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Abstract

Mosquito ecology and behavior and malaria parasite development display marked sensitivity to weather, in

particular to temperature and precipitation. Therefore, climate change is expected to profoundly affect malaria

epidemiology in its transmission, spatiotemporal distribution and consequent disease burden. However, malaria

transmission is also complicated by other factors (e.g. urbanization, socioeconomic development, genetics, drug

resistance) which together constitute a highly complex, dynamical system, where the influence of any single

factor can be masked by others.

In this study, we therefore aim to re-evaluate the evidence underlying the widespread belief that climate

change will increase worldwide malaria transmission. We review two broad types of study that have contributed

to this evidence-base: i) studies that project changes in transmission due to inferred relationships between

environmental and mosquito entomology, and ii) regression-based studies that look for associations between

environmental variables and malaria prevalence. We then employ a simple statistical model to show that

environmental variables alone do not account for the observed spatiotemporal variation in malaria prevalence.

Our review raises several concerns about the robustness of the analyses used for advocacy around climate

change and malaria. We find that, while climate change’s effect on malaria is highly plausible, empirical evidence

is much less certain. Future research on climate change and malaria must become integrated into malaria

control programs, and understood in context as one factor among many. Our work outlines gaps in modelling

that we believe are priorities for future research.
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Introduction 1

Malaria epidemiology, transmission, ecology and control are complex. The distribution of malaria, and its 2

transmission intensity and seasonality have been shaped by a range of factors: climate [1–3], mosquito ecology 3

and biogeography [4], malaria control [5], economic development [6], human genetics [7,8], and history [9]. Since 4

the start of the 20th century, malaria incidence has declined over time, albeit unevenly [10,11]. The geographical 5

range of malaria has substantially contracted in recent times, and prevalence has dropped in places where it 6

remains endemic [3]. 7

While malaria has declined due to economic development and improved control strategies (e.g. elimination 8

programs, improved healthcare, medical interventions), other factors push in the opposite direction. Malaria 9

incidence has seen large changes caused by: drug resistance; changes in first-line therapies; healthcare system 10

strengthening and degradation; economic development; efforts to scale up intervention coverage; resurgent 11

outbreaks associated with the evolution of insecticide resistance; and pauses in malaria control [12–14]. These 12

changes are often exacerbated by weather or land use changes. Therefore, how these factors aggregate to 13

affect malaria incidence, and each factor’s individual contribution, is far from straightforward. 14

Despite advances in control, malaria remains a major cause of mortality and morbidity, especially in sub- 15

Saharan Africa. Because malaria parasites are transmitted by mosquitoes, and because mosquito ecology 16

and behavior are affected by the environment, the interactions between weather, mosquito ecology, climate 17

change, and malaria transmission have been of longstanding interest [1,15,16]. Here, we review and evaluate 18

the evidence that has shaped science and advocacy concerning climate change and malaria. We focus on 19

the broad sources of uncertainty underlying this evidence. We explain that statistical studies tend to find that 20

environmental variables alone do not explain the total variation in malaria prevalence over space and time: 21

environmental variables primarily define a population at risk, rather than the actual current transmission intensity. 22

Taken together, we explain how the influence of climate change on future malaria transmission is far less certain 23

than previously stated. 24

We consider two kinds of studies that have examined the relationship between climate change and malaria. 25

First, we consider studies of potential malaria transmission, which project changes in malaria transmission 26

based on the link between environmental variables and either mosquito behavior or mosquito ecology. These 27

studies model malaria transmission using either the basic reproductive number, R0, vector capacity [17,18], or 28

mathematical models of malaria transmission dynamics. In these studies, projections of malaria transmission 29

under various climate change scenarios are based on observations of mosquitoes raised in a laboratory, in a 30

semi-field environment, or in carefully controlled settings. 31

Second, we consider regression-based studies that look for associations between environmental variables 32

and malaria prevalence. These studies have generally relied on large data sets curated by the Malaria Atlas 33

