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ABSTRACT

Introduction: The aim of this study was to
investigate the feasibility of generating synthe-
sized ultrasound biomicroscopy (UBM) images
from swept-source anterior segment optical
coherent tomography (SS-ASOCT) images using
a cycle-consistent generative adversarial net-
work framework (CycleGAN) for iridociliary
assessment on a cohort presenting for primary
angle-closure screening.
Methods: The CycleGAN architecture was
adopted to synthesize high-resolution UBM
images trained on the SS-ASOCT dataset from
the department of ophthalmology, Xinhua
Hospital. The performance of the CycleGAN
model was further tested in two separate data-
sets using synthetic UBM images from two dif-
ferent ASOCT modalities (in-distribution and
out-of-distribution). We compared the ability of
glaucoma specialists to assess the image quality
of real and synthetic images. UBM measure-
ments, including anterior chamber, iridociliary

parameters, were compared between real and
synthetic UBM images. Intra-class correlation
coefficients, coefficients of variation, and
Bland–Altman plots were used to assess the level
of agreement. The Fréchet Inception Distance
(FID) was measured to evaluate the quality of
the synthetic images.
Results: The whole trained dataset included
anterior chamber angle images, of which 4037
were obtained by SS-ASOCT and 2206 were
obtained by UBM. The image quality of real
versus synthetic SS-ASOCT images was similar
as assessed by two glaucoma specialists. The
Bland–Altman analysis also suggested high
consistency between measurements of real and
synthetic UBM images. In addition, there was
fair to excellent agreement between real and
synthetic UBM measurements for the in-distri-
bution dataset (ICC range 0.48–0.97) and the
out-of-distribution dataset (ICC range
0.52–0.86). The FID was 21.3 and 24.1 for the
synthetic UBM images from the in-distribution
and out-of-distribution datasets, respectively.
Conclusion: We developed a CycleGAN model
to translate UBM images from non-contact SS-
ASOCT images. The CycleGAN synthetic UBM
images showed fair to excellent reproducibility
when compared with real UBM images. Our
results suggest that the CycleGAN technique is a
promising tool to evaluate the iridociliary and
anterior chamber in an alternative non-contact
method.
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Key Summary Points

Why carry out this study?

Ultrasound biomicroscopy (UBM) and
anterior segment optical coherent
tomography (ASOCT) are the most widely
used instruments to objectively visualize
and evaluate anterior segment parameters.
Both demonstrate excellent repeatability
and reproducibility, while each has its
own specific limitations.

A new technology that combines the
advantages of both devices is necessary;
such a tool might have the potential to
become the gold standard method for
measuring anterior segment parameters.

We have previously shown that a
generative adversarial network (GAN)
framework of synthetic OCT images
provides good quality images for clinical
evaluation and can also be used for
developing deep learning algorithms.
Recently, the cycle-consistent generative
adversarial network framework
(CycleGAN) was introduced to generate
images from different imaging modalities.

This aim of this study was to investigate
the feasibility of generating synthesized
UBM from swept-source anterior segment
optical coherent tomography (SS-ASOCT)
using CycleGAN for iridociliary
assessment.

What was learned from the study?

Our results showed that there was good to
excellent correlation of anterior segment
parameters measured from the synthetic
images and those from real UBM images.

The CycleGAN-based deep learning
technique provides a promising strategy
to assess iridociliary using easy-to-use and
non-contact methods.

INTRODUCTION

Precise ocular biometry is crucial for the diag-
nosis and treatment of ocular disorders. For
anterior ocular biometric measurements, newer
imaging instruments have been developed to
objectively visualize and evaluate anterior seg-
ment parameters instead of traditional subjec-
tive techniques, such as slip-lamp examination
and gonioscopy. Among these devices, ultra-
sound biomicroscopy (UBM) and anterior seg-
ment optical coherence tomography (ASOCT)
are the most widely used imaging modalities.
UBM allows high-resolution visualization of the
anterior segment and angle structures at an
ultrasonic frequency of 35–100 MHz, providing
additional information on the posterior cham-
ber not otherwise available through clinical
examination [1]. ASOCT is a computerized
imaging technology providing optical cross-
sectional images of ocular structures, and when
updated with the newer technology of swept-
source OCT (SS-OCT), it provides a larger
number of non-contact higher resolution ima-
ges, more detailed information, and precise
parameters of the angle, corneal, iris, and
anterior chamber volumes; in addition, the fast
scan rate effectively decreases motion artifact
[2].

