of inflammation. During the resulting anti-epithelial
attack, endogenous immune complexes and nucleic acids are released from perishing
keratinocytes, which are then perceived by the innate immune system as danger signals.
Keratinocytes express a distinct signature of pattern recognition receptors and binding of
endogenous nucleic acid motifs to these receptors results in interferon-mediated immune
responses and further enhancement of CXC chemokine receptor 3 ligand production. In
this perspective article, we will discuss the role of innate nucleic acid sensing as a common
mechanism in the perpetuation of clinically heterogeneous diseases featuring interface
dermatitis based on own data and a review of the literature. Furthermore, we will introduce
a keratinocyte-specific in vitro model of interface dermatitis as follows: Stimulation of
human keratinocytes with endogenous nucleic acids alone and in combination with
interferon gamma leads to pronounced production of distinct cytokines, which are
essential in the pathogenesis of interface dermatitis. This experimental approach bears
the capability to investigate potential therapeutics in this group of diseases with unmet
medical need.

Keywords: interface dermatitis/lichenoid tissue reaction, nucleic acid sensing, damage associated molecular
patterns (DAMPs), type I immunity, lupus erythematosus, lichen planus, dermatomyositis, in vitro model
org January 2021 | Volume 11 | Article 6225111

https://www.frontiersin.org/articles/10.3389/fimmu.2020.622511/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.622511/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.622511/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.622511/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.622511/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Christine.Braegelmann@ukbonn.de
https://doi.org/10.3389/fimmu.2020.622511
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.622511
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.622511&domain=pdf&date_stamp=2021-01-11


Braegelmann et al. Nucleic Acid Sensing in Interface Dermatitis
INTRODUCTION

Interface dermatitis (ID), also referred to as lichenoid tissue
reaction, describes a histopathological pattern defined by
morphological anomalies of the epidermal basal cell layer
characterized by perishing keratinocytes labeled vacuolar
or hydropic colloid bodies. Anti-epithelial activity of
autoreactive cytotoxic lymphocytes is causative (1). The
distinct pattern is observed in clinically heterogeneous skin
diseases including autoimmune skin disorders [lichen planus
(LP), lichen sclerosus (LS), cutaneous lupus erythematosus
(CLE), dermatomyositis (DM)] and immunologic reactions
against viruses, drugs and specific tumors (“lichenoid”
keratosis) (2, 3). In 1995, for the first time, Fäh et al. detected
MxA expression not only in virally infected tissue but also in
dermatoses featuring ID (4). These findings are explained by
MxA expression being directly induced by type-I and type-III
IFNs (5). Today, it is accepted that activation of the interferon
system resulting in a cellular immune response is a pathogenic
key feature of the histologic “look-alikes” sharing ID (1).

Amongst the autoimmune skin disorders featuring ID, LP,
and CLE are considered prototypic (6): LP may affect the skin
including its appendages and both oral and genital mucosa (7).
Classical LP presents with violaceous papules generally
accompanied by extensive pruritus. When affecting the nails,
thinning, scarring, and even complete loss of the nail is possible.
Lichen planopilaris affecting the hair follicles may cause scarring
and permanent baldness. Affected mucosa usually presents as
erosive (8). The clinical spectrum of lupus erythematosus is
broad ranging from systemic manifestations [systemic lupus
erythematosus (SLE)] to manifestations solely affecting the
skin. Cutaneous lupus erythematosus (CLE) may present itself
as one symptom of SLE or may occur as an isolated skin disease
(9, 10). CLE manifestation can be further subdivided into
four main subsets (acute, subacute, intermittent, or chronic).
Acute CLE may present either with a localized facial
indurated erythematous lesion (malar rash) or with a
widespread erythematous maculopapular rash. Subacute
CLE is characterized by either annular/polycyclic or by
papulosquamous skin lesions. Intermittent CLE shows non-
scaling and non-scarring skin lesions. The last subset is
chronic CLE which may be further subdivided into chronic
disco id lupus erythematosus , ch i lb la in lupus and
lupus erythematosus profundus. Chronic discoid lupus
Abbreviations: AIM2, Absent In Melanoma 2; cGAS, Cyclic GMP-AMP synthase;
CLE, Cutaneous lupus erythematosus; DAMP, Damage associated molecular
patterns; DM, Dermatomyositis; ds, double stranded; eNA, endogenous nucleic
acids; ID, Interface dermatitis; IFI16, Gamma-interferon-inducible protein 16;
IFNa, Interferon alpha; IFNb, Interferon beta; IFNy, Interferon gamma; IFNk,
Interferon kappa; IFN l, Interferon lambda; IRF1/2/3, Interferon Regulatory
Factor 1/2/3; ISREs, Interferon-sensitive response elements; LGP2, (Laboratory
of Genetics and Physiology 2); LP, Lichen planus; LS, Lichen sclerosus; MDA5,
Melanoma differentiation-associated protein 5; MxA, MX Dynamin Like GTPase
A; PAMP, Pathogen associated molecular pattern; pDC, plasmacytoid dendritic
cell; PRR, Pattern recognition receptors; RLR, RIG-I-like receptors; SLE, Systemic
lupus erythematosus; ss, single stranded; STING, Stimulator of IFN genes; TBK1,
TANK-binding kinase 1; TLR, Toll Like Receptor; ZBP1, Z-DNA Binding
Protein 1.

