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Antibiotics have been described to modulate bacterial virulence gene expression.
This study aimed to assess the changes caused by anti-Staphylococcus agents
in the transcription of leucocidin ED (lukED) gene of Staphylococcus aureus strain
Newman in vitro and in vivo and to determine whether the altered expression is
agr dependent. The bacteria were exposed to subinhibitory concentrations [1/2,
1/4, or 1/8 minimal inhibitory concentration (MIC)] of 11 antibiotics, and the
expression of lukE and agr-effector RNAIII was determined using qRT-PCR. In vivo
experiments were performed to evaluate the impact exerted by six representative
antibiotics on the transcription of both genes. Molecular analysis showed that in vitro
lukE transcription was dramatically promoted in the Newman strain exposed to
sub-MICs of vancomycin, trimethoprim–sulfamethoxazole, clindamycin, gentamicin,
daptomycin, and ciprofloxacin and considerably reduced when stimulated by cefazolin,
erythromycin, rifampicin, tigecycline, and linezolid. In the murine abscess model,
tigecycline significantly decreased the transcription of lukE and the bacterial numbers,
whereas vancomycin increased them; although cefazolin increased the lukE expression
(contrary to the in vitro effect), it had a remarkable role in reducing bacterial load.
The correspondence analysis shows that RNAIII expression varied under seven of
11 antibiotics in vitro, and six drugs in vivo were consistent with lukE transcripts. In
conclusion, our data show that anti-Staphylococcus antibiotics exert modulatory effects
on lukE expression in vitro and/or in vivo, and the changed expression caused by some
drugs may be involved with agr activity, thus providing a guide to choose appropriate
agents to avoid promoting bacterial virulence in lukED-positive S. aureus infections.
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INTRODUCTION

Staphylococcus aureus is a pathogen notorious for its ability to
cause many infection-related illnesses ranging from cutaneous
infections and food poisoning to toxic shock syndrome,
septicemia, and necrotizing pneumonia (Tong et al., 2015).
The success of S. aureus infection stems from a repertoire
of virulence factors that enable the bacteria to escape from
the host immune system (Otto, 2014). Among these factors,
leucocidin ED (LukED), a bicomponent pore-forming toxin,
plays an important role in S. aureus pathogenicity (Alonzo and
Torres, 2014; Balasubramanian et al., 2016).

LukED targets the membrane of various cells such as
neutrophils, T cells, myeloid cells, macrophages, dendritic cells,
and erythrocytes and elicits β-barrel pores that span the lipid
bilayer and lead to osmotic lysis of the host cell (Alonzo
et al., 2012, 2013; Reyes-Robles et al., 2013; Spaan et al.,
2015). Epidemiological data and animal infection models show
that lukED can be commonly detected in clinical S. aureus
strains (approximately 2/3 to 4/5 of isolates) and is closely
associated with impetigo, antibiotic-associated diarrhea, and
bloodstream infection, among others (Gravet et al., 1998;
Arciola et al., 2007; Alonzo et al., 2012; Alonzo and Torres,
2014; He et al., 2018). The accessory gene regulator (Agr)-
repressor of toxin (Rot) pathway is an important modulatory
network of LukED production (Alonzo et al., 2012). The agr
operon encodes the regulatory RNA RNAIII, which promotes
the transcription of leucocidin genes by negatively controlling
the yield of Rot (Benson et al., 2014; Killikelly et al., 2015;
Tan et al., 2018).