Research has demonstrated excellent
repeatability and reproducibility of UBM and
SS-ASOCT [3–5]. However, despite their high
value as diagnostic tools, both techniques have
limitations. UBM is a contact, non-invasive
method that takes a relatively longer time, and
capturing diagnostic images and evaluation
requires great skill and experience of the oper-
ator. SS-ASOCT is based on the optical principle.
Since the examining beam cannot penetrate
through the iris, certain structures in the pos-
terior chamber, such as ciliary processes, zonule
fibers, and cysts or intraocular foreign body
behind the iris, can not be captured and
imaged. Should a specific new technological
method be developed that could combine the
advantages of both devices, namely, a device
that could automatically capture the non-con-
tact high-resolution images of the anterior seg-
ment and angle structures with posterior
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chamber information, as well as unique anterior
chamber parameters under rapid scan, it might
have the potential to become the gold standard
method for measuring the anterior segment
parameters.

The recent development of deep learning
methods, especially domain adaption using
generative adversarial networks (GANs) [6], has
attracted much interest in the field of medical
imaging analysis. Several studies have demon-
strated the capability of GANs to generate syn-
thetic computed tomography (CT) or magnetic
resonance (MRI) images of prostate [7], liver [8],
brain [9], and head and neck cancer [10]. We
have previously shown that GANs of synthetic
OCT images have good quality for clinical
evaluation and can also be used for developing
deep learning algorithms [11–13]. More
recently, a cycle-consistent generative adver-
sarial network framework (CycleGAN) was
introduced to generate images from different
imaging modalities. For example, several
researchers have demonstrated a CycleGAN-
based domain transfer between CT and MRI
images [14], traditional retinal fundus pho-
tographs, and ultra-widefield images [15],
among others. However, cross-modality image
transfer between SS-ASOCT and UBM has not
yet been reported. Inspired by this domain
transfer, the aim of this study was to build a
CycleGAN-based deep learning model for the
domain transfer from SS-ASOCT to UBM. We
also conducted experiments to demonstrate the
effectiveness of the CycleGAN method by
qualitatively and quantitatively measuring iri-
dociliary parameters from synthetic UBM using
this technique with an independent dataset.

METHODS

Study Design

We retrospectively collected the development
datasets from the PACS ((picture archiving and
communication system) of the department of
ophthalmology, Xinhua Hospital, Medicine
School of Shanghai Jiaotong University. The
raw development datasets consisted of 2314 SS-
ASOCT images and 2417 UBM images from 163

and 612 patients, respectively, between 16
September 2020, and 10 December 2021
(Fig. 1a). All subjects had visited the glaucoma
clinic to screen for primary angle-closure glau-
coma, which is a major cause of blindness in
Chinese population. We excluded patients with
a prior history of trauma, intraocular tumor,
intraocular surgery, and laser iridoplasty. Eyes
with gross iris atrophy and uveitis were also
excluded. Details of SS-ASOCT and UBM imag-
ing have been described previously [16, 17]. In
brief, SS-ASOCT (model CASIA2; Tomey,
Nagoya, Japan) is a novel imaging modality
which, compared to earlier generations of
ASOCT, such as time-domain ASOCT (Visante
OCT; Carl Zeiss Meditec, Dublin, CA, USA), has
a faster scan speed (50,000 vs. 2000 A-scans/s),
provides deeper imaging (11 vs. 8 mm), and has
a higher resolution (2.4 vs. 10 lm). In the pre-
sent study, SS-ASOCT (model CASIA2; Tomey
Corp., Nagoya, Japan) images were obtained for
all participants. A total of 128 two-dimensional
cross-sectional SS-ASOCT images were acquired
per scan. All UBM images were taken by UBM
(model SW-3200L; Suoer Electronic Ltd., Tian-
jin, China). During the UBM examination,
subjects lay supine under standardized dark
conditions (illumination 60–70 lx). The probe
was then placed perpendicular to the ocular
surface, and images of all four quadrants were
obtained. A single operator imaged all subjects.
Only those images were included in the analysis
which clearly visualized the scleral spur, drai-
nage angle, ciliary body (for UBM images only),
and a half chord of the iris.