Project [5]. We then use a simple regression to investigate the extent to which environmental variables can 34

explain observed variation in malaria incidence by location over time. 35

While both types of analysis are valuable, they are incomplete. For example, a major limitation of studies of 36

malaria and temperature over time is the lack of covariates describing treatment failure and anti-malarial drug 37

resistance. The evolution of anti-malarial drug resistance in Africa in the 1990s is well-documented [19], but 38

its effect on efficacy has proven difficult to measure. In this piece, we describe how these limitations weaken 39

the evidence supporting a dominant link between climate change and malaria in Africa. Critically, highlighting 40
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the risks of increased malaria due to climate change can be misleading, in that downstream consequences of 41

climate change are important, but also multifaceted and nuanced. 42

Malaria is now a heavily managed disease, and if climate change is relevant for that management, then 43

methods to attribute the effects of climate change, distinct from other factors, must be considered for future 44

strategies. In this piece we argue that it is overall weather changes, rather than rising temperatures, that most 45

influence vector density, and these pose a challenge for malaria control. Furthermore, malaria transmission has 46

a changing baseline that varies with malaria control. 47

Despite this complex interplay of factors, the task of coping with climate change ultimately falls on malaria 48

control programs. Therefore funding is needed to help develop surveillance, information systems, early warning 49

systems, and capacity for effective outbreak responses. Regardless of the impact that climate change may 50

have on malaria, it should not distract from the central task of reducing malaria burden, and research on climate 51

change and malaria should serve those goals [20]. Future research on climate change and malaria must become 52

integrated into malaria control programs, and understood in context as one factor among many. 53

Potential Transmission 54

Many studies of climate change and malaria are based on basic theory for malaria transmission dynamics 55

and control. These include simulation studies that use mathematical models of transmission, and analyses of 56

potential transmission based on Macdonald’s formula for the basic reproductive number for malaria, R0. Within 57

malaria, R0 describes the number of human malaria cases per human malaria case [17,18,21,22]. Other studies 58

of potential transmission use a formula for vectorial capacity (itself derived from the formula for R0) [23]. 59

Macdonald’s formula was first developed in the 1950s in papers that synthesized the first decades of malaria 60

epidemiology and medical entomology [17,24–31]. A central question addressed by this mathematical model was 61

the critical density of mosquitoes required to sustain transmission. Macdonald used the formula to understand 62

endemic malaria, and he used the formula to weigh the relative importance of various parameters describing 63

transmission [17]. The formula would serve as a threshold criterion in simple models of transmission: transmission 64

would be sustained if R0 > 1. Therefore, to eliminate malaria, mosquito population density would have to be 65

reduced by factor that exceeds R0. 66

In Macdonald’s papers, the formula was derived from standard metrics (e.g. the human biting rate, sporozoite 67

rate, and thus the entomological inoculation rate (EIR), to malaria prevalence and incidence) to measure 68

transmission. Macdonald’s analysis reframed the question of mosquito-borne transmission around key specific 69

parameters, and drew attention to the important role played by mosquito survival [26]. 70

To develop theory for vector control, Garrett-Jones isolated the purely entomological parameters in the formula 71

for R0 and called the new formula “vectorial capacity” (VC, see Box 1) [23]. VC, separated from the rest of the 72

formula for R0, computes transmission potential as if humans were perfectly infectious, avoiding the difficult issue 73

of human infectiousness. In doing so, Garrett-Jones ignored differences among vector species in their ability to 74

host the parasites (now referred to as “vector competence”). VC describes a daily reproductive number: the 75

number of infective bites that arise from all mosquitoes that blood-feed on a single, perfectly infectious human 76

per day [23]. Macdonald originally derived the formula for R0 from the sporozoite rate and the human biting rate, 77

the product of which is the daily entomological inoculation rate (dEIR), i.e. the number of infective bites received 78
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Fig 1. A diagram of 1) vectorial capacity as a summary of transmission potential (see Box #1) involving two
parts: the emergence rate of mosquitoes, per human (λ); and the capacity of each individual mosquito to
transmit parasites (f2q2e−gn/g2.), where f is the blood feeding rate, q is the fraction of human blood meals
among all blood meals, and g is the instantaneous death rate 2) Some of the likely effects of weather; and 3) a
ranking of parameters by the number of ways they affect transmission. The box around mosquito aquatic ecology
(L), including egg laying by adults and emergence, indicates an important source of variability in malaria
transmission that is also affected by weather in ways that often depend on the local context.

per person per day [17,32]. This work suggested a basis for estimating VC from dEIR: the two main differences 79

are the net infectiousness of humans (which could be extended to include vector competence), and mosquito 80

superinfection [18,33]. 81

The EIR and VC are vital determinants of malaria transmission intensity. The consequences of transmission 82

are then explored in mathematical models that couple mosquito ecology, mosquito infection dynamics, and 83

human malaria epidemiology, including infection and immunity. Such models have evolved substantially since 84