During treatment, bacteria may be exposed to subinhibitory
levels [sub-minimal inhibitory concentrations (sub-MICs)]
of antibiotics owing to drug-resistant organisms or the
pharmacokinetics of antimicrobial agents (such as short half-
life, poor drug distribution and adherence, or interactions
between antibiotics) (Cars, 1990; Hodille et al., 2017). Early
investigations have shown that sub-MICs of antibiotics may
initiate differential expression of virulence genes in S. aureus,
which may affect the pathogenesis of infection and result in
worse outcomes (Dumitrescu et al., 2007, 2008, 2011; Stevens
et al., 2007; Pichereau et al., 2012; Diep et al., 2013; Otto
et al., 2013; Yamaki et al., 2013; Rudkin et al., 2014; Turner
and Sriskandan, 2015; Hodille et al., 2017; Liu et al., 2018).
Therefore, the therapeutic efficacy of antibiotics might also
rely on their capacity to prevent the production of virulence
factors (Otto et al., 2013). The use of antibiotics that reduce
the Panton–Valentine leucocidin (PVL) toxin production is
recommended for the treatment of severe infections caused
by pvl-positive S. aureus (HPA, 2008; Nathwani et al., 2008).
Nevertheless, little is known about the influence of antibiotics on
lukED expression.

In this study, we selected common anti-Staphylococcus
drugs to evaluate their impact on the expression of lukED
in the S. aureus strain Newman in vitro and in vivo. We
also analyzed whether the production of RNAIII is associated
with variations in the levels of lukED transcripts affected by
antimicrobial compounds.

MATERIALS AND METHODS

Bacterial Strain and Culture Conditions
Staphylococcus aureus strain Newman was cultured at 37◦C
in yeast extract-Casamino Acids-pyruvate (YCP) medium [3%
(w/v) yeast extract (Oxoid), 2% (w/v) casamino acids (Amresco,
Washington, DC, United States), 2% (w/v) sodium pyruvate
(Sangon Biotech, Shanghai, China), 0.25% (w/v) Na2HPO4, and
0.042% (w/v) KH2PO4, pH 7.0)], which is able to promote the
highest expression of LukED (Alonzo and Torres, 2014).

Antibiotics
The antimicrobials utilized in this work were cefazolin,
gentamicin, erythromycin, tigecycline, rifampicin, daptomycin
(purchased from Dalian Meilun Biotech, Dalin, China),
ciprofloxacin, clindamycin, vancomycin (from the National
Institutes for Food and Drug Control, Beijing, China),
linezolid (Selleck Chemicals, Houston, TX, United States),
and trimethoprim–sulfamethoxazole (Sigma–Aldrich, St Louis,
MO, United States).

Determination of Minimal Inhibitory
Concentration
Minimal inhibitory concentrations of antibiotics against the
S. aureus strain Newman were determined in triplicate by
the standard microdilution broth method according to Clinical
and Laboratory Standards Institute (CLSI) recommendations
(Wayne, 2017).

Growth Kinetics
Overnight liquid cultures of strain Newman were diluted 1:100
into 25 ml of fresh YCP medium, followed by addition of
1/8 MIC, 1/4 MIC, or 1/2 MIC antibiotics. Cultures without
antibiotic served as control. Cultures were grown at 37◦C with
shaking at 150 r/min. Cell growth was detected by measuring
the optical density (OD) at 600 nm every hour using a
UV-2102C ultraviolet spectrophotometer (Unico Instruments,
Shanghai, China).

In vitro Exposure to Antibacterial Agents
Bacterial culture aliquots for RNA extraction were collected after
the early (3 h) and late (5 h) logarithmic growth phases, when
transcription of lukED was rising and reached the highest level,
respectively (Yang et al., 2019).

Extraction of Bacterial RNA
Bacterial culture samples were centrifuged at 13,000 × g and
4◦C for 10 min; resuspended in TE buffer (10 mM of Tris HCl
and 1 mM of EDTA, pH 8.0) with lysostaphin (1 mg/ml, Sangon
Biotech, Shanghai, China) and proteinase K (20 mg/ml, TaKaRa,
Dalian, China); and incubated at 56◦C for 1 h for cell wall
lysis. Total RNA was extracted using the MiniBEST Universal
RNA Extraction Kit (TaKaRa, Dalian, China) according to the
manufacturer’s instructions.
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Subcutaneous Abscess in Mice
Female Balb/c nude (nu/nu) mice between 4 and 6 weeks old
were prepared for the abscess model. Mice were anesthetized
with isoflurane and then injected subcutaneously with 100 µl
of phosphate-buffered saline (PBS) containing 3 × 108 colony-
forming units (CFU)/ml of fresh Newman strain to form the
abscess (Turner and Sriskandan, 2015).

