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Platelets have a crucial function in maintaining hemostasis. However, beyond their role

in coagulation and thrombus formation, platelets have been implicated to affect various

pathophysiological conditions such as infectious diseases, autoimmune disorders, and

cancer. It is well-established that platelets aid local cancer growth by providing growth

factors or contributing to cancer angiogenesis. In addition, they promote metastasis,

among others by facilitation of tumor cell-extravasation and epithelial-to-mesenchymal-

like transition as well as protecting metastasizing cancer cells from immunosurveillance.

A variety of membrane-bound and soluble platelet-derived factors are involved in these

processes, and many aspects of platelet biology in both health and disease are regulated

by platelet-associated metalloproteinases and their inhibitors. Platelets synthesize (i)

members of the matrix metalloproteinase (MMP) family and also inhibitors of MMPs

such as members of the “tissue inhibitor of metalloproteinases” (TIMP) family as well

as (ii) members of the “a disintegrin and metalloproteinase” (ADAM) family including

ADAM10. Notably, platelet-associated metalloproteinase activity not only influences

functions of platelets themselves: platelets can also induce expression and/or release

of metalloproteinases e.g., in leukocytes or cancer cells, and ADAMs are emerging as

important components by which platelets directly affect other cell types and function.

This review outlines the function of metalloproteinases in platelet biology with a focus on

ADAM10 and discusses the role of platelet-derived metalloproteinases in the interaction

of platelets with components of the immune system and/or cancer cells.
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INTRODUCTION

The main function of platelets in the healthy individual is maintenance of hemostasis, i.e.,
prevention of blood loss and protection of vascular integrity. However, the presence of platelets
can, under pathophysiological circumstances, be also unfavorable. Platelets are the main culprits
during arterial thrombosis causing tissue ischemia with widespread consequences for the affected
individual. Moreover, the presence of platelets is also exploited by cancers to aid both their
local progression as well as formation of metastasis. Cancer cells entering the blood stream are
rapidly surrounded/coated by platelets, leading to enhanced survival of circulating tumor cells
and facilitation of metastasis [reviewed in (1, 2)]. The underlying mechanisms are multifaceted
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and comprise, among others, supply of growth factors,
contribution to endothelial adhesion, and mediation of an
epithelial-to-mesenchymal-like transition (EMT-like) (3). This
is exemplified by studies in mice where metastasis-formation is
inhibited in the absence of platelets (4, 5). Additional depletion
of natural killer (NK) cells reverted the anti-metastatic effect
of thrombocytopenia, and it was assumed that coating platelets
provide mechanical shielding from NK cell attack (6). However,
recent evidence revealed the involvement of more complex
mechanisms such as conferring of a pseudo-self-phenotype
(7, 8). A variety of platelet-derived molecules are implicated
in these observations. Among them are members of the
metalloproteinase (MP) family such as matrix metalloproteinases
(MMPs). While the role of MMPs in platelets in the context of
cancer and immunity has been reviewed elsewhere (9), platelets
also express other MP family-members such as “a disintegrin
and metalloproteinase” (ADAM)s. Given the important role
of ADAMs in immunity (10) and cancer (11), the present
review highlights the relevance of platelet-derived ADAMs,
in particular ADAM10 (herein referred to as pADAMs and
pADAM10, respectively) for the role of platelets in cancer and
tumor immunology.