Macdonald. 85

Early attempts to use the Ross-Macdonald model during field trials exposed its limitations [34]. Malaria 86

models were subsequently extended to consider a variety of issues, including: immunity [35,36]; treatment with 87

antimalarial drugs and chemoprotection [37]; heterogeneous transmission [38–40], and mosquito ecology [36]. 88

Malaria models have become embedded in comprehensive individual-based simulation models [41,42]. These 89

models have been used to guide malaria policies, including integrated malaria control. 90

Early studies on climate change and malaria employed computer simulation models, based on either simple 91

extensions of the Ross-Macdonald model, or based on vectorial capacity (Fig 1, Box 1) [22,43–46], which itself 92

is a great source of uncertainty [47]. 93
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Potential Transmission by Adults 94

If a given parameter is related to temperature over time, T (t), then it can be written as a function of time and

temperature. For example, the mosquito death rate g could be written as g(T (t)). Then a change in temperature

would result in a change to the reproduction number R0 by a factor Zg, given by

Zg =
e−g(T (t))

g(T (t))2
× g(T (0))2

e−g(T (0))

We call Zg the effect size on potential transmission associated with temperature-driven changes in mosquito 95

survival. Using the formula for vectorial capacity, it is possible to compute additional changes in potential 96

transmission associated with feeding rates, or the extrinsic incubation period (EIP, i.e. the mean time taken for 97

malaria parasites to undergo development within the mosquito before they are infectious to humans), n(T (t)). 98

The total effect size on potential transmission by adult mosquitoes would be a product of changes in each one 99

of the bionomic parameters. Ideally, a total effect size would consider the effects of all changes caused by any 100

relevant environmental variables. An advantage of these studies is that it is easy to communicate the results: an 101

effect size of 1.5 can be reported as a 50% projected increase in potential transmission. 102

The estimated effects of environmental variables on mosquito entomological parameters are based on field 103

studies or controlled experiments that have measured the effect of changes in bionomic parameters on adult 104

mosquito behavior or demography, and parasite development rates while in the mosquito [48]. Temperature and 105

humidity have been consistently identified as factors affecting malaria transmission by adult mosquito populations. 106

When Macdonald wrote his synthesis in 1952, dozens of studies had already measured the EIP in relation to 107

temperature [26, 49]. More recent data have looked in closer detail at the relationship between the EIP and 108

temperature in An. gambiae and in An. stephensi [50]. Lab studies have examined effects of temperature and 109

humidity on lab reared mosquitoes [51]. 110

It is also useful to consider temperature through its interaction with humidity, and in particular relative 111

humidity [51]. Relative humidity describes how much moisture the air holds relative to its maximum. The hotter 112

the temperature, the more humidity the air can hold. There are strong associations between relative humidity and 113

malaria transmission, and relative humidity also affects parasite and pathogen development within mosquitoes. 114

Furthermore, relative humidity affects thermal performance curves of both mosquitoes and pathogens, leading to 115

complex variation in the thermal optimum, limits, and operative range. 116

Despite disagreements on specific details, the studies agree on a set of core messages [52]: mosquito daily 117

survival and blood feeding rates, as well as the EIP, all reach their optimum somewhere between 25 and 30 118

degrees. This optimum depends largely on relative humidity. Unlike temperature, mosquito survival and blood 119

feeding rates tend to increase consistently with relative humidity. Later studies addressed the impact of other 120

environmental variables on vectorial capacity [53]. 121

Climate and Mosquito Populations 122

Since standing water serves as mosquito habitat, rainfall creates opportunities for (exponential) mosquito 123

populations growth. Changing rainfall patterns may have large effects, but these are also highly unpredictable: 124

short term rainfall is already unpredictable, and longer term climate projections for rainfall is even more so. 125
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Further, the effects of rainfall on mosquito ecology are locally idiosyncratic, mediated by hydrology, terrestrial 126

ecology, and many other factors. Therefore, the relationship between rainfall and transmission may be specific to 127

each locality. And within a locality, rainfall can drive different patterns for each one of the local vector species 128

populations. 129

The degree to which rainfall affects malaria transmission dynamics relates to the availability and quality 130

of mosquito habitats. Any concavity that can be filled by rainfall or subterranean water flows can become a 131

habitat for immature mosquitoes. However, increased rain will not necessarily lead to more habitat and thus 132

more mosquitoes. First, the effects of rainfall are mediated by hydrology. Second, the effects of rainfall are 133

affected by the temporal distribution, i.e. the times between successive rainfall events and their magnitude. Third, 134

aquatic mosquito populations are affected by a large number of biotic interactions, including competition with 135

other mosquitoes for resources. The effects of climate change are thus likely to be highly context dependent. 136