Frontiers in Immunology | www.frontiersin.org 2
erythematosus constitutes the largest group and features
scarring erythrosquamous plaques in a disc-like shape.
Chilblain lupus is a rare acral variant of chronic CLE whereas
lupus erythematosus profundus affects the subcutaneous fat (11).

Despite clinical heterogeneity and although the initial
stimulus may differ between diseases featuring ID, final
common path is a cytotoxic anti-epithelial directed attack by
autoreactive T lymphocytes (12–14) that are recruited to the site
of inflammation by keratinocytes producing large amounts of
C-X-C Motif Chemokine Ligands 9/10/11 (CXCL9/10/11) (15).

We herein summarize etiopathological mechanisms involved
in ID and particularly outline the role of innate nucleic acid
sensing in keratinocytes as a hallmark of perpetuation of the
proceeding “pro-inflammatory vicious circle”. We, furthermore,
present a human in vitro model that functions as a tool to
evaluate potential therapeutic interventions and thus facilitate
prediction of therapeutic response to novel treatment strategies
in diseases featuring ID.
INTERFACE DERMATITIS—THE
PATHOGENIC BACKGROUND

Interferon Signaling and Cellular Response
in Interface Dermatitis
A multitude of genes is differentially expressed similarly in both
LP and CLE skin when compared to healthy skin. In particular,
distinct associations have been described for genes concerning
interferon signaling as well as associated downstream cascades
(16–18). The type-I [IFNalpha(a)/beta(b)/kappa(k)] (1, 19–21)
and type-III interferon system [IFNlambda(l)] (22) do not only
participate in antiviral immune defense, but also play an
important pathophysiological role in ID. Particularly, they are
expressed by respective lesional keratinocytes. Via autocrine
loops, IFNs bind to their corresponding receptor on
keratinocytes and unleash pro-inflammatory downstream
cascades via activation of the JAK-STAT pathway (23–25).
Finally, inflamed keratinocytes express CXCL9 (22), CXCL10
(26, 27) and CXCL11 (28). The corresponding CXCR3 receptors
are expressed on activated pDCs (29), T cells [Th1-type CD4+ T
cells (30) and effector CD8+ T cells (31–33)] and macrophages
(34, 35). Hereby attracted pDCs contribute to the inflammation
via further type-I interferon production (36, 37) and Th1
lymphocytes create a specific inflammatory milieu via secretion
of distinct cytokines. T cells isolated from lesional skin of LP and
CLE patients revealed high frequency of IFNy (IFN gamma) and
TNFa, two key cytokines of Th1 lymphocytes (16). The type-II
interferon, IFNy, sparks downstream cascades which partly
overlap with those of type-I interferons (38): It induces
CXCR3 ligands and the differentiation of naïve T cells into
Th1 cells and it activates macrophages (39). In response to
stimulation with IFNy and TLR (Toll Like Receptor) ligands
macrophages undergo classical “M1” activation (40): This pro-
inflammatory M1 phenotype is prevalently seen in rheumatic
diseases (41) and has specifically been described in lichen planus
(42) and lupus skin (43). Cytotoxic lymphocytes represent the
January 2021 | Volume 11 | Article 622511
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last group of CXCR3 receptor carrying immune cells and execute
their anti-epidermal attack via cytotoxic granules and the
perforine/granzyme pathway (44). Apart from upregulation of
genes mediating direct cytotoxicity, enhanced expression of
markers of apoptosis (FASL) and necroptosis (RIP3) have been
detected in ID (16).