ADAMs IN PLATELETS

In humans, 24 ADAM genes including four pseudogenes have
been described which give rise to 20 Type-I transmembrane
proteins representing the functional members of the ADAM
family (excluding the ADAM-like soluble ADAMDEC-1
protease) (12–14). They share a common structure comprising
a signal peptide at the N-terminus followed by a prodomain,
the (catalytically active) metalloproteinase domain, a disintegrin
and a cysteine-rich domain, an EGF-like domain (except in
ADAM10 and ADAM17), the transmembrane domain and
a cytosplasmic tail at the C-terminus (12). Of note, only 12
ADAM-family members bear a catalytically active site in their
metalloproteinase domain, suggesting that ADAM proteins may
also exert non-proteolytic functions such as modulating cell-cell
interaction through their integrin-binding disintegrin domain
(12, 13). Of the proteolytically active ADAMs, ADAM10, and
ADAM17 have most extensively been investigated (12) ADAM10
and ADAM17 are vital in a plethora of biological processes,
and mice carrying a classical knockout of either protease
die during embryonic development (15, 16). Information
about the presence of ADAM-family members in platelets is
derived from analyses of the platelet-proteome. Studies of the
complete platelet-proteome by several investigators point to
the presence of pADAM9 and pADAM10 (17, 18), whereas
other groups did not detect any ADAM-family members
(19, 20). Platelet membrane enrichment techniques ultimately
confirmed the presence of pADAM9 and pADAM10 and
additionally lead to the identification of pADAM17 (21, 22).
Notably, pADAM10 is among the 40 most abundant membrane-
associated proteins at ∼2,000–4,000 molecules/platelet (22).
In addition, RNA-sequencing data revealed that platelets also
seem to carry significant amounts of ADAM9 and ADAM10
transcripts, which may serve as an additional pool for translation
e.g., upon platelet-activation (23). These data are corroborated

by mechanistic studies describing substrates of pADAM10
and pADAM17 in platelets and confirming the expression
of proteolytically active proteases. Mice with a platelet-specific
knockout of ADAM10 and/or an ADAM17 knockout confined to
the hematopoietic system have been generated (24). These mice
are viable, have normal platelet counts and represent an ideal
model to investigate the role of pADAMs under physiological
and pathophysiological circumstances. The function of pADAM9
in platelets, however, is less well-established. Classical ADAM9-
knockout mice display no apparent phenotypical changes
compared to wildtype mice, arguing against a major role of
ADAM9 under physiological circumstances (25). One in-vitro
study suggests that the disintegrin-domain of pADAM9 may
interact with tumor-cell expressed integrins such as αVβ3,
thereby mediating the recruitment of tumor cell-platelet
conjugates to collagen (26). Collagen induced platelet activation
itself was not dependent on ADAM9 (26). Along this line, studies
of the ADAM9-downregulating micro-RNA miR-126 in CD34+

derived platelet-like structures and in the megakaryoblastic
cell line MEG-01 confirmed ADAM9-mRNA expression, but
also did not identify a major role of pADAM9 in platelet
activation (27, 28). This is, as already stated above, in stark
contrast to pADAM10 and pADAM17, which play major roles
in platelet biology.

FUNCTION OF (p)ADAM10

For ADAM10, which is at the center of this review, over 40
different substrates have been described (29, 30). Many of these
are expressed on platelets. A comprehensive mass spectrometry-
based analysis of proteins in the supernatant of activated platelets
identified over 1,000 proteins, of which 69 are membrane
anchored and therefore potentially accessible to proteolytic
shedding by pADAM10 (31). Of these 69 proteins, shedding of
7 substrates was abrogated by ADAM17 inhibition (31), leaving
62 proteins to be potentially shed by pADAM10. We performed
a PubMed literature search for each of these 62 platelet-expressed
proteins to select for confirmed substrates of ADAM10. In
order to obtain an unbiased list of potential substrates we then
started with confirmed ADAM10 substrates (29, 30, 32–35)
and individual publications and performed a second PubMed
literature search to select for those proteins which are reportedly
expressed on platelets. Of note, we here summarize studies
deriving from different experimental strategies without applying
restrictions e.g., a certain abundance in mass spec studies. Using
this approach, we identified a total of 35 putative and 3 confirmed
substrates of pADAM10 on platelets (Table 1). The pADAM10
sheddome may still be larger and contain proteins that could
not be detected by the mass spectrometry-based techniques
employed. Future studies however will be indispensable to
validate whether and to which extent these putative substrates
are indeed cleaved by pADAM10 as compared to ADAM10 from
other sources or different sheddases.

Canonical Shedding Activity of pADAM10
pADAM10’s classical mode of action (canonical shedding)
is proteolytic cleavage of platelet-expressed substrates by
membrane-anchored pADAM10. As of yet, established, i.e.,
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TABLE 1 | Platelet-expressed ADAM10 substrates.

