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Oxidative stress is a condition that arises when cells are faced with levels of reactive oxygen species (ROS) that destabilize the
homeostatic redox balance. High levels of ROS can cause damage to macromolecules including DNA, lipids, and proteins,
eventually resulting in cell death. Moderate levels of ROS however serve as signaling molecules that can drive and potentiate
several cellular phenotypes. Increased levels of ROS are associated with a number of diseases including neurological disorders
and cancer. In cancer, increased ROS levels can contribute to cancer cell survival and proliferation via the activation of several
signaling pathways. One of the downstream effectors of increased ROS is the protein kinase D (PKD) family of kinases. In this
review, we will discuss the regulation and function of this family of ROS-activated kinases and describe their unique isoform-
specific features, in terms of both kinase regulation and signaling output.

1. Oxidative Stress: Causes and Consequences

Oxidative stress is a condition that develops when the cellular
redox balance is disturbed by an excessive buildup of reactive
oxygen species (ROS). ROS mainly occur as a byproduct of
normal cellular metabolism, due to the leak of 1–3% of elec-
trons utilized in the mitochondrial electron transport chain
for the reduction of oxygen to water, resulting in the produc-
tion of superoxide [1]. Besides this “collateral” production of
ROS, they are also produced deliberately. ROS (mainly
H2O2) are generated by oxidases in peroxisomes, for
example, during β-oxidation of fatty acids and flavin oxidase
activity [2]. Furthermore, ROS are also produced in the
endoplasmic reticulum during oxidation of maturating pro-
teins in the ER, which helps to stabilize them during folding
[3]. Another source of ROS is the production of H2O2 by
nicotinamide adenine dinucleotide (NADPH) oxidase
complexes (NOX) in granulocytes and macrophages to kill
pathogens [4]. NOX enzymes are also activated by growth
factor signaling. Via the activation of kinases and by oxidiz-
ing the active-site cysteines of Tyr and lipid phosphatases,

the NOX-generated ROS can potentiate the growth factor
signaling output [5–8]. While ROS produced in these con-
texts serve a purpose, their levels should be tightly controlled,
since excessive levels of ROS can cause damage to macromol-
ecules (such as DNA, proteins, and lipids) and cause severe
mitochondrial damage, causing it to leak cytochrome c
resulting in apoptosis [9–16]. To this end, cells have several
antioxidant mechanisms in place to prevent the excessive
buildup of ROS. These are both enzymatic (e.g., superoxide
dismutases, thioredoxin reductases, and glutaredoxins) and
nonenzymatic (e.g., ascorbic acid, α-tocopherol, and gluta-
thione) in nature [17–20]. A disturbed redox balance is asso-
ciated with a variety of pathologies, including cardiovascular
disease, fibrosis, neurological disease, and cancer [21–25].
Interestingly, several cancer cell lines have been shown to
harbor increased levels of ROS in comparison to nontrans-
formed cells [26, 27]. This elevated ROS is thought to come
from diverse sources: altered metabolism and mitochondrial
functions, mutations in mtDNA, enhanced growth factor sig-
naling, and activation of oncogenes such as mutant forms of
Ras and c-Myc [3, 28–30]. For example, it was shown that
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exogenous expression of H-RasG12V in 3T3 cells increases
their proliferation rate, an event dependent on increased
ROS levels [31]. Furthermore it was shown that H-
RasG12V increases ROS levels by activating NOX4 [32].
Besides Ras, c-Myc has also been shown to increase ROS
levels in cancer cells, leading to DNA damage and genomic
instability, thereby promoting cancer development [33, 34].
Moderate levels of ROS result in the activation of several sig-
naling cascades contributing to either increased proliferation
or enhanced survival of cancer cells. For example, upregula-
tion of the PI3K/Akt pathway (e.g., via the inactivation of
PTEN), MAP kinase pathways such as Erk1/2 and JNK
(although the latter is also involved in ROS-induced apopto-
sis), and the NF-κB pathway has been observed [31, 35–37].
An important downstream regulator of the oxidative stress
response is protein kinase D (PKD). The mechanisms leading
to the activation of different PKD isoforms in cells undergo-
ing oxidative stress, as well as the signaling consequences of
this activation will be discussed in this review.