In vivo Exposure to Antimicrobials
After 48 h of infection, mice were injected intraperitoneally
with 150 µl of 10 mg/kg of clindamycin, 10 mg/kg of linezolid,
25 mg/kg of cefazolin, 30 mg/kg of vancomycin, 4 mg/kg of
daptomycin, 1.6 mg/kg of tigecycline, or PBS as a control
according to the human therapeutic doses recommended by the
Sanford Guide to Antimicrobial Therapy (Gilbert, 2014).

Enumeration and RNA Extraction of
Bacteria From Abscess
Following a previously described method (Turner and
Sriskandan, 2015), mice were sacrificed after 8 h of treatment,
and the abscess tissue was cut. Samples were diluted in PBS
and plated for bacteria counting. The remaining abscesses were
placed into liquid nitrogen quickly, followed by grinding for
extraction of RNA as described above.

Relative Quantitative RT-PCR
Bacterial RNA was quantified using a NanoDrop spectrometer
(Thermo Fisher Scientific, Waltham, MA, United States),
followed by purification and reverse transcription (1 µg of RNA)
using the PrimeScriptTM RT reagent Kit with gDNA Eraser
(TaKaRa, Dalian, China). Gene transcript levels were determined
by quantitative real-time amplification (qRT-PCR, SYBR Premix
Ex TaqTM, TaKaRa, Dalian, China) in a 7500 Real Time PCR
System (Applied Biosystems, CA, United States). Primers for
qRT-PCR are listed in Table 1 (Balasubramanian et al., 2016;
Gaupp et al., 2016). The mRNA levels of target genes were
standardized against those of the housekeeping gene 16S rRNA.
The fold change was determined using the 2−11CT method
(Livak and Schmittgen, 2001).

Statistical Analysis
One-way analysis of variance (ANOVA) followed by a posteriori
Dunnett’s test was used to analyze the results (SAS Institute,

TABLE 1 | Primers used for quantitative RT-PCR (qRT-PCR) in this study.

Primer Sequence (5′–3′) References

lukE-F GAAATGGGGCGTTACTCAAA Balasubramanian
et al., 2016

lukE-R GAATGGCCAAATCATTCGTT Balasubramanian
et al., 2016

RNAIII-F AGGAGTGATTTCAATGGCACAAG Gaupp et al., 2016

RNAIII-R TGTGTCGATAATCCATTTTACTAAGTCA Gaupp et al., 2016

16S rRNA-F CGTGCTACAATGGACAATACAAA Gaupp et al., 2016

16S rRNA-R ATCTACGATTACTAGCGATTCCA Gaupp et al., 2016

Cary, NC, United States). Results were considered statistically
significant when p < 0.05.

RESULTS

Minimum Inhibitory Concentrations of
Antibiotics
The MIC values of 11 antibiotics, summarized in Table 2,
showed that the S. aureus strain Newman was susceptible to all
the drugs tested.

Impacts of Sub-Minimum Inhibitory
Concentrations of Antibiotics on
Staphylococcus aureus Growth
We generalized the impact of 11 antibiotics at sub-MICs on
strain Newman growth (Figure 1). As can be seen, graded
concentrations of vancomycin, trimethoprim–sulfamethoxazole,
clindamycin, gentamicin, daptomycin, and tigecycline triggered
no significant growth defects over the entire growth curves
compared with those of the control without drugs; in contrast,
ciprofloxacin, cefazolin, erythromycin, rifampicin, and linezolid
caused growth inhibition (p < 0.05) at 1/2 MIC. Because
of this inhibition, we excluded these five antibiotics at 1/2
MIC from subsequent experiments of in vitro measurement
of transcription to eliminate possible effects from antibiotic-
induced growth impairment.