Substrate Gene

name

Expression

on platelets

ADAM10

substrate

Amyloid beta precursor

protein

APP (36, 37) (38, 39)

Amyloid like protein 2 APLP2 (31, 40) (41)

Axl AXL (42, 43) (44)

BRI2 ITM2B (17) (45)

Cadherin 10 CDH10 (46) (34)

Cadherin 6 CDH6 (46) (34)

CD147 BSG (47, 48) (49)

CD23 FCER2 (50, 51) (52)

CD40L CD40LG (31) (53, 54)

CD44 CD44 (17, 55) (56)

cMet MET (57) (58)

Collagen alpha-1(XI) chain COL11A1 (59) (34)

CXCL16 CXCL16 (60) (61)

Desmoglein-2 DSG2 (62) (63)

E-cadherin CDH1 (31, 64, 65) (66)

Epidermal Growth Factor EGF (31, 67, 68) (69)

FasL FASLG (70, 71) (72)

GPV* GP5 (31) (73)

GPVI* GP6 (31) (73, 74)

H(+)/Cl(-) exchange

transporter 3

CLCN3 (17, 22) (34)

IL-6 receptor IL6R (31) (75)

JAM-A F11R (76) (77)

Leucine-rich

repeat-containing

protein 4B

LRRC4B (78) (34)

Major prion protein (PrPC) PRNP (31, 79, 80) (81, 82)

Plexin-B2 PLXNB2 (17, 22) (34)

Protein tyrosine

phosphatase receptor

type F

PTPRF (31) (34)

Protocadherin-9 PCDH9 (31) (34)

RAGE RAGE (83) (84)

RANKL TNFSF11 (85, 86) (87)

Receptor-type

tyrosine-protein

phosphatase gamma

PTPRG (17, 22, 31) (34)

Receptor-type

tyrosine-protein

phosphatase kappa

PTPRK (31) (34, 88)

Semaphorin 4B SEMA4B (31) (34)

Semaphorin 4D SEMA4D (31, 89) (90)

Semaphorin-7A SEMA7A (17, 31) (34)

SLAMF5* CD84 (31) (91)

UL16 binding protein 2 ULBP2 (92) (93, 94)

VEGFR2 KDR (95) (96)

Vesicular

integral-membrane protein

VIP36

LMAN2 (17, 22) (34)

*confirmed pADAM10 substrates.

experimentally confirmed, substrates of pADAM10 substrates in
platelets primarily comprise molecules relevant for hemostasis
(Figure 1A). ADAM10 is the main sheddase of the glycoproteins
(GP)V (73) and GPVI (73, 97). GPVI is the collagen receptor
of platelets and responsible for collagen-induced platelet
activation (98), while GPV is part of the GPIb-IX-V complex,
which is responsible for platelet activation upon encounter
of vWF or upon binding of P-Selectin or αMβ2 expressed
on endothelial cells or on neutrophils, respectively (99).
ADAM10 activity is thus regulating key functions of platelet
biology, although the role of shedded GP-fragments is not
clear, neither under physiological conditions nor in disease
(30). Soluble GPVI fragments can be detected in the blood
(100) and a synthetic soluble GPVI fragment inhibited in vitro
and in vivo platelet activation upon exposure to collagen
(101). Of note, GPVI has been shown to promote metastasis
in a mouse model (102) and it would thus be interesting
to investigate how ADAM10 affects metastasis. Another
confirmed substrate of pADAM10 is signaling lymphocyte
activation molecule family member 5 (SLAMF5)/CD84,
the exact function of which in platelet biology is currently
unknown (91). No function of soluble SLAMF5/CD84 has been
detected yet. SLAMF5/CD84 displays homophilic interaction
and signals via EAT-2 and SAP (103). SLAMF5/CD84 in
platelets seems to promote platelet aggregation by homophilic
interaction (104), but Slamf5/Cd84−/− mice did not display
any phenotype regarding in vitro platelet activation and/or
impaired hemostasis in vivo (105). Moreover, platelets
express other known ADAM10 substrates which are not
yet experimentally confirmed to be shed by pADAM10. These
comprise molecules involved in signaling (PTPRF, PTPRK,
PTPRG), adhesion (E-cadherin, Cadherin 6/10, CD44) or
immunomodulation (CD40L, IL-6 receptor, RANKL, FasL,
ULBP2) (see Table 1).