In contrast to temperature, which varies smoothly between nearby locations, rainfall has high spatial variation 137

between nearby localities [54]. 138

Increased egg laying in a crowded habitat could delay development, and lower the number of adults emerging. 139

While rainfall can increase the number and size of breeding sites, excess rainfall can wash out breeding sites [55]. 140

Further, rainfall is a nonequilibrium relaxation process, in contrast to temperature. 141

Rainfall is a non-equilibrium relaxation process that is scale free and best described by a simple power law, 142

characterizing the density and occurrence of rain events as well as drought periods. That is, rainfall events can be 143

of enormous size in a very short period, followed by a prolonged drought, exhibiting complex and unpredictable 144

fluctuations over time. Thus average rainfall is a misleading indicator of true dynamics. (Earthquakes are another 145

example of a non-equilibrium relaxation process [56].) 146

In climate change, warmer oceans increase evaporation. Moisture-laden air moves over land or converges 147

into a storm system, and intensifies precipitation. Rainfall is therefore expected to increase with climate change, 148

but because precipitation dynamics are scale free (power-law distributed), increased rainfall is also expected to 149

result in a larger incidence of both floods and droughts - each of which will reduce malaria. Furthermore, at a 150

macroscopic scale, rainfall affects the availability of resources that mosquitoes need, making predictions based 151

on climate change even more challenging. 152

Sensitivity, Variability, and Uncertainty 153

One approach to examining climate change’s effects on adult mosquitoes and mosquito ecology has been 154

mathematical – to examine the sensitivity or elasticity to parameters [57]. While many studies have emphasized 155

the importance of adult mosquito survival and blood feeding, examination of the data suggests that most of the 156

variability in malaria transmission intensity is related to mosquito ecology [58]. The primary data come from 157

studies that have estimated the EIR. Notably, the EIR is computed as the product of two metrics: the human 158

biting rate (HR), and the sporozoite rate (SR). The annual EIR ranges from practically zero to more than a 159

thousand bites by infectious mosquitoes, per person, per year [59]. Most of the variability in the aEIR is attributed 160

to differences in the HR, not the SR. 161

The mathematical approach that emphasizes sensitivity to parameters suggested that transmission should 162

scale linearly with adult mosquito population density, but this does not account for mosquito ecology being highly 163

non-linear. A single adult female mosquito can produce thousands of offspring over a few days, leading to 164
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explosive bouts of malaria transmission. 165

Complexity, Scaling, and Malaria Metrics 166

To understand the effects of changes in potential transmission, mathematical models are needed to understand 167

how malaria in humans responds to changes in malaria transmission intensity. Such models emphasize non- 168

linearities and complexities in the relationship between exposure to the bites of infectious mosquitoes, the metrics 169

used to measure parasite infections in populations, and malaria. 170

Rigorous studies have used models to compare patterns observed in studies of malaria, particularly those 171

that have measured malaria in two or more ways at the same place and time. The relationship between the 172

EIR and the average PR is strongly non-linear [60, 61]; the PR varies by age, sex, season, travel, and drug 173

taking. While the EIR has been used as a measure of exposure, the association with the estimated force of 174

infection (FoI), malaria incidence is also strongly non-linear and it also varies by age [62,63]. Malaria immunity 175

develops with age and exposure, and disease is concentrated in young children. Changing transmission intensity 176

is expected to shift the burden to older ages, but the expected overall changes in burden are not simple linear 177

responses to changing mosquito densities or to overall transmission intensity. 178

Such non-linearities give rise to great uncertainty regarding how one parameter affects another [63]. To put it 179

another way, doubling the VC or EIR may not double mortality. Further, a second doubling of VC or EIR may not 180

have the same effect as the first. These non-linearities also make it difficult to make credible projections about 181

the changing burden of malaria, even in the ideal case where changes in expected transmission are certain and 182

perfectly quantified. 183

Thresholds, Importations and Heterogeneity 184

Models and Macdonald’s threshold condition have led to concerns that R0 may increase above one due to climate 185

change. While Macdonald’s formula for R0 was meant to describe a threshold condition for the establishment of 186

endemic transmission, the predicted effect of crossing a threshold required for local transmission are dulled by 187

malaria connectivity. 188

Malaria transmission can be sustained by malaria importation in mobile human populations. In models with 189

spatial dynamics, threshold conditions are modified by heterogeneity, and transmission is dispersed widely 190

by movement of humans and mosquitoes [64]. In most places where R0 < 1, malaria is sustained through 191

importation. Therefore crossing a threshold would not lead to a qualitative change. 192