Nucleic Acid Sensing Induces Interferon
Response and Mediates Inflammasome
Activation as Well as Cell Death Cascades
Inflammatory cell death upon cytotoxic attack inevitably results in
release of intracellular components, amongst them are endogenous
nucleic acids (eNA). Nucleic acid sensing by the innate immune
system functions via pattern recognition receptors (PRRs), that are
activated by pathogen associated molecular patterns (PAMPs) or
host molecules (damage associated molecular patterns, DAMPs)
(45). Physiologically, PRRs enable sufficient immune response to
either an invading pathogen or damage of host cells (46, 47).
Sensing of self-RNA and self-DNA, however, also holds the
potential to contribute to autoimmunity (45, 48, 49). In ID, the
pro-inflammatory capacity of released nucleic acids is supposedly
supported by the cathelicidin LL37 which has been shown to be
overexpressed in CLE (50, 51), LP (52), and DM (53). Its complex
formation with nucleic acids has been proven to enable transport of
extracellular nucleic acid fragments into intracellular compartments
(54). Specifically, our working group has previously shown that
addition of LL37 enhances immunogenicity of nucleic acids in
keratinocytes in vitro (50). Key features of downstream signaling of
PRRs include induction of interferons (45, 46, 55) and
inflammasome activation (56) as well as programmed cell death
cascades (46).

The respective downstream mechanisms of important PRRs
are as follows:

AIM2 (Absent In Melanoma 2) activates the inflammasome
upon double stranded (ds) DNA sensing (57–59) which leads to
Caspase 1 cleavage and finally maturation of the pro-
inflammatory interleukins IL18 and IL1ß (60). Furthermore,
activated Caspase 1 cleaves Gasdermin D which executes
pyroptosis via pore formation in affected cell membranes (61).
AIM2 is upregulated in skin samples of lichen planus patients
(62). Inflammasome activity is enhanced in lupus erythematosus
(63) and the inflammasome-activated cytokine IL18 is highly
upregulated in the epidermis of CLE patients (64). The discovery
of its dysregulation in autoimmunity suggests inhibition of
inflammasome components as an interesting therapeutic
approach, as postulated by Kahlenberg et al. (65).

Upon DNA binding to cGAS (Cyclic GMP-AMP synthase) an
IFN response is unleashed (66): CGAS activates STING (Stimulator
of IFN genes) (67, 68) which, in turn, interacts with TBK1 (TANK-
binding kinase) resulting in phosphorylation of IRF3 (Interferon
Regulatory Factor) and finally type-I interferon gene transcription
(69). Furthermore, the cGAS-STING pathway has multiple
functions in mediating cell death that are not fully elucidated, yet
(46). Its activation by self-DNA is described as an important
mechanism in autoimmunity which might constitute another
promising target for therapeutic intervention (49).
Frontiers in Immunology | www.frontiersin.org 3
IFI16 (Gamma-interferon-inducible protein 16) is a further
key DNA sensor in human keratinocytes. It cooperates with
cGAS in the activation of STING (70). Excessive IFI16-
dependent production of IFN-I is considered an important
mediator of autoimmune inflammation (71, 72) and has
specifically been shown to contribute to SLE (73) and to
cytokine induction in keratinocytes (74). Apart from STING-
dependent type-I IFN production, IFI16 enables direct
inflammasome activation (75, 76).