Impact of Antibiotics on lukE Expression
As exhibited in Figure 2, after 3 h of in vitro incubation, only
four of 11 antibiotics had effects on lukE expression (Figure 2A).
Vancomycin at three sub-MICs detected significantly increased
lukE transcription from 2.54- to 2.77-fold, respectively (p = 0.002
at 1/8 MIC, p = 0.004 at 1/4 MIC, and p = 0.006 at 1/2
MIC). Trimethoprim–sulfamethoxazole induced lukE mRNA
production at 1/8 MIC (2.07-fold, p = 0.026) and 1/2 MIC
(2.12-fold, p = 0.031). Tigecycline at 1/4 MIC enhanced lukE
transcription level 1.89-fold (p = 0.019). In contrast, cefazolin

TABLE 2 | Minimal inhibitory concentrations (MICs) of 11 antibiotics for
Staphylococcus aureus Newman.

Antibiotic MIC (µg/ml)

Cefazolin (CFZ) 0.25

Gentamicin (GEN) 0.5

Ciprofloxacin (CIP) 0.5

Erythromycin (ERY) 0.5

Tigecycline (TGC) 0.25

Clindamycin (CLI) 0.125

Vancomycin (VAN) 2

Linezolid (LZD) 2

Rifampicin (RIF) 0.03

Daptomycin (DAP) 0.5

Trimethoprim–sulfamethoxazole (SXT) 1
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also dramatically reduced the expression of lukE (1.65-fold,
p = 0.037) at 1/4 MIC.

However, after 5 h of in vitro exposure, the 11 antibiotics
examined all affected lukE mRNA transcription (Figure 2B).
Treatment with vancomycin, trimethoprim–sulfamethoxazole,
clindamycin, gentamicin, or daptomycin at all sub-MICs tested
significantly increased lukE expression levels than did the
no-drug control. Ciprofloxacin affected lukE mRNA levels
particularly at 1/8 MIC and 1/4 MIC, ranging from 1.46-
(p = 0.037) to 4.09-fold (p = 0.001), respectively. The transcript
levels of lukE were considerably reduced in a concentration-
dependent manner when exposed to 1/8 to 1/4 MICs of cefazolin
(3.92-fold, p = 0.009 and 5.10-fold, p = 0.001, respectively). Strain
Newman showed reduced lukE expression in the presence of 1/4
MIC of erythromycin (1.47-fold, p = 0.030) and rifampicin (1.88-
fold, p = 0.010). Addition of 1/8 MIC (1.91-fold, p = 0.031) and
1/4 MIC (two-fold, p = 0.017) of linezolid and 1/4 MIC (2.71-fold,
p = 0.003) of tigecycline led to reduced lukE transcript levels.

Figure 3A shows that clindamycin, linezolid, and daptomycin
had no relevant effects on lukE mRNA transcription in vivo;
however, the expression of lukE was strikingly inhibited
by tigecycline (10.10-fold, p < 0.001) and increased by
vancomycin (2.03-fold, p = 0.009) and cefazolin (2.57-fold,
p = 0.006). In addition, bacterial count results show that
the total abscess bacterial load was significantly reduced by
tigecycline, daptomycin, and cefazolin but considerably increased
by clindamycin and vancomycin (Figure 3C).