Three important factors modifying threshold conditions are: i) the heterogeneous spatial distribution of 193

mosquitoes; ii) the heterogeneous spatial distribution of humans, and iii) the heterogeneous temporal distribution 194

of mosquito transmission potential. Consider a simple conceptual model for a time-varying reproduction number 195

R0(t) that is piecewise constant (i.e. a step function), where seasonal endemic transmission is characterized 196

by periods where R0(t) > 1, and other periods where R0(t) ≤ 1. However, empirical malaria data is highly 197

heterogeneous [58], and estimates of reproduction numbers exhibit roughness in their functional form over 198

time [65] and space [3,66]. 199

Parasite populations are connected by movement of infected humans and mosquitoes [64]. So while 200

Macdonald’s formula R0 > 1 is an important threshold for local malaria transmission in an isolated population, it 201
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is best regarded as an informative pseudo-threshold condition [64,67–70]. 202

Predictions 203

Sub-Saharan Africa carries the majority of worldwide malaria burden, and so climate change’s effects here are of 204

particular interest. Despite uncertainty about the shape of R0(T ), these effects are likely to be small, given that 205

temperatures in Africa are already high enough to maximise spread. Indeed, the temperatures across much 206

of sub-Saharan Africa are near optimum, where a change in temperature (T ) has very little effect on potential 207

transmission, insofar as rational guesses based on such extrapolations are even possible. Moreover, much of 208

Africa is above the optimum, and so an increase in temperature would likely decrease malaria transmission. 209

To summarize, many studies of climate change and malaria have come to similar conclusions. First, since 210

large fractions of Africa are already at or near optimal temperatures required for transmission, global warming 211

will only sometimes increase and often decrease malaria. Second, the predicted effect sizes on potential 212

transmission are small compared with the natural variability in malaria transmission. Third, the predicted effect 213

sizes of climate on potential transmission are much smaller than the potential reductions in transmission that 214

can be achieved through vector control. Fourth, the greatest changes in malaria transmission are likely to come 215

through changes in rainfall [2]. 216

Regression 217

A common approach to climate change and malaria has come through regression analyses [3,5,71,72]. Previous 218

studies have used regression analyses to interpolate data across space and time to understand the drivers of 219

change [5]. In this section, we perform a simple regression analysis. Using detailed satellite imagery from a 220

range of different satellites, data can be collected on temperature and precipitation etc.Ċrucially, these data can 221

be matched to the location and time (month) of the malaria observations, which we denote as y. Note these 222

malaria observations were adjusted for age (2-10 years of age) and diagnostic type [73]. Let the resulting basis 223

matrix of covariates be given by X. Loosely, a statistical model can be expressed using the following linear 224

equation 225

y ∼ βXT + Z(x, y, t) (1)

where β is a vector of coefficients and Z is a zero-mean Gaussian process with a space-time covariance function 226

denoting the residuals. 227

Intuitively, this model attempts to explain PfPR (Plasmodium falciparum parasite rate) as a function of 228

environmental covariates X. A question then is how much of the data can be explained as a linear function of 229

these environmental covariates? If the predictive power of this linear function is high, then an argument can be 230

made that a simple relationship between temperature and rainfall and malaria prevalence exists. The Z term 231

accounts for residual patterns that cannot be explained by the covariates, but it is structured and not simply 232

random noise. Z does not tell us what causes this unobserved structure; it could be a wide range of factors, 233

including nutrition, culture, mosquito ecology and dispersal, or human mobility and travel. We fit this model using 234

Approximate Bayesian inference (the Laplace approximation [74]) such that the resultant model balances over 235

and under fitting. 236
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For a simple illustration, we consider two major climate factors: temperature suitability and average rainfall. 237