To evaluate the GAN model, we also col-
lected two independent testing datasets as the
in-distribution and out-of-distribution testing
datasets, respectively. The in-distribution test-
ing dataset included SS-ASOCT images from the
same hospital between 1 March 2021 and 4 May
2021. The out-of-distribution testing datasets
involved time-domain ASOCT images acquired
at a different hospitals from our previous study.
All subjects underwent an ophthalmic exami-
nation, including best-corrected visual acuity,
refraction, slit-lamp examination, and gonio-
scopic anterior chamber angle (ACA) evaluation
by a fellowship-trained glaucoma specialist
(Goldmann 2-mirror lens; Haag-Streit AG, Bern,

Ophthalmol Ther (2022) 11:1817–1831 1819



Switzerland). The inclusion and exclusion cri-
teria were identical for the training and inde-
pendent testing datasets. In the two testing

datasets, ASOCT and UBM were performed in
terms of the nasal and temporal angle.

Fig. 1 Schematic of image preprocessing, CycleGAN
model development, and evaluation of synthetic UBM
images. ACA Anterior chamber angle, AS-OCT anterior
segment optical coherence tomography CycleGAN cycle-

consistent generative adversarial network, UBM ultrasound
biomicroscopy
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This study was approved by the Institutional
Review Board of Xinhua Hospital, Medicine
School of Shanghai Jiaotong University (iden-
tifier: XHEC-D-2021-114). The study was carried
out in accordance with the ethical standards set
by the Declaration of Helsinki of 1964 as
amended in 2008. All SS-ASOCT and UBM
images were anonymized and de-identified
according to the Health Insurance Portability
and Accountability Act Safe Harbor before
analysis [18]. Informed consent was exempted
by the IRB in the retrospectively collected
development and validation datasets. In the
prospectively collected testing dataset,
informed consent for publication was obtained
from all enrolled patients or from their
guardians.

CycleGAN Architecture and Generation
of Synthesized UBM Images

To generate the synthesized UBM images, we
adopted a CycleGANs model to translate images
from the SS-ASOCT domain to UBM using
unpaired data (Fig. 1b). The details of the
CycleGAN architecture have been previously
described by Zhu et al. In brief, CycleGAN is a
type of unsupervised machine learning tech-
nique used for mapping different image
domains [19]. The whole neural network of
CycleGAN consists of two generator-discrimi-
nator networks. Figure 1b shows the schematic
of the CycleGAN model in the current study.
The forward cycle learns a mapping of the first
generator to translate SS-ASOCT images to syn-
thetic UBM images and attempts to make syn-
thetic UBM images that are as real as real UBM
images to fool the discriminator. On the other
hand, the backward cycle learns a mapping of
the second generator to transform synthetic
UBM images back into synthetic SS-ASOCT
images, and to make synthetic SS-ASOCT ima-
ges as real as the real SS-ASOCT images. This
cycle consistency allows CycleGANs to capture
the characteristics of two image domains and
automatically learn how these characteristics
should be translated to transfer the domains
without any paired datasets [20].

We adopted the codes of CycleGANs from
the Tensorflow tutorial webpage (https://www.
tensorflow.org/tutorials/generative/CycleGANs).
Since each raw SS-ASOCT image contains two
ACA regions, we split each image into two ACA
images. Both SS-ASOCT and UBM ACA images
were then rescaled to 256 9 256 pixels, nor-
malized between - 1 and ? 1, and augmented
by random flip, cropping, and contrast pertur-
bations. For training, we used an Adam opti-
mizer learning rate of 0.0002 and a batch size of
1, as described by the same webpage. The model
was trained on the Kaggle platform (www.
kaggle.com), a free cloud service for deep
learning research. Kaggle cloud platform pro-
vides free access to NVIDIA TESLA P100 GPUs
with 16 GB RAM.