2. Protein Kinase D

2.1. The PKD Family: Isoforms and Domain Organization.
The human PKD family consists of three isoforms in humans
(PKD1, PKD2, and PKD3) and belongs to the Ca2+/calmod-
ulin-dependent protein kinase (CAMK) group of Ser/Thr
kinases. PKD1 is the largest member, with 912 amino acids
and a molecular mass of 115 kDa. PKD2 and PKD3 are
smaller with molecular masses of 105 kDa and 110 kDa,
respectively [38].

PKDs are modular enzymes that contain a long
N-terminal regulatory region followed by a catalytic domain
andaC-terminal extension (C-tail) (Figure 1).TheN-terminal
part of the protein contains several regions and domains
involved in kinase autoregulation, localization, and binding
to interactors.

At the extreme N-terminus, PKD1/2 contain a hydro-
phobic Ala(/Pro)-rich stretch (not found in PKD3), which
has been hypothesized to insert in membranes [39]. This
region is followed by two diacylglycerol (DAG) binding C1
domains. Because of this feature, PKDs were first classified
as members of the protein kinase C (PKC) family [40]. How-
ever, the catalytic domain of PKD1 shows higher homology
CAM kinases and has similar substrate and inhibitor speci-
ficity which resulted in the classification of PKDs as members
of the CAMK group [41, 42]. While the C1b domain binds
PDB with high affinity, DAG is preferably bound by the
C1a domain [43]. In PKD, the C1a and C1b domains are
separated by a large linker of approximately 70 amino acids
(compared to the linker in PKC isoforms that is much
shorter, for example, 8 amino acids in cPKC isoforms).
Additionally, the C1a-C1b linker in PKD has important
functional properties. Phosphorylation of Ser-205/208 and
Ser-219/223 in the linker has been shown to generate a
14-3-3 binding site, which is crucial for ASK1 binding
and downstream JNK activation in H2O2-stimulated cells
(see further [44]).

The C1 domains are connected to the pleckstrin homol-
ogy (PH) domain by a large linker enriched in acidic amino
acids (sometimes denoted as the acidic domain). The
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Figure 1: Domain organization and phosphorylation sites of PKD1/2/3 in oxidative stress conditions. Tyr phosphorylation sites are indicated
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potential regulatory role of this acidic stretch is not fully
explored, but it has been suggested in an early study that it
could play a role in PKD activation. This idea resulted from
the observation that basic peptides and proteins (such as
protamine sulfate, myelin basic protein, and histone H1)
could inhibit PKD in vitro. On the other hand, polyanionic
molecules such as heparin or dextran sulfate are capable of
activating PKD, without phosphatidylserine/12-O-tetradeca-
noylphorbol-13-acetate (PS/TPA) [45]. Therefore, the
authors hypothesized that polyanionic molecules could dis-
rupt an intramolecular interaction between the acidic
domain and a basic stretch elsewhere in the protein [45]. This
hypothesis however has not been further explored. The PH
domain itself functions as a negative regulator of kinase
activity. A full deletion, as well as partial deletions of the
PH domain, renders the kinase constitutively active [46].
Pleckstrin homology domains are known interacting mod-
ules for phosphoinositides. However, only a small number
of these have lipid-binding capabilities, for which the
requirements are well defined [47–49]. Structural analysis
of the available NMR structures of PKD PH domains in the
protein databank (2COA and 2D9Z) reveals that the PH
domains of PKD lack the necessary amino acids to interact
with phosphatidylinositol phosphate head groups. Hence,
the PH domain of PKD does not seem to serve as a lipid-
interaction module, but rather serves as a protein interaction
module. Important binding partners in the context of PKD
activation are Gβγ isoforms. Binding of PKD to Gβγ hetero-
dimers has been proven to directly activate immunoprecipi-
tated PKD1 in vitro [50]. Also, incubation of permeabilized
HeLa cells with Gβγ causes PKD activation, and when com-
peting free PH domain was added, activation was decreased
[50]. Seemingly in contrast to this finding, transfection stud-
ies showed that cotransfection of Gβγ isoforms with phos-
pholipase C (PLC) β2/3 isoforms was necessary to activate
PKD. However, only certain Gβγ isoforms could activate
PKD1 and PLCβ2/3, while other Gβγ isoforms could activate
PLCβ2/3 but not PKD1 [51]. This indicates that structural
compatibility between Gβγ and the PH domain is required
for activation of PKD, besides DAG generation by PLCβ2/3.