Impact of Antibiotics on RNAIII
Expression
The effects of sub-MICs of antibiotics on RNAIII expression
in vitro are shown in Figure 4. After 3 h of treatment, vancomycin
induced RNAIII transcription at all sub-MICs tested (3.24-fold at
1/8 MIC, p < 0.001; 2.24-fold at 1/4 MIC, p = 0.001; and 1.47-
fold at 1/2 MIC, p = 0.016). Trimethoprim–sulfamethoxazole
increased RNAIII mRNA levels at 1/8 MIC (1.90-fold, p = 0.008)
and 1/2 MIC (2.59-fold, p = 0.034). In addition, clindamycin and
gentamicin all enhanced the expression of RNAIII at 1/8 MIC
(1.65-fold, p = 0.008; 2.74-fold, p = 0.017), 1/4 MIC (1.55-fold,
p = 0.010; 1.95-fold, p = 0.003), and 1/2 MIC (1.58-fold, p = 0.014;
2.04-fold, p = 0.002). Linezolid induced RNAIII expression by
1.63-fold at 1/8 MIC (p = 0.020) and 1.75-fold at 1/4 MIC
(p = 0.006). RNAIII expression levels had a statistically significant
increase at 1/2 MIC of daptomycin (1.77-fold, p = 0.018).
Rifampicin reduced RNAIII expression by 9.90-fold at 1/8 MIC
(p < 0.001) and 12.20-fold at 1/4 MIC (p = 0.004). Tigecycline
reduced RNAIII expression by 1.72-fold at 1/8 MIC (p = 0.009)
but enhanced its expression at 1/4 MIC (1.37-fold, p = 0.033) and
1/2 MIC (1.46-fold, p = 0.015) (Figure 4A).

After 5 h of treatment, RNAIII expression levels increased at
1/2 MIC of vancomycin (2.32-fold, p < 0.001), 1/8 MIC and
1/4 MIC of trimethoprim–sulfamethoxazole (1.68-fold, p = 0.002,
and 2.14-fold, p = 0.004, respectively), and three sub-MICs
of clindamycin (6.50-fold at 1/8 MIC, 6.67-fold at 1/4 MIC,
and 6.86-fold at 1/2 MIC, p < 0.001). In contrast, RNAIII
transcription decreased at 1/4 MIC of cefazolin (1.95-fold,

p = 0.005) and sub-MICs of rifampicin (6.06-fold at 1/8 MIC
and 41.67-fold at 1/4 MIC, p < 0.001). In addition, ciprofloxacin
reduced the transcript levels of RNAIII at 1/8 MIC (2.40-fold,
p < 0.001) but increased the expression of RNAIII at 1/4 MIC
(2.56-fold, p < 0.001). Tigecycline increased RNAIII expression
at 1/4 MIC (2.07-fold, p = 0.001) and 1/2 MIC (5.40-fold,
p < 0.001) (Figure 4B).

In vivo, RNAIII transcript levels were remarkedly reduced by
tigecycline by 5.37-fold (p = 0.004) and increased by vancomycin
and cefazolin by 5.58-fold (p < 0.001) and 2.05-fold (p = 0.002),
respectively (Figure 3B).

Correspondence Analysis Between the
Expression of lukE and RNAIII
Table 3 shows the correspondence between the transcription
levels of lukE and RNAIII in vitro and in vivo. Our data
demonstrate that the expressional variations of RNAIII had a
consistent trend with those of lukE when exposed to clindamycin
at 1/8 to 1/2 MICs for 5 h; tigecycline at 1/4 MIC for 3 h;
vancomycin at 1/8 to 1/2 MICs for 3 h and 1/2 MIC for 5 h;
trimethoprim–sulfamethoxazole at 1/8 MIC and 1/2 MIC for
3 h and at 1/8 MIC and 1/4 MIC for 5 h; and ciprofloxacin,
cefazolin, and rifampicin at 1/4 MIC for 5 h. In the animal abscess
model, the expression levels of RNAIII were strongly consistent
with those of lukE after exposure to tigecycline, clindamycin,
daptomycin, linezolid, vancomycin, and cefazolin.