Temperature suitability [75, 76] is a dynamic biological mathematical model that incorporates temperature 238

dependency in the malaria transmission cycle, and then uses satellite data on temperature to estimate a 239

suitability index. Rainfall is measured using CHIRPS (Climate Hazards Group InfraRed Precipitation with Station 240

data), which estimates the average rainfall per month from rain gauge and satellite observations. It is then 241

possible to match this temperature suitability index to the month and year of malaria observations, and to match 242

rainfall to the month (averaged over years) to account for minor aspects of seasonality. 243

Outliers such as heatwaves, droughts and floods are not adequately captured using these data, but major 244

variations in the spatial and temporal distribution of the environment factors relevant to the mosquito are. Using 245

the large Malaria Atlas Project dataset on malaria parasite rate surveys, where each data point is a sample 246

of the number of parasite positive individuals out of the total, it is possible to match temperature suitability to 247

the specific latitude, longitude, rainfall, month and year (2001-2022) to the specific latitude, longitude, month, 248

with years averaged due to data paucity. For consistency, data on parasite rates are adjusted for age [77] and 249

diagnostic time [73]. 250

Malaria parasite rate data are proportions, thus bounded between zero to one. To simplify regression, we 251

transformed these data via the empirical logit into a Gaussian scale. Once again, we call these observations 252

y. Consider three simple models, explaining parasite rate observations by: (i) a constant model yx,y,t ∼ I; 253

(ii) a linear model with temperature suitability and rainfall y ∼ I + βTXx,y,t, where Xx,y,t is the temperature 254

suitability index and rainfall at the matched locations and times of the malaria parasite rate observations; and 255

(iii) a Gaussian process model y ∼ I + βTXx,y,t + Z(x, y, t), where again Z is a space-time random field that 256

captures structure in the data. We evaluate model performance by computing the mean absolute percentage 257

error and the correlation on the original untransformed parasite rate scale. 258

The mean absolute error of the first model that simply fitting a constant intercept to the data is 17% with a 259

correlation of zero. The second model with temperature suitability does explain variation with a mean absolute 260

error of 16.5% and a correlation of 0.2. The third Gaussian process model with temperature suitability yields 261

a mean absolute error of 9% and a correlation of 0.8. This difference is substantial, and while this example is 262

simplistic, and by no means rigorous, it reveals that the overwhelming bulk of the spatial distribution of malaria 263

and its change in time over the past 2 decades is negligibly explained by temperature and its biological effect on 264

the mosquito. 265

Figure 2 shows the predictions for the linear and Gaussian process model (i.e. the second and third models) 266

alongside the raw data. We see that the model with just temperature suitability and rainfall is unable to capture 267

the large variations in parasite rate, and creates predictions within a narrow band (Figure 2 top right) and the fine 268

grained spatial variation only predicts a limited variation in PfPr (Figure 2 bottom left). In contrast, the Gaussian 269

process (Figure 2 bottom right) is an excellent fit to the data, both in terms of spatial pattern but also in predicting 270

the full range of variation in PfPr. These results reinforce that, while climate plays a pivotal role in defining the 271

population at risk, simple relationships are not the primary driver in the dynamic changes of infection. 272

Model code is available at https://github.com/dlaydon/MalariaClimateRegression. 273
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Fig 2. P. falciparum prevalence or parasite rate (Pf PR) as a function of environmental covariates. (top left) Pf PR
from the Malaria Atlas Project Database. (top right) Linear model with temperature and rainfall with the colour
scale ranging from 0-1 (bottom left) Linear model with temperature and rainfall with a restricted colour scale to
show variation (bottom right) Gaussian process process with linear mean function of temperature and rainfall

Gaps in modelling 274

While substantial efforts have been made to model malaria dynamics over time [41], important gaps remain. In 275

most places, malaria transmission must be understood as a changing baseline that has been modified by malaria 276

control. While many studies have looked at climate and its effects on baseline malaria, and many others have 277

examined vector control and malaria, few have examined both climate and vector control and their interactions. 278

In developing a research agenda for climate and malaria, it is thus critical to develop an understanding of 279

climate and malaria that does not ignore the role of malaria control and other exogeneous variables affecting the 280

baseline and confound efforts to understand malaria in context. While many of these factors are easy to list, 281

such as demography, changing housing quality, evolution of drug and insecticide resistance, economics, politics 282

and logistics, any analysis including these from the past is hampered by a lack of consistently available data. 283

Since 2000, malaria has been profoundly changed by mass distribution of long-lasting insecticide treated 284

nets, widespread access to artemisinin combination therapies (ACTs), and local indoor residual spraying [5]. 285