Evaluation of CycleGANs Synthetic UBM
Images for Iridociliary Assessment

We sought to determine whether the Cycle-
GANs synthetic UBM images could be utilized
to assess the iridociliary. First, a visual Turing
test [21] was performed to evaluate the image
quality of synthetic UBM images. Then, we
applied the CycleGAN to the independent
testing dataset, and 30 synthetic UBM images
were generated accordingly. All images were
displayed on a laptop screen with 256 9 256
pixels. Two glaucoma specialists (HFY and YQH
with more than 5 and 10 years of glaucoma
experience, respectively) from the same center
manually assessed the image quality of both the
synthetic and real UBM images. To avoid con-
firmation bias, the glaucoma specialists were
not told that there a

were any synthetic images among the UBM
images. We have devised an image quality
grading scheme for evaluating the GAN syn-
thetic ophthalmic images [11, 12] that includes:
(1) visibility of the scleral spurs, which was
defined as the point where there was a change
in the curvature of the inner surface of the angle
wall [22]; (2) presence of continuity in the
anterior segment structures, including iridocil-
iary [11]; and (3) the absence of motion artifacts
[23]. After image quality evaluation, two
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glaucoma specialists were asked to classify every
image in that dataset as being either real or fake.

To quantitively assess the synthetic UBM
images in the in-distribution (SS-ASOCT) and
out-of-distribution (time-domain ASOCT) data-
sets, imaging analysis in the testing dataset was
further processed using q-customized software
(Anterior Segment Analysis Program [ASAP]
[24]) by a single experienced observer (YW) who
was masked to the clinical data. ASAP works as a
plug-in of public domain software (ImageJ ver-
sion 1.38x; public domain software: http://
imagej.nih.gov/ij) and based on traditional
image processing algorithms. The algorithm
then automatically calculated the anterior angle
and iridociliary parameters. The following
parameters were measured as described previ-
ously: (1) ciliary body thickness at the point of
the scleral spur (CT0) and at the distance of
1000 um (CT1000) from the scleral spur [25]; (2)
angle opening distance (AOD500) [26], which
was calculated as the perpendicular distance
measured from the trabecular meshwork at 500
um anterior to the scleral spur as described
previously; (3) iris thickness (IT500), measured
at 500 lm from the scleral spur; (4) trabecular-
ciliary process angle (TCA), measured as the
angle between the corneal endothelium and
superior surface of the ciliary process; and (4)
trabecularciliary process distance (TCPD),
defined as the length of a line 500 lm from the
scleral spur extending from the corneal
endothelium, perpendicular through the pos-
terior surface of the iris, to the ciliary process
(Fig. 1c).

To further measure the performance of the
CycleGAN model, we chose the Fréchet Incep-
tion Distance (FID) to evaluate the synthetic
images. FID is a widely used metric for evalu-
ating the distance between the distributions of
synthetic data and real data by calculating the
Wasserstein-2 distance in the feature space of an
Inception-v3 network.

Statistical Analysis

The quality of the synthetic and real UBM
images’ was graded by two glaucoma specialists,
using Pearson’s v2 test. To evaluate the

agreement between the measurements of the
devices, Bland–Altman analysis (mean differ-
ence and limits of agreement [LoA]) was per-
formed. The measurement correlations were
calculated using intra-class correlation coeffi-
cients (ICCs) and coefficients of variation
(CoVs). An ICC of\0.4 indicated poor repro-
ducibility, ICC between 0.4 and 0.75 indicated
fair to good reproducibility, and ICC[0.75
indicated excellent reproducibility. All statisti-
cal tests were performed using the SPSS version
26.0 software (SPSS IBM Corp., Armonk, NY,
USA).