DISCUSSION

The S. aureus LukED toxin is able to trigger the damage of
host cells and plays a vital role in controlling infection progress
(Alonzo et al., 2013; Reyes-Robles et al., 2013; Spaan et al., 2015).
Therefore, this toxin may be established as a novel potential
target of antitoxin therapy for S. aureus diseases (Nocadello et al.,
2016). Antimicrobial treatment for most infections can promote
rapid bacterial damage. However, sometimes, elimination of
the pathogen does not occur quickly enough to prevent the
harmful impact of virulence factors (Hodille et al., 2017). Thus,
antibiotics-mediated reduction of virulence factor production
was suggested for the treatment of toxin-mediated diseases
(Nathwani et al., 2008). Here, we explored the effects of anti-
Staphylococcus antibiotics commonly used in the clinic on lukED
expression in vitro and in vivo using the S. aureus strain Newman,
a good producer of LukED.

Clindamycin, linezolid, erythromycin, gentamicin, and
tigecycline, protein synthesis inhibitor compounds, block
mRNA translation at the level of the ribosome to suppress the
production of staphylococcal exotoxin protein (Hodille et al.,
2017). Therefore, these drugs can exhibit broad anti-virulence
traits. In this study, we discovered that these drugs at sub-MICs
also modulated the mRNA levels (increase or decrease) of
lukE (Figure 2). Possible interpretations for this observation
are that protein synthesis inhibitors specifically disturb the
expression of regulator(s) or two-component signal transduction
system(s) that regulate transcription or translation of virulence
determinants or that the activities of proteases and RNases affect
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FIGURE 1 | The influence of sub-MICs antibiotics on Staphylococcus aureus strain Newman kinetic growth. VAN, vancomycin; SXT, trimethoprim–sulfamethoxazole;
CLI, clindamycin; GEN, gentamicin; DAP, daptomycin; CIP, ciprofloxacin; CFZ, cefazolin; ERY, erythromycin; RIF, rifampicin; LZD, linezolid; TGC, tigecycline; MIC,
minimum inhibitory concentration.

FIGURE 2 | Impact of antibiotics at graded subinhibitory concentrations on the in vitro expression of lukE of Staphylococcus aureus Newman after 3 (A) and 5 h (B)
of stimulation. Values are means ± SD (three technical replicates). ∗p < 0.05 compared with the no-antibiotic control. VAN, vancomycin; SXT,
trimethoprim–sulfamethoxazole; CLI, clindamycin; GEN, gentamicin; DAP, daptomycin; CIP, ciprofloxacin; CFZ, cefazolin; ERY, erythromycin; RIF, rifampicin; LZD,
linezolid; TGC, tigecycline.
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FIGURE 3 | Impact of antibiotics on the expression of lukE (A) and RNAIII (B) and cell counts (C) of Staphylococcus aureus Newman within the abscess. Values are
means ± SD (three technical replicates). n = 5 mice per group. ∗p < 0.05, compared with the group treated with PBS. TGC, tigecycline; CLI, clindamycin; DAP,
daptomycin; LZD, linezolid; VAN, vancomycin; CFZ, cefazolin; PBS, phosphate-buffered saline.

FIGURE 4 | Impact of antibiotics at sub-MICs on the in vitro expression of RNAIII of Staphylococcus aureus Newman after 3 (A) and 5 h (B) of treatment. Values are
means ± SD (three technical replicates). ∗p < 0.05 compared with the no-antibiotic control. VAN, vancomycin; SXT, trimethoprim–sulfamethoxazole; CLI,
clindamycin; GEN, gentamicin; DAP, daptomycin; CIP, ciprofloxacin; CFZ, cefazolin; ERY, erythromycin; RIF, rifampicin; LZD, linezolid; TGC, tigecycline; MIC,
minimum inhibitory concentration.
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TABLE 3 | The correspondence of RNAIII and lukE expression in Staphylococcus aureus Newman after antibiotics exposure in vivo and in vitro.