The N-terminal regulatory region is followed by the
catalytic domain. Notably, PKDs are non-RD kinases, that
is, they do not contain an Arg in their catalytic loop (HRD
motif). However, while these non-RD kinases normally are
not dependent on activation loop phosphorylation, PKDs
are (in most cases) dependent on activation loop Ser-738/
742 (hPKD1 numbering) phosphorylation for their activity
[52]. The catalytic domain is followed by a C-terminal
extension (C-tail). The C-terminal portion of the tail is not
conserved and may contribute to isoform-specific functions
such as differential localization [53]. At the extreme C-
terminus, PKD1/2 contains a PDZ-domain binding motif
(type I: X-(Ser/Thr)-X-ϕ, where X is any amino acid and
ϕ is a hydrophobic amino acid), which contains an auto-
phosphorylation site [54]. The tail is likely also important
in the regulation of PKD activity, since it has been shown
that PKD1 C-terminal epitope tags increase in vitro autocat-
alytic activity and activity towards the peptide substrate
syntide-2 compared to N-terminally tagged PKD1 [55].

2.2. Activation Models of PKD

2.2.1. Classical PKD Activation. In most instances, activation
of PKD begins with diacylglycerol formation at membranes
(e.g., after phospholipase C activation downstream of recep-
tor tyrosine kinase or G-protein-coupled receptor activation,
Figure 2(a)), although several exceptions have been discov-
ered [56–68]. PKD binds to local pools of DAG via its C1
domains, which results in a conformational change, abrogat-
ing an autoinhibitory mechanism. At this stage, PKD expect-
edly autophosphorylates at the C-tail Ser-910 residue. This
idea is supported by the fact that deletion of C1a and/or
C1b in PKD1 results in an increased basal autocatalytic
activity towards the Ser-910 autophosphorylation site and
increased activity towards peptide substrate [69]. It is note-
worthy that a deletion of the C1 domains does not increase
basal activity towards protein substrates, nor in an increase
of Ser-738/742 autophosphorylation in vitro [70]. Further-
more, Ser-910 phosphorylation does not require prior activa-
tion loop Ser-738/742 phosphorylation, since a S738/742A
mutant still autophosphorylates Ser-910 while substrate
phosphorylation is abolished [71]. This partially activated
conformation likely allows PKCs (which colocalize at
DAG-containing microenvironments via their respective
C1 domains) to phosphorylate PKD at the activation loop
Ser-738/742 residues. This phosphorylation will in turn
stabilize a conformation in which the autoinhibition by
the PH domain is relieved. This has been shown in a
study by Waldron and Rozengurt where PKD1 bearing
nonphosphorylatable Ser to Ala substitutions in the activa-
tion loop could not be activated, but when combined with
a PH domain deletion (PKD1 S738/742A ΔPH), the kinase
showed high basal activity towards Syntide-2. This activity
could not be further stimulated with PDB in cellulo, an
enzymatic profile that is comparable to PKD1 ΔPH [72].
This indicates that the role of activation loop phosphoryla-
tion is to stabilize the active conformation after the release
of the PH domain. Indeed, in an isolated catalytic domain
construct, Ser-738/742 substitution with Ala has a similar
activity to that with a WT PKD1 catalytic domain construct
[72]. This fully active PKD species will then act locally on
substrates or relocate intracellularly to exert its function. All
three isoforms can be activated by DAG