RESULTS

In this study, the CycleGAN model generated
UBM images (pixel resolution of 256 9 256)
using SS-ASOCT images. After image grading
and preprocessing, the trained dataset included
4037 SS-ASOCT ACA and 2206 UBM ACA ima-
ges. The processing time for one synthetic UBM
image was approximately 1.1 s using a com-
mercial laptop (Apple MacBook Air M1; Apple
Inc., Cupertino, CA, USA). The examples of
synthetic UBM images and corresponding SS-
ASOCT images are shown in Fig. 2. Overall, our
approach is capable of generating OCT images
that are realistic. The results of UBM image
quality grading by two glaucoma specialists are
shown in Table 1. Both glaucoma specialists
graded synthetic UBM images as having
approximately the same proportion of good
quality images as the real UBM images (all
p[0.05, Pearson Chi-square). Table 2 also
summarizes the second part of the Turing test. It
was notable that the accuracy for distinguishing
between true and fake images was 56.7% and
60%, respectively, which is only slightly better
than chance.

In the in-distribution (SS-ASOCT) dataset,
there was fair to excellent agreement between
the measurements of real and synthetic UBM
images of the anterior chamber and of iridocil-
iary parameters (Table 3). ICC values were 0.74
(CT1000), 0.86 (CT0), 0.97 (AOD500), 0.48
(IT500), 0.81 (TCA) and 0.80 (TCPD). Figure 3a
shows the Bland–Altman plot for the anterior
chamber parameter (AOD500). The mean
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difference was - 0.06 mm at 95% LoA (- 0.11
to - 0.01 mm). The Bland–Altman plots for iri-
dociliary parameters CT0, CT1000, TCA, and
TCPD are shown in Fig. 3b, c, e, and f, respec-
tively; the mean difference was - 0.10 mm
(95% LoA - 0.34 to 0.12), - 0.01 mm (95% LoA
- 0.12 to 0.09), - 5.1� (95% LoA - 21.91� to
11.71�), and 0.02 mm (95% LoA; - 0.22 to

0.25), respectively. Figure 3d shows the
Bland–Altman plot for the iris parameter
(IT500); the mean difference was - 0.07 mm at
95% LoA of - 0.20 to 0.07 mm (Fig. 3; Table 3).
The CoVs were 7.7% (CT1000), 13.3% (CT0),
25.8% (AOD500), 16.5% (IT500), 8.4% (TCA),
and 9.6% (TCPD).

Fig. 2 Examples of SS-ASOCT images (a, d), real UBM images (b, e), and synthetic UBM images (c, f). SS-ASOCT Swept-
source anterior segment optical coherent tomography

Table 1 Synthetic and real UBM images’ quality grading by 2 glaucoma specialists

Synthetic UBM Real UBM p value

Glaucoma specialist 1

Visibility of the scleral spurs 27 (90%) 30 (100%) 0.076

Continuity in anterior segment structures 28 (93%) 29 (97%) 0.554

Absence of motion artifacts 30 (100%) 29 (97%) 0.313

Glaucoma specialist 2

Visibility of the scleral spurs 23 (77%) 27 (90%) 0.166

Continuity in anterior segment structures 25 (83%) 24 (80%) 0.739

Absence of motion artifacts 27 (90%) 28 (93%) 0.64

UBM Ultrasound biomicroscopy

Ophthalmol Ther (2022) 11:1817–1831 1823



In the out-of-distribution (time-domain
ASOCT) dataset, the fair to excellent agreements
were also observed between real and synthetic
UBM image measurements of the anterior
chamber and iridociliary parameters (Table 4).
ICC values were 0.70 (CT1000), 0.82 (CT0), 0.86
(AOD500), 0.52 (IT500), 0.73 (TCA), and 0.81
(TCPD).

As no previous data are available on the
question addressed in our study, we were unable
to determine whether the FID measured in our
experiment was good or not. Therefore, we
added the synthetic ASOCT images from a pre-
cious study performed by our group as refer-
ence. Relative to calculations based on the real

UBM images, the FID was 21.3, 24.1, and 102.8
for synthetic UBM images from the in-distribu-
tion dataset, synthetic UBM images from out-of-
distribution dataset, and synthetic ASOCT
images, respectively (Fig. 4). It was noted that
the FIDs obtained from in-distribution and out-
of-distribution UBM images were much smaller
than those obtained by synthetic images from
different anterior chamber imaging modalities.