Antibiotic Fold change in expression of
RNAIII and lukE in vivo

Subinhibitory concentration Fold change in expression of

RNAIII and lukE in vitro

3 h of treatment 5 h of treatment

RNAIII lukE RNAIII lukE RNAIII lukE

Vancomycin 5.58 2.03 1/8 MIC 3.24 2.77 NC 2.61

1/4 MIC 2.24 2.73 NC 3.31

1/2 MIC 1.47 2.54 2.32 5.48

Trimethoprim–sulfamethoxazole / / 1/8 MIC 1.90 2.07 1.68 2.05

1/4 MIC NC NC 2.14 2.29

1/2 MIC 2.59 2.12 NC 1.52

Clindamycin NC NC 1/8 MIC 1.65 NC 6.50 2.40

1/4 MIC 1.55 NC 6.67 2.58

1/2 MIC 1.58 NC 6.86 1.73

Gentamicin / / 1/8 MIC 2.74 NC NC 1.80

1/4 MIC 1.95 NC NC 1.98

1/2 MIC 2.04 NC NC 1.91

Daptomycin NC NC 1/8 MIC NC NC NC 1.46

1/4 MIC NC NC NC 1.88

1/2 MIC 1.77 NC NC 1.64

Ciprofloxacin / / 1/8 MIC NC NC −2.40 1.46

1/4 MIC NC NC 2.56 4.09

1/2 MIC / / / /

Cefazolin 2.05 2.57 1/8 MIC NC NC NC −3.92

1/4 MIC NC −1.65 −1.95 −5.10

1/2 MIC / / / /

Erythromycin / / 1/8 MIC NC NC NC NC

1/4 MIC NC NC NC −1.47

1/2 MIC / / / /

Rifampicin / / 1/8 MIC −9.90 NC −6.06 NC

1/4 MIC −12.20 NC −41.67 −1.88

1/2 MIC / / / /

Linezolid NC NC 1/8 MIC 1.63 NC NC −1.91

1/4 MIC 1.75 NC NC −2.00

1/2 MIC / / / /

Tigecycline −5.37 −10.10 1/8 MIC −1.72 NC NC NC

1/4 MIC 1.37 1.89 2.07 −2.71

1/2 MIC 1.46 NC 5.40 NC

Data indicate increased or reduced fold variation (p < 0.05) in gene transcription compared with control without antibiotic. NC, no change; /, not detected; MIC, minimum
inhibitory concentration.

the formation of the in-process product of the translational
complex (Otto et al., 2013; Hodille et al., 2017). Previous reports
showed that vancomycin has a minor effect on pvl, hla, and
protein A (spa) mRNA levels (Dumitrescu et al., 2007, 2008;
Otto et al., 2013; Hodille et al., 2017). Nevertheless, our findings
exhibited a significant impact of vancomycin on lukE expression
in vitro. This suggests that a cell wall-disrupting agent has the
ability to induce some virulence gene expression at subinhibitory
levels. It is believed that SOS response, leading to upregulation
of an ensemble of DNA repair and recombination genes, can be
activated by subinhibitory concentrations of trimethoprim and
fluoroquinolones (Bisognano et al., 2004; Goerke et al., 2006;
Hodille et al., 2017). In this investigation, the reason for the

patently increased lukE expression regulated by trimethoprim–
sulfamethoxazole and ciprofloxacin may be related to the
SOS response. A previous study reported that transcription
of lukE is remarkedly stimulated by low concentrations of
penicillin and cefalotin (Subrt et al., 2011). However, sub-MICs
of cefazolin strongly inhibited this gene transcription in this
work. Cefalotin and cefazolin both belong to the first-generation
cephalosporins binding to penicillin-binding protein 1 (PBP-1).
The PBP-1-specific blockage by β-lactams can also initiate the
SOS response (Hodille et al., 2017). However, this SOS-based
mechanism of gene activation does not seem suitable to explain
our observations. Here, we demonstrate an increased effect
and a reduced effect on lukE transcription when S. aureus was
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exposed to sub-MICs of daptomycin and rifampicin, respectively.
A published study showed that daptomycin also induces pvl
mRNA, but the effect on hla mRNA level is varied and strain
dependent (Otto et al., 2013). Rifampicin inhibits bacteria by
suppressing the synthesis of mRNA; therefore, it is not surprising
that this drug had an anti-LukED effect at sub-MIC.