Non-canonical Shedding Activity of
pADAM10
pADAM10 may also exert proteolytic activity beyond the
canonical shedding, i.e., shedding of platelet-derived substrates
by membrane bound pADAM10 which we here summarize as
non-canonical shedding of pADAM10. Interestingly, ADAM10
itself is subject to shedding by ADAM9 and ADAM15 (106,
107). Platelets express ADAM9, and analysis of the platelet
sheddome has detected soluble pADAM10 (spADAM10) thereby
further corroborating these results (31). Whether the soluble
form of ADAM10 is proteolytically active is still a matter
of debate (108), but clearly opens up a new channel for
effects of pADAM10. Analysis of the degradome of murine
soluble ADAM10 has been performed and suggested that
soluble ADAM10 is in fact biological active (109). Another
potential route of action might be cleavage of ADAM substrates
in trans, this is when substrate and enzyme are located on
different cells. While this is unusual for ADAM-proteases such
effects have been described for ADAM10 in the context of
Ephrin cleavage (110). In addition, platelets alike leukocytes and
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FIGURE 1 | Potential routes of action for pADAM10. (A) Canonical substrates of pADAM10 (see Table 1) not only comprise molecular players involved in platelet

function as exemplified by glycoproteins and SLAMF5 but also a plethora of immuoregulatory factors alike FasL and RANKL. (B) Non-canonical substrates of

pADAM10 on other cells have been suggested to comprise NKG2DL MICA/B, ULBP2, and ectodomain shedding thereof reportedly dampens NK antitumor reactivity.

Proteolytic cleavage of E-Cadherin (resulting in soluble E-Cadherin, sE-Cadherin) may inhibit NK effector functions. Cleavage of VE-Cadherin by pADAM10 may

interfere with endothelial junctions thereby facilitating tumor invasion. Moreover, immunomodulation may be mediated by pADAM10 shedding of FasL from the surface

of immune effector cells or shedding or RANKL e.g., from the surface of tumor cells. (C) Thus, pADAM10 may besides exerting proteolytic activity against substrates

within the same membrane (cis), mediate (i) cleavage in trans (in the membrane of other cellular compounds). Alternatively, pADAM10 may be released as (ii) soluble

form (spADAM10), (iii) contained in extracellular vesicles, or (iv) integrate in the membrane of the substrate-expressing cell.

tumor cells can release extracellular vesicles (EVs), including
exosomes and microvesicles/microparticles, which may be
derived from resting as well as activated platelets (111, 112).
Interestingly, the main source of EVs found in the plasma
are in fact platelets and megakaryocytes (113, 114). Platelet-
EVs are increasingly recognized as modulators of immunologic
processes (115, 116). In the context of rheumatoid arthritis,
platelet-EVs have been found to increase joint inflammation by
eliciting an immune response from synovial fibroblasts (115).
In addition, recent evidence indicates that platelet-EVs shape
the function of regulatory T cells upon P-selectin dependent
binding by yet not fully defined mechanisms (116). Of note,
ADAM10 may reportedly be active in EVs, thereby being
able to exert protease activity (117). Thus, it is tempting to
speculate, that platelet-EVs carry active pADAM10 and act on
cells other than platelets themselves. Another means to exert
shedding on other cells could be facilitated by integration of
pADAM10 into the membrane of cellular compounds, e.g.,
tumor cells (trogocytosis), which we could demonstrate to occur
after tumor cell–platelet interaction, albeit not specifically for
pADAM10 (7).

In the context of tumor-immunosurveillance, pADAM10 has
not only been identified as sheddase of canonical substrates on
platelets, but also to be involved in cleavage of the stress-induced
NKG2D ligands (NKG2DL) MICA, MICB and ULBP2 from
the surface of tumor cells (118, 119) (Figure 1B). Expression
of NKG2DL is sensed by cytotoxic lymphocytes such as
NK cells that express the cognate activating immunoreceptor
NKG2D. Shedding of NKG2DL by ADAM10 (and/or ADAM17)
in turn impairs tumor-cell lysis by NK cells. We recently
observed reduced surface expression of NKG2DL on tumor

cells upon coculture with platelets or exposure to platelet
releasate (120). This was mirrored by enhanced detection of
soluble NKG2DL, pointing to increased shedding of the surface
expressed ligands. These observations were also confirmed by
another group evaluating different tumor entities (121). Alike
Cluxton and coworkers, we did not find enhanced mRNA-
levels of tumor-ADAM10 (or ADAM17) upon platelet coating.
We thus concluded that pADAM10 (or pADAM17) might be
responsible for the enhanced shedding and may act via one
(or more) of the suggested non-canonical shedding pathways:
(i) cleavage exerted in trans or (ii) cleavage mediated by
soluble (s)pADAM10, (iii) conferred by platelet-derived EVs,
or (iv) integration of pADAM10 in the substrate-bearing
cell (trogocytosis).