Understanding the effects of vector control is hindered by a lack of knowledge of local vector species mixes, 286

vector ecology, and insecticide resistance. Understanding the effects of malaria control from health systems 287

must consider antimalarial drugs, evolution of drug resistance, and changing drug policies. 288

Data on socio-economic factors, climate, local environmental conditions are needed to understand the effects 289

of landscape and topography on malaria transmission within any given region. Human mobility patterns, land 290
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use changes, migration effects as well as exposure to malaria vectors are usually used in malaria modelling. 291

However, data for all of these factors is difficult to acquire. 292

For example, military conflicts can drastically and quickly change population numbers, but acquiring exact 293

estimates is almost impossible. Even in periods of relative stability, limited infrastructure can mean that population 294

numbers are still difficult to extrapolate. For example, the last official census in the Democratic Republic of Congo 295

was held in 1984. Methods for estimating census data will continue to improve and contribute greatly in this field. 296

Drug resistance 297

Drug resistance profoundly influences malaria, independently of climate change. The low cost, high demand, 298

and widespread use of antimalarial drugs have led to strong selection for drug resistant parasite strains. Further, 299

drug resistance can arise with relatively modest molecular change. One example is the small amount of change 300

needed for chloroquine resistance; four amino acid substitutions, in a single gene called pfcrt (P. falciparum 301

chloroquine resistance transporter) confer resistance to chloroquine-based antimalarial drugs [78]. 302

Perhaps counterintuitively, drug resistant strains are inferior in their natural environment, given that they 303

involve relatively rare combinations of molecular changes [79]. This inferiority of drug resistant strains means 304

that reduced use of antimalarial drugs leads to the loss of drug resistance after selection for resistance by drug 305

use declines. 306

Since drug resistance is a crucial factor in driving malaria prevalence, limiting antimalarial drugs to symp- 307

tomatic cases will maximize their efficacy [80]. The misuse of low-cost antimalarial drugs will, conversely, increase 308

the risk of drug resistance. Whereas development of new drugs can decrease prevalence in the medium term. 309

The major impact of drug development and resistance on prevalence has been evident for both chloroquine in 310

the second half of the 20th century and artemisinin-based combination therapies in the last two decades [81]. 311

There is a hypothetical link between antimalarial drug use, evolution of resistance, and climate change, 312

where the climate mediates the logistics and accessibility for drug administration [82]. Alternatively, novel 313

climatic conditions might tend to disproportionately benefit the emergence of drug resistant strains, although the 314

biological mechanism of this has not been described. Genetic surveillance will ellucidate the immunological and 315

environmental conditions that benefit drug resistant strains. More immediately, genomic surveillance can play an 316

important role for optimising drug administration, by helping map the emergence and spread of drug resistant 317

strains [80]. 318

Conclusion 319

Our work raises several concerns about climate change and malaria research, regarding its accuracy, strength of 320

evidence, and at times insufficient consideration of the complexity of the processes involved. Effect sizes due to 321

temperature are easily mimed or masked by other environmental factors, vector control, anti-malarial drug use, 322

healthcare systems, land use changes, economic development, and drug and insecticide resistance. Given the 323

complexity of malaria epidemiology and transmission, concerns about global warming and climate change must 324

be evaluated in context, as part of multi-factorial studies that provide accurate assessments of causation and 325

estimates of effect sizes. Decades after concerns were first raised about the effects of climate and malaria, the 326
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questions to be addressed today are: how much should research on climate change and malaria be prioritized, 327

and to what end? 328

First, our analysis suggests that the risks posed by climate change on malaria incidence have been overstated 329

[3]. While compelling analyses demonstrate that temperature affects several aspects of transmission, a focus on 330

sensitivity to parameters has diverted attention away from effect sizes and other factors affecting malaria. If, 331

instead, effect sizes are computed by propagating the expected changes in temperature, they are much smaller 332

compared the observed variability in transmission intensity across Africa. Given current ambient temperatures in 333

Africa, increasing temperatures are as likely to reduce transmission as increase it. 334

Empirical data emphasize the importance of rainfall on both malaria, and on interactions between temperature 335

and humidity, and not merely temperature alone. Analyses of the long-term longitudinal studies from Africa 336

have so far not found strong evidence for large effects of temperature on malaria. While analysis of long time 337

series describing malaria and climate in some settings could help, the few studies that have been done came 338

to different conclusions, and were ultimately undermined by the failure to consider the evolution of chloroquine 339

resistance in sub-Saharan Africa during the 1990s and resulting changes in drug policies. 340