ZBP1 (Z-DNA Binding Protein) binds to ds nucleic acids
when presenting in the unusual Z‐conformation (77). Activated
ZBP1 recruits TBK1 and IRF3 (78) and triggers RIP3-dependent
necroptosis (79) as well as NLRP3-dependent inflammasome
activation (80). Specifically, aberrant sensing of endogenous
nucleic acids by ZBP1 has been shown to induce inflammation
in murine skin (81). Guo et al. have shown that ZBP1 activation
also induces necroptosis in human cells (82) and sera from some
SLE patients exhibit anti‐Z‐DNA autoantibodies (83). Thus,
ZBP1 has been suggested as a potential therapeutic target that
requires further research (84).

RIG-I-like receptors (RLRs) comprise three important
sensors: RIG-I, MDA5 (Melanoma differentiation-associated
protein), and LGP2 (Laboratory of Genetics and Physiology 2)
(85) with the latter being considered a regulator of the others.
RIG-I and MDA5 experience conformational changes upon
cytosolic RNA sensing that result in exposure of their CARD
domain and consecutive activation of IRF3 via phosphorylation
of TBK1 and NFkB activation (85, 86). RLRs are also implicated
in apoptosis and RIP3-mediated necroptosis (87, 88). Human
keratinocytes constitutively express RIG-I and MDA5 (89).
Challenge with IFNy or TNFa has induced RIG-I in a human
keratinocyte cell line (90) and both RIG-I and MDA5 expression
is increased in psoriatic skin (90). A specific single nucleotide
polymorphism in the gene encoding MDA5 has been identified
in autoimmune diseases, including SLE (91, 92).

Nucleic-acid-sensing TLRs are mainly expressed in the
endosomes (93) and comprise TLR3 [recognizes dsRNA (94)],
TLR7 and TLR8 [recognize ssRNA (95)] and TLR9 [recognizes
unmethylated CpG-containing DNA motifs (96)]. Activation of
these TLRs, with the exception of TLR3, incorporates MyD88 to
the respective receptor complex which subsequently interacts
with TRAF6 leading to nuclear translocation of NFkB (97) and
type-I IFN induction (98). TLR3 alternatively signals via the
adaptor TRIF which activates TBK1 and subsequently leads to
type-I IFN induction via phosphorylation of IRF3 (97).
Furthermore, TLR3 signaling can activate cell death cascades
by engaging RIP1 and RIP3 (99). Keratinocytes, constitutively
express TLR 3 and 9 and their stimulation with corresponding
ligands results in induction of TNFa and type-I IFN as well as
ICAM1 (100). Interestingly, in oral LP, induction of TLR9 has
been described (101). Although keratinocytes do not
constitutively express TLR7 or 8, several case reports describe
individuals who have developed LP and LS upon use of
Imiquimod, an agonist of TLR7/8 (102–104) which is possibly
explained by keratinocytes expressing TLR7 under specific
conditions (105).
January 2021 | Volume 11 | Article 622511
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AN IN VITRO MODEL TO STUDY
INTERFACE DERMATITIS

Background
In 2016, our working group has first established an in vitro
model that mirrors our understanding of ID as being fueled
by endogenous nucleic acids (106) and further characterized it
within a study from 2017 (50). Stimulation with eNA results in
a pronounced expression of typical ID-associated cytokines
within different keratinocyte models. IFNy, mainly produced
by lymphocytes, is known to play a pivotal role in the
pathogenesis of diseases featuring ID (107–109), and has
been shown to induce typical morphological changes in
human epidermis equivalents, in vitro (110). Herein, we aim to
deliver an in-depth analysis of differentially regulated genes in
our ID model and furthermore present synergistic effects
of endogenous nucleic acids in addition to IFNy on
human keratinocytes.
Results
Cytosolic Localization of DNA Motifs
in Interface Dermatitis Keratinocytes
DNA motifs in extranuclear compartments were significantly
more present in ID than in healthy control samples (Figure 1A).