Other interesting non-canonical pADAM10 substrates could
be ligands for the epidermal growth factor receptor (EGFR)
(122). There are seven well-established EGFR ligands, which are
also expressed on tumor cells, and release of their ectodomains
via shedding supports tumor progression in an auto/paracrine
manner (123). Two (EGF and betacellulin) of the seven
EGFR ligands are established substrates of ADAM10 (69) and
shedding thereof could thus enhance existing EGFR signaling.
Interestingly, EGF itself is expressed on platelets (Table 1) and
its release by tumor-coating platelets was shown to support key
features of tumor progression (67). In this study, however, release
of platelet-derived EGF was shown to depend mainly on platelet
derived ADAMDEC-1 rather than pADAM10 (67, 124).

The chemokine CX3CL1 (fractalkine) constitutes another
putative target of pADAM10 and exists either as a membrane-
anchored form or is released via ectodomain shedding mediated
by ADAM10 (125). CX3CL1 is mainly expressed on endothelial
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cells (126) but can also be found on tumor cell lines of
several entities (127, 128). Its cognate receptor CX3CR1 is
expressed on NK cells and T cells (129) but also on tumor
cells (130). Of note, platelets express CX3CR1 binding of which
was shown to mediate platelet activation and enhance adhesion
to collagen and fibrinogen (131). In the context of NK cell or
T cell mediated immunosurveillance of cancer cells, signaling
via the CX3CR1/CX3CL1 axis might either aid or impair
cancer progression [reviewed in (129)]. How pADAM10 could
modulate the CX3CR1/CX3CL1 axis in this context has not yet
been investigated.

Despite putative shedding of EGFR ligands or chemokines,
immunomodulation via the above mentioned non-canonical
modes of actionmay as well be executed by pADAM10 on several
other substrates alike FasL, RANKL, E-Cadherin, VE-Cadherin
(70, 71, 85, 132, 133) (Figure 1C).

Platelet Mediated Activation/Inhibition of
(p)ADAM10
The activity of (p)ADAM10 is highly regulated on multiple
levels including transcription, translation and posttranslation
[reviewed in (108, 134, 135)] Once translated, full-length
ADAM10 trafficks through the secretory pathway where it is
activated by removal of its prodomain (136). Substrate-access
to the catalytic site of mature ADAM10 is still tightly regulated
through conformational changes involving its cysteine-rich
domain (137). The process of ADAM10 trafficking/maturation
is closely connected to the Tetraspanin (Tspan)C8 group (30).
This group of six transmembrane proteins includes Tspan5,
10, 14, 15, 17, and 33 which all have been shown to
associate with ADAM10, thereby promoting its trafficking to
the cell surface as well as its maturation (138). Accumulating
evidence indicates that ADAM10 maintains its association with
TspanC8 members and that different TspanC8 partners may
guide ADAM10-activity toward different substrates suggesting
also interesting therapeutic implications (30). The TspanC8
members 14, 15, and 33 have also been identified in human
platelets (139, 140) and Tspan33 is among the 40 most frequent
platelet-membrane proteins (22). Platelet-expressed TspanC8
members might therefore play an important role in pADAM10
shedding events (30). As yet only indirect evidence, based
on transfectants, is available suggesting Tspan14 as a negative
regulator of GPVI shedding (140). ADAM10 activity might
additionally be modulated by the dynamic composition of the
lipid-bilayer by mechanisms such as trapping of substrates within
cholesterin-rich lipid-rafts which are usually devoid of ADAM10
[reviewed in (141)]. Moreover, Ca2+ and calmodulin are
important regulators of ADAM10 activity (142) also in platelets
(135). It was suggested that pro-ADAM10 associates with
calmodulin and that Ca2+ influx allows ADAM10-maturation
by disrupting this association (56). Likewise, in platelets,
Ca2+ influx has been shown to rapidly and potently increase
pADAM10 reactivity (74). Of note, calmodulin was also shown
to associate with substrates of pADAM10 such as GPVI on
platelets thereby putatively negatively regulating their proteolysis

(73, 143). Increase of intracellular Ca2+ thus represents a
mechanism to rapidly regulate (p)ADAM10-mediated shedding
events although the exact underlying processes are not yet
fully elucidated.