We also noted several cases of failure, as
shown in Fig. 5. If an input SS-ASOCT image
shows an open angle with shallow anterior
chamber, the CycleGAN would not be able to
generate angle structure correctly.

DISCUSSION

In this study, we proposed a CycleGAN-based
deep learning technique for generating UBM
images using SS-ASOCT images as the inputs.
Our experiments suggest that realistic synthetic
UBM images can be generated from SS-ASOCT
images using CycleGANs. Moreover, the Cycle-
GAN synthetic UBM images can reveal iridocil-
iary structure. The measurements of iridociliary
parameters from the CycleGAN synthetic UBM
images showed fair to excellent reproducibility
compared with those from the real UBM ima-
ges. Although the measurements of anterior

Table 2 Synthetic vs. real UBM images distinguished by 2
glaucoma specialists

True positive
ratio (%)

False positive
ratio (%)

Accuracy
(%)

Glaucoma

specialist 1

60.0 46.7 56.7

Glaucoma

specialist 2

63.3 43.3 60.0

Overal

average

61.7 45.0 58.4

Table 3 Comparison of anterior chamber angle and ciliary body measurements between synthetic and real ultrasound
biomicroscopy images

UBM parametersa ICC (95% CI) Mean difference (mean – SD) LoA CoV (%)

AOD500 (mm) 0.97 (0.94 to 0.99) - 0.06 (- 0.08 to - 0.05) - 0.11 to - 0.01 25.8

CT0 (mm) 0.86 (0.71 to 0.93) - 0.10 (- 0.15 to - 0.05) - 0.34 to 0.14 13.3

CT1000 (mm) 0.74 (0.52 to 0.87) - 0.01 (- 0.04 to 0.01) - 0.12 to 0.09 7.7

IT500 (mm) 0.48 (- 0.12 to 0.76) - 0.07(- 0.09 to - 0.04) - 0.20 to 0.07 16.5

TCA (�) 0.81 (0.59 to 0.91) - 5.1 (- 8.4 to - 1.77) - 21.91 to 11.71 8.4

TCPD (mm) 0.80 (0.56 to 0.90) 0.02 (- 0.22 to 0.25) - 0.22 to 0.25 9.6

CI Confidence interval, CoV coefficient of variance, ICC intra-class correlation coefficient, LoA limit of agreement, SD
standard deviation
aAOD500, Angle opening distance; CTO, ciliary body thickness at the point of the scleral spur; CT1000 ciliary body
thickness at the distance of 1000 um from the scleral spur; IT500, iris thickness, measured at 500 lm from the scleral spur;
TCA, trabecular-ciliary process angle; PCPD, trabecularciliary process distance
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segment parameters obtained with real and
synthetic UBM images cannot be considered
interchangeable, there is fair to excellent cor-
relation between them. The potential applica-
tion of this technique is promising, as most

clinical researchers still use UBM as the angle
image modality in diagnosing angle-closure.

Assessment of angle structure is an essential
part of diagnosing and determining the man-
agement of individuals with angle-closure
[17, 27]. UBM allows visualization of the ante-
rior segment and angle structures at an ultra-
sonic frequency of 35–100 MHz, providing
high-resolution (50 lm) images of the angle and
iridociliary, which adds valuable information
regarding causal mechanisms of angle-closure
[28]. UBM is characterized to assess the
pathologies behind the iris, such as, for exam-
ple, plateau iris, lens-induced glaucoma, ciliary
block, cysts, and solid tumors of the anterior
segment. On the other hand, SS-ASOCT has a
fast scan speed (50,000 A-scans/s), allows deep
imaging (11 mm), and has a higher resolution
(2.4 lm); in addition, it provides a simple, user-
friendly, and non-contact method of assessing
the angle structure and providing more detailed