CXCL10 and MxA are Expressed by
Keratinocytes in Interface Dermatitis and the
Majority of Infiltrating Immune Cells Express
CXCR3 Receptors
Figure 1A depicts findings within a LP skin specimen that are
representative for all examined samples: MxA (MX Dynamin Like
GTPase A) and CXCL10 are expressed by keratinocytes and the
majority of infiltrating immune cells carries CXCR3 receptors.

Stimulation With Endogenous Nucleic Acids
Induces a Molecular Signature in Keratinocytes
Resembling Interface Dermatitis
In normal human epidermal keratinocytes (HEK), stimulation with
eNA significantly induces expression of genes encoding key drivers
(111–117) of innate inflammatory pathways (IRFs, IFNs, STAT2,
RELA, NFkB, CXCL9/10/11, Mx1, OASL), inflammasome
activation (AIM2), cell death (RIP3) and factors mediating
interaction between keratinocytes and T cells (ICAM1) as well as
the adaptive immune system (BLyS) (Figure 2A).

Stimulation With IFNy and Endogenous Nucleic
Acids Induce CXCL10 and MxA Expression
Stimulation with IFNy or eNA respectively leads to significant
expression of CXCL10 in HaCaT cells. Combined administration of
IFNy and eNA results in an over-additive effect concerning CXCL10
release (Figure 2B). Strong CXCL10 expression upon concomitant
stimulation could be confirmed in normal human epidermal
keratinocytes (HEK, Figure 2C) and in reconstructed human
epidermis equivalents (epiCS, Figure 2D). Furthermore, MxA
Frontiers in Immunology | www.frontiersin.org 4
expression is induced upon combined stimulation in epiCS whose
staining resembles the pattern detected in ID (compare Figure 1A).
Concomitant Stimulation with IFNy and Endogenous
Nucleic Acids Has a Direct Cytotoxic Effect on
Keratinocytes
Cytotoxic effects in our approach were not significant upon
stimulation with eNA or IFNy alone. Upon concomitant
stimulation, however, the ability to reduce MTT reagent into
its insoluble formazan was significantly impaired in both HaCaT
(Figure 2B) and HEK (Figure 2C) serving as a marker for
cell viability.
Methods
Please find a description of applied methods as a supplement to
this main text.
DISCUSSION

Our working group has previously described extranuclear DNA
motifs being significantly more present in keratinocytes of CLE
patients than in healthy skin (50). We herein present analogous
findings in LP patients. In vitro, stimulation with endogenous
nucleic acids induces a gene expression pattern in human
keratinocytes which resembles key features of ID: We present
IFNl induction upon stimulation with eNA in keratinocytes,
which is known to be significantly elevated in skin diseases
featuring ID but neither in healthy controls nor other
inflammatory skin diseases (22). The type-I IFNs, IFNb and
IFNk, are both induced in keratinocytes upon stimulation with
eNA. IFNb has been described to be expressed in basal epidermal
layers of LP (118) skin. IFNk has been shown to be highly
expressed in CLE (19) and LP skin but not in other inflammatory
dermatoses (119) and is acknowledged to be a key regulator of
IFN response in keratinocytes. Stimulation with eNA did not
upregulate expression of IFNa. Although it has been detected in
keratinocytes of the whole epidermis in LP skin (118), pDCs are
considered to be the main producers of IFNa in vivo (17, 36,
120). Via autocrine loops, all type-I IFNs bind to IFNAR (23, 24,
121) and type-III IFNs signal via their receptor IFNLR (24).
Activation of both receptors causes phosphorylation of JAK1 and
TYK2 (25). Receptor bound STATs (STAT1 and STAT2) are
subsequently phosphorylated leading to heterodimerization and
formation of ISGF3 together with IRF9 (122). This complex
translocates to the nucleus and induces expression of genes that
exhibit specific ISREs (Interferon-sensitive response elements) to
which the complex binds. Amongst such genes are OAS, MxA
and multiple transcription factors, including IRFs (24, 38) which
are induced upon eNA-stimulation in our experiments. While
IFNAR is expressed on nearly all cell types and IFNLR is mainly
restricted to epithelial cells, their downstream signaling is quite
congruent (24). Type-I IFN dependency (24), however, is
described for ISGF3-like complex formation, which consists of
January 2021 | Volume 11 | Article 622511
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IRF9 and STAT2 homodimers and can reinstate inflammatory
cascades in the absence of STAT1 (123).