It is well known that in vitro treatment with antimicrobials
does not sufficiently correlate to clinical exposure to drugs
during disease. In contrast to the in vitro data, we measured
a pronouncedly increased level of lukE transcript in mice
exposed to cefazolin but a significant reduction in the S. aureus
burden (Figures 2, 3). Exposure to the protein synthesis
inhibitors clindamycin and linezolid or the lipopeptide antibiotic
daptomycin in vivo (no effect) was also in contrast to the effects
of antibiotics on the transcription of lukE in vitro (Figures 2, 3).
However, tigecycline, also a protein synthesis inhibitor, not only
inhibited lukE expression in vitro and in vivo but also reduced
the bacterial load (Figures 2, 3). The same observation for
tigecycline was also reported in a rat burn model (Nosanov
et al., 2017). The superior ability of tigecycline in vivo may
be correlated with tigecycline-induced differential modification
of matrix metalloproteinase-9, which can recruit leukocytes
to the site of infection for the elimination of the bacteria
(Simonetti et al., 2012).

Previous data from animal model showed that vancomycin
was inferior to linezolid (Yanagihara et al., 2009; Martinez-
Olondris et al., 2012). In the present investigation, we found that
vancomycin had a poorer ability in reducing bacterial level and
a stronger role in elevating lukE expression in vivo than had
linezolid (Figures 2, 3). The increase or decrease in bacterial
counts when using antibiotics may have a significant effect on
the production of total virulence factors, which may affect the
progress of disease. Therefore, simple in vitro experiments cannot
accurately represent the final results, and thus more in vivo
experiments are needed to evaluate the effect of antibiotics.

The expression of S. aureus virulence genes is controlled by
complicated mechanisms (Pichereau et al., 2012). Many global
modulators fine-tune virulence factor expression in response to
outside signals such as host defenses and antibacterial agents.
A regulator of this kind is the agr quorum-sensing system
(Alonzo et al., 2012; Hodille et al., 2017). So far, there have been
plenty of studies on the response of agr operon to antibiotics
(Joo et al., 2010; Otto et al., 2013; Cazares-Dominguez et al.,
2015; Jin et al., 2018). In those studies, the tested antibiotics,
such as cephalosporins, penicillin, ciprofloxacin, tetracycline,
clindamycin, and tigecycline, induced RNAIII transcription,
but aminoglycosides and mupirocin had an inhibitory role.
Here, we also detected the levels of RNAIII transcript. Table 3
shows that agr activity (RNAIII expression) was modified
by 10 of the antibiotics tested (except erythromycin) in a
concentration- and/or time-dependent manner in vitro, and
lukE transcript levels varied under seven of them (except
gentamicin, daptomycin, and linezolid) with a consistent trend.
This suggests that most antibiotics tested at sub-MICs may
modify lukE expression by affecting agr activity. Moreover,
the in vivo experiments of six representative antibiotics also
suggested the same conclusion (Figure 3B). Nevertheless, the

mechanism by which antibiotics affect agr activity is unclear,
and further investigation is needed. It is worth mentioning
here that in our study, gentamicin, ciprofloxacin, cefazolin, and
tigecycline did not show a completely consistent effect on RNA III
expression, compared with those drugs mentioned by the above
references. We speculate that the reason may be associated with
the difference of antibiotic concentration, testing time point, and
experimental strain.

The variations in lukE transcript levels may not necessarily
translate to a difference in toxin production. Regrettably, we were
not able to measure LukED toxin in the present study owing
to the lack of a corresponding antibody. In addition, whether
the in vitro and in vivo impacts on the Newman strain are
applicable to other strains remains to be determined. Despite
these shortcomings, our findings may still provide a clue to
select suitable antibiotics for the treatment of lukED-positive
S. aureus infections.
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