However, it should be considered that platelet-derived
factors could also influence the ADAM10 activity in the
platelet-microenvironment. TGFβ has been shown to enhance
transcription of Adam10 (and Adam17) in renal cells (144),
and platelets can release large amounts of active TGFβ
(145). However, neither Cluxton nor our group detected
enhanced ADAM10 (or ADAM17) transcription in tumor
cells upon exposure to platelets (or platelet releasate). This
suggests that specific mechanisms govern transcription of
ADAM10 in distinct cell-types. Moreover, it has been shown
that thrombin activates PAR-1 receptors on endothelial cells,
leading to increased activity of ADAM10 which enhanced
cleavage of VE-cadherin leading to facilitation of T cell
transmigration (133). Similarly, one might speculate that
thrombin released by platelet-covered tumor cells might also
facilitate transmigration of tumor cells during metastasis. It
should be noted that tumor cells can also express PAR-1,
and overexpression of PAR-1 has been implicated in enhanced
metastasis (146, 147). PAR-1 signaling in tumor cells has
been shown to enhance metastasis in experimental models
(148), which is attributed to initiation of an EMT-program
(149). The source of thrombin, the main activator of PAR-
1, was suggested to be the tumor cells themselves (148), but,
in the context of metastasizing tumor cells, coating platelets
might additionally contribute to thrombin generation (150).
Since ADAM10 is also activated by thrombin as described
above (133) and has been implicated in enhanced tumor cell
invasiveness (151), it appears possible that in fact activated
platelets contribute to tumor cell invasiveness by regulation
of ADAM10 via thrombin/PAR-1 signaling (138). ADAM10 is
inhibited by TIMP-1 and TIMP-3, with TIMP-1 being inhibitory
at lower concentration compared to TIMP-3 (53). Platelets
contain, among other TIMPs, TIMP-1, and TIMP-3, which
are independently stored in distinct platelet compartments,
but are rapidly and completely released upon activation with
thrombin (152). Another physiological inhibitor of ADAM10
is the membrane-anchored RECK (153) and has been detected
in the platelet membrane proteome (22). The reason for the
presence of both ADAM10 and its inhibitors in platelets remains
to be thoroughly elucidated and suggests complex context-
specific regulation of protease-activity.

CONCLUSION AND PERSPECTIVE

Platelets are associated with pathophysiology and may influence
efficacy of systemic treatment in several diseases. It is thus an
appealing idea to take advantage of platelet-derived biomarkers
for lipid biopsies (113), especially since platelets may display a
malignant phenotype (154). In line, both platelets and platelet-
derived EVs have been suggested as putative biomarker (155,
156). The soluble form of ADAM10 may still exert proteolytic
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activity, however it remains unclear under which instances
or toward which targets (108). The potential therapeutic
targeting of ADAM10 activity is, while promising in many
instances, likely to result also in side effects, given its variety
of biological substrates. The closely related ADAM17 which
is also expressed on platelets may exert similar activity, and
targeting ADAM10 may thus also affect cleavage by ADAM17,
especially since (i) hypothetically specific inhibitors still show
cross-inhibition of ADAM17 and (ii) ADAM17 may compensate
for a lack of ADAM10 shedding events (157). Since distinct
tetraspanins are thought to guide ADAM10 substrate shedding,
targeting of a specific tetraspanin-ADAM10 complex may
thus constitute a promising approach to modulate ADAM10
proteolytic activity toward defined substrates. Further studies
unraveling the regulation of ADAM10 activity, also with
regard to protease localization (membrane bound, EV, or as
soluble truncated form) and shedding of specific substrates
are certainly warranted. ADAM10 exerts protease activity on
a plethora of factors relevant beyond hemostasis. With this
review, we aimed to provide a timely overview about the
knowledge of (p)ADAM10, its substrates on platelets and on
their microenvironment.
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