In our approach, type-II IFN was not induced in keratinocytes
upon eNA-stimulation, which is in accordance with the view that
the pronounced presence of type-II IFN (IFNy) in ID skin derives
from other sources than keratinocytes. Specifically, it is
predominantly produced by natural killer cells, group 1 innate
lymphoid cells, yd T cells and CD8+ cytotoxic T cells as well as
CD4+ Th1 cells [as reviewed in (124)]. Its receptor (IFNyR) signals
Frontiers in Immunology | www.frontiersin.org 5
via the JAK1/JAK2 and STAT1/STAT2 pathway (107, 125). Shao
et al. describe that, in vitro, priming of keratinocytes with type-I
IFNs, and to an even greater extent type-II IFNs, increases their
susceptibility to MHC I-dependent, T-cell mediated cytotoxicity
(107). Knock out of JAK2 or STAT1 inhibited this induction of
MHC I in keratinocytes upon IFNy-stimulation whereas only
minimal suppression was detected in JAK1 or STAT2 KO
cells (107). The potential of human keratinocytes as
nonprofessional antigen-presenting cells has recently been further
A

B

C

FIGURE 1 | (A) Representative histological findings in interface dermatitis and healthy skin. Representative findings of DNA, MxA, CXCL10, and CXCR3
immunostaining in healthy skin and interface dermatitis (lichen planus). Original magnification x200 (x400 concerning DNA). Black arrows highlight extranuclear
localization of DNA motifs. Boxes highlight digitally enlarged aspects. (B) Schematic presentation of assumed etiopathological mechanisms of interface dermatitis (as
reviewed above). ID is characterized by a Th1 cytokine milieu in which endogenous nucleic acids activate PRRs. Downstream signaling unleashes cell death
cascades (cdc) and leads to production of type-I and -III IFNs and pro-inflammatory cytokines as well as inflammasome activation. Interferon-inducible chemokines
(produced by keratinocytes upon autocrine IFN-stimulation) recruit CXCR3 + effector cells into lesional skin, which induce keratinocyte perishing and thus release of
pro-inflammatory cell components. (C) Schematic presentation of our in vitro model of interface dermatitis. Nucleic acids extracted from keratinocytes and IFNy are
administered to different keratinocyte models (HaCaT, HEK, epiCS) as an ID-like stimulus. Genetic modification of the cells of interest can be made prior to
stimulation in order to evaluate specific components of ID pathogenesis. Furthermore, the effect of innovative pharmaceuticals on ID-like stimulation can be analyzed.
Super-/undernatants and the cellular compartment are available to read out methods.
January 2021 | Volume 11 | Article 622511
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underlined by Orlik et al. who have demonstrated the capacity of
IFNy-pretreated keratinocytes to activate co-cultured naïve T-cells
(126). ICAM1 is a further mediator supporting interaction between
T lymphocytes and keratinocytes that is inducible by IFNy (127)
and is overexpressed in diseases featuring ID (128). Our data, in
turn, shows that ICAM1 is also induced upon stimulation with
eNA. Furthermore, cell death cannot only be induced via activation
of infiltrating immune cells but also via induction of keratinocytic
apoptosis (cleaved caspase 3) and necroptosis (RIP3) as both factors
have been shown to be overexpressed in keratinocytes of LP and
CLE patients (16, 107). These markers can be induced by IFNy
(107) and although stimulation with eNAs alone does not result in a
significant reduction of cell viability as measured by vitality assay,
cell death cascades are activated upon stimulation with eNA that
mimic the ones described in ID as we detected induction of RIP3
and the inflammasome component AIM2. Furthermore, significant
cytotoxicity is detectable upon concomitant stimulation of
keratinocytes with eNA and IFNy. A cross-talk by keratinocytes
to the adaptive immune system is mediated by BLyS, a B
lymphocyte survival factor (129) which has been described to be
overexpressed in CLE and LP (130). We herein show that it is
induced upon stimulation with eNA. Another mediator implicated
Frontiers in Immunology | www.frontiersin.org 6
in immune and inflammatory responses is NFkB that has been
shown to be among the top regulated genes shared by LP and CLE
(16). This crucial transcriptional factor family comprises NFkB1,
NFkB2, RELA, RELB, and C-REL (131): Stimulation with eNA
induces this important mediator in keratinocytes. As reviewed
above, expression of CXCR3 ligands by lesional keratinocytes is
decisive for attraction of effector cytotoxic T cells. CXCL10 (26, 27)
and CXCL11 (28) have been shown to be inducible by type-I
interferons. CXCL9, on the other hand, has repetitively been
described as truly dependent on IFNy (26, 132). Our group,
however, has demonstrated CXCL9 induction in keratinocytes
upon stimulation with the type-I interferon IFNk earlier (22).
Furthermore, a recent study has detected CXCL9 expression in
keratinocytes as a result of inflammasome activation (133). As
outlined above, inflammasome activation is another major pathway
upon sensing of nucleic acids that might explain expression of all
three CXCR3 ligands by stimulation with eNA in the absence of
externally administered IFNy.