Fig. 3 Evaluation of agreement between real and synthetic
UBM images measurements of anterior chamber and
iridociliary parameters: Bland–Altman plot for AOD500
(a), CT0 (b), CT1000 (c), IT500 (d), TCA (e), and
TCPD (f). AOD500 Angle opening distance, CTO ciliary
body thickness at the point of the scleral spur, CT1000

ciliary body thickness at the distance of 1000 um from the
scleral spur, IT500 iris thickness, measured at 500 lm
from the scleral spur. TCA trabecular-ciliary process angle,
PCPD trabecularciliary process distance; for more detail,
see text

Table 4 Repeatability of anterior chamber angle and cil-
iary body measurements between synthetic and real ultra-
sound biomicroscopy images from he out-of-distribution
dataset

UBM parameters ICC (95% CI)

AOD500 (mm) 0.86 (0.71–0.93)

CT0 (mm) 0.82 (0.68–0.96)

CT1000 (mm) 0.70 (0.54–0.86)

IT500 (mm) 0.52 (0.34–0.70)

TCA (�) 0.73 (0.57–0.89)

TCPD (mm) 0.81 (0.67–0.95)
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information and precise parameters of the angle
and corneal, iris, and anterior chamber vol-
umes. The fast scan rate of SS-ASOCT effectively
decreases motion artifacts [2]. Unfortunately,
SS-ASOCT cannot visualize structures posterior
to the iris [29], which precludes assessment of
the impact of the iridociliary in some angle-

closure mechanisms, such as plateau iris which
is more common in the Chinese population.
Therefore, it would be clinically advantageous
to develop a diagnostic modality in which these
two anterior segment imaging modalities are
integrated. For example, Kwon et al. assessed
eyes with primary angle-closure (PAC) using

Fig. 4 FID for synthetic UBM images from in-distribution dataset, synthetic UBM images from out-of-distribution dataset,
and the synthetic ASOCT images, respectively. FID Fréchet Inception Distance

Fig. 5 Sample with failed UBM image generation
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both SS-ASOCT and UBM [17]. Based on their
results, these authors suggested that by using
UBM, clinicians may obtain more clues on the
mechanisms of PAC. Moreover, prior SS-ASOCT
data can be transferred to UBM and further
combined into an anterior segment dataset for
medical follow-up, clinical research, and deep
learning analysis.

GANs offer a novel method to generate new
medical images. Recent studies suggest possible
applications of generative methods for retinal
image registration and fundus or optical
coherence tomography image denoising [30].
Traditional GANs require a large training data-
set to synthesize realistic medical images. For
example, in our previous studies [11], we pro-
posed a GAN approach to generate realistic
ASOCT images using more than 20,000 ASOCT
images. Moreover, traditional GAN models,
such as progressively grown GANs or deep
convolutional GANs, can only work in images
from the same domain. To synthesize medical
images from different domains, several genera-
tive networks have been suggested, including
unsupervised GAN models, such as CycleGAN,
and supervised networks, such as Pix2Pix GAN.
Pix2Pix techniques have shown good perfor-
mance in image translation settings. However,
the critical shortage of paired dataset restricts
the real application of supervised GANs. UBM
requires a contact immersion scanning tech-
nique that is run by skilled operators. Therefore,
it is difficult to collect a sufficiently large paired
dataset for supervised GAN training, which is
also a common issue in medical imaging
research. In addition, it is inevitable that the
body or eyes will move during different scan-
ning procedures, such as CT and MRI, ASOCT
and UBM, which make it a challenge to match
or register two different domain images. Cycle-
GAN is a type of unsupervised machine learning
technique with the significant advantage of
being able to utilize the unpaired dataset with
two different domains. Recently, several
researchers have demonstrated a CycleGAN-
based domain transfer between different image
modalities. For example, Li et al. proposed a
CycleGAN architecture to synthesize MRI ima-
ges from brain CT images for MR-guided radio-
therapy [31]. In another study, Muhaddisa et al.