Advocacy around climate and malaria has motivated studies that attribute changing malaria mortality to 341

changing climate. The basis for making projections about climate and malaria, and thus likely changes in malaria 342

mortality, has largely focused on climate without considering other potential causes. This basic methodological 343

flaw undermines the validity of the studies. The robustness of the conclusion that climate change will increase 344

malaria transmission is challenged by the dramatic differences between the projections given differing scenarios, 345

as well as the vastly different effect sizes reported between studies. 346

While some changes in transmission due to changing temperatures are probable, the changes attributable to 347

climate change are highly spatially heterogeneous, with malaria likely to increase in some locations and decline 348

in others. The evidence suggests that studies of climate change and malaria must be understood through its 349

effects on mosquito ecology. 350

In sub-Saharan Africa, malaria remains a leading cause of death and suffering, stifling economic development. 351

Malaria is often called a disease of poverty because is highly prevalent in poor, rural African populations. Wealthy 352

individuals, who tend to also be better educated, can afford to protect themselves against malaria, but those 353

same interventions are not affordable or accessible to the poor. Meanwhile, the same populations who are at 354

greatest risk of malaria are also most likely to be affected by climate change in other ways. Enhanced malaria 355

control would stimulate economic growth in Africa and make the most vulnerable populations resilient to the 356

effects of climate change. 357

While climate could worsen malaria, we are not hapless victims of a changing climate. Effective ways of 358

managing the effects of climate change on malaria are already available, and existing methods of malaria control 359

could be the most effective way of protecting poor populations. 360
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361

Box 1: Vectorial Capacity 362

Macdonald’s R0 formula was based on the sporozoite rate (SR) and the human biting rate (HR) [17,32], which is 363

now called the entomological inoculation rate (EIR). 364

Vectorial capacity (VC) includes three parameters: the blood feeding rate (f ); the fraction of all blood meals

that are human blood meals (q); and instantaneous death rate (g). Together, these terms describe the expected

number of human bloodmeals a mosquito would take over its lifetime (S = fq/g). A single parameter describes

parasites in mosquitoes, called the extrinsic incubation period (EIP, n days), defined as the number of days

required for malaria parasites to develop. To transmit, a mosquito must survive through the EIP (with probability

P = e−gn). The formula for VC includes one parameter describing mosquito ecology: the emergence rate of

mosquitoes from aquatic habitats, per human (λ). These parameters are combined into a formula for vectorial

capacity.

V = λ
f2q2

g2
e−gn = λS2P

The right hand side denotes parasite transmission by mosquitoes: after emerging (λ), a mosquito must blood 365

feed on a human to become infected (S), then survive through the EIP (with probability P ); and then bite other 366

humans to transmit (S). This is equivalent to Macdonald’s formula, after a change in notation [58]. The formula 367

has been used to understand parameters that could have the greatest influence on transmission [32,47]. 368

369
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Fig 3. The mosquito life cycle includes immature aquatic stages and a volant adult. Female mosquitoes lay eggs
in water bodies. Eggs hatch within a few days to months. Larvae live in water and develop into pupae in as few
as 5 days. Pupae continue to live in water and develop into flying adult mosquitoes that leave the water in 2-3
days. Adult mosquitoes meanwhile fly in search of resources, including vertebrate hosts to blood feed, sugar
sources for sugar, and aquatic habitats to lay eggs.

370

Box 2: Mosquito Ecology 371

Mosquitoes have seven distinct life stages: eggs, four larval instars, pupae, and adults (Figure 3). Adults lay 372

eggs in aquatic habitats. After hatching and developing in water through pupation, adults emerge as adults that 373

mate and sugar feed. Female mosquitoes (but not males) also blood feed; the protein and nutrients in blood 374

are used to make eggs. It is the cycle of blood feeding, egg laying, and sugar feeding by adult females that is 375

of greatest interest sets the stage for mosquito ecology and malaria parasite transmission. Mosquitoes, like 376

most insects, are poikilothermic – their internal temperature depends on the surrounding environment. Mosquito 377

activities and many of the resources they require to complete their life cycle are also affected by weather and 378

climate, including vertebrate animals for blood, sugar, vegetation and resting habitats, and aquatic habitats. 379

380
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