Stimulation of keratinocytes with endogenous nucleic acids
induces key mediators of ID. According to the mechanisms
discussed above, we are convinced that addition of IFNy to the
interface dermatitis model promotes an even more realistic
A B

D

C

FIGURE 2 | (A) Expression of upregulated genes involved in ID pathogenesis in HEK cells stimulated with eNA (12,5 µg/ml) for 24 h compared to HEK cells solely
exposed to medium (control), (n = 4, fold change > 2, p < 0.01, Partek® Flow®). (B) CXCL10 levels within the supernatant of HaCaT cells stimulated with eNA
(5 µg/ml) or IFNy (1 x 10^3 U/ml) or the combination of both for 20 h compared to HaCaT cells solely exposed to medium (control), MTT assay executed on the cells
corresponding with the respective supernatant, mean of controls defined as 100%. Given are respective means with standard deviations indicated by error bars
(n = 4, * indicates significance (p < 0.05), Mann Whitney test). (C) CXCL10 levels within the supernatant of HEK cells stimulated with the combination of eNA
(5 µg/ml) and IFNy (1 x 10^3 U/ml) for 6.5 h compared to HEK cells solely exposed to medium (control), MTT assay executed on the cells corresponding with the
respective supernatant, mean of controls defined as 100%. Given are respective means with standard deviations indicated by error bars (n = 4, * indicates
significance (p < 0.05), Mann Whitney test). (D) Representative findings in 3D epidermis equivalents upon control (medium) settings and stimulation with eNA
(5 µg/ml) and IFNy (1 x 10^3 U/ml) for 22 h. Hematoxylin and eosin stain, MxA, CXCL10. Original magnification ×400. (n = 3).
January 2021 | Volume 11 | Article 622511
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imitation of in vivo scenarios. Concomitant stimulation of
keratinocytes with endogenous nucleic acids and IFNy not
only promoted direct cytotoxicity but also caused an
overadditive effect on CXCL10 level elevation.
OUTLOOK

Lichen planus as well as cutaneous lupus erythematosus go along
with a high disease burden and are considered therapeutically
challenging because current treatments often fail to achieve
disease control (134–136). We are convinced that preclinical
studies and clinical trials evaluating innovative future therapeutic
approaches should not focus on one particular condition but
rather on clusters of diseases featuring common immune
response patterns. Our working group has recently successfully
employed the here described model to elucidate the influence of
JAK inhibition on keratinocytes in an interface-dermatitis-like
context (121). In the herein described refined version of the
model IFNy mimics the presence of a T-helper cell mediated
cytokine milieu and together with eNA synergistically intensifies
the resulting pro-inflammatory signature. Our model represents
pathomechanistic key features of ID and thus enables evaluation
of potential future pharmaceuticals. It might aid in predicting
therapeutic response to novel treatment strategies in
therapeutically challenging diseases featuring ID.
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