reported an effective domain adaptation
method based on CycleGANs to map MR images
from different datasets taken from different
hospitals using different scanners and settings
[32]. Their technique effectively enlarged the
MRI dataset, and the proposed scheme was
shown to achieve good diagnostic performance
for predicting molecular subtypes in low-grade
gliomas. Using a similar CycleGAN model, Yoo
et al. showed this technique can synthesize
traditional fundus photography images directly
from ultra-widefield fundus photography with-
out a manual pre-conditioning process [15].
However, cross-modality domain transfer
between SS-ASOCT and UBM is challenging due
to the high variability of angle tissue or struc-
ture appearance caused by different imaging
mechanisms [33]. In the current study, we built
a CycleGAN-based deep learning model for the
domain transfer from SS-ASOCT to UBM. Our
result was encouraging in that we found that
the CycleGAN model can generate realistic
UBM images of high quality, as assessed by
human experts in our Turing test.

Despite the above, our study has a few limi-
tations. First, our CycleGAN model can only
generate UBM images with 256 9 256 pixel
resolution, which is lower than that of the
Casia2 SS-ASOCT system (2129 9 1464 pixel
resolution) and the Suoer UBM (1024 9 655
pixel resolution) system. For the evaluation of
some small lesions, such as ciliary body cysts or
tumors, a higher resolution may be needed. As
only part of the iris and lens were synthesized in
the UBM image, we also could not assess the
reproducibility of some lens or iris parameters
(lens vault or iris convexity). On the other
hand, some angle structure, such as iris thick-
ness measured at 500 lm from the scleral spur,
only has a length of a few pixels which could
cause lower ICC in our study. The aim of the
present study was to build a CycleGAN-based
deep learning model for the domain transfer
from SS-ASOCT to UBM. It is possible to gener-
ate higher resolutions (e.g., 1024 9 1024 or
above), as reported in our previous study [12].
Future work will involve generating small
lesions or angle structures, which might help
improve the clinical application of GAN mod-
els. Second, most of the subjects in our testing
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datasets had an open-angle. Other angle-closure
mechanisms, like pupil block, plateau iris con-
figuration, thick peripheral iris roll, and exag-
gerated lens vault, were not evaluated in the
current study [34]. Generating the iridociliary
for different angle-closure mechanisms might
help improve our understanding of angle-clo-
sure. Third, although we assessed the general-
izability of the CycleGAN model by testing it
within independent external datasets, the
whole dataset is collected from the same center,
using the same devices, following the same
process. This will result in the method being
vulnerable to the domain shift and will also
cause over-optimism about the results. The lat-
est module of SS-ASOCT, CASIA2, is only
available in very few centers in mainland China,
which prevented us from collecting more data
from other centers. The application of the
CycleGAN technique requires further validation
in multi-center and multi-ethnic trials. Fourth,
the CycleGAN model does not work in a pair-
wise fashion. For paired image-to-image trans-
lation (i.e., ASOCT images to UBM images with
the same corresponding clock-hour position),
Pix2Pix architecture (a supervised GAN) is the
better model to learn a mapping from input
images to corresponding output images. How-
ever, supervised GAN needs paired datasets that
are not available in the current study. Over-
lapped examinations of both SS-ASOCT and
UBM may cost the patients more and increase
the use of human resources. The objective of
this study was to evaluate the feasibility of
CycleGANs to generate synthesized UBM ima-
ges from SS-ASOCT images. The real-world
applications of UBM include tumors, trauma,
and surgical complications, all of which cannot
be easily synthesized using the CycleGAN
model. Future work is need to evaluate the iri-
dociliary and angle pathologies using other
GAN techniques, such as meta-learning-based
GANs or semi-supervised GANs, by collecting
pairs of ASOCT and UBM images of different
pathologies.

CONCLUSION

In conclusion, we developed a CycleGANmodel
for generating UBM images using SS-ASOCT
images as the inputs. Our preliminary results
showed that there has fair to excellent correla-
tion between anterior segment parameters
measured from the synthetic and real UBM
images. The CycleGAN-based deep learning
technique presents a promising way to assess
the iridociliary with non-contact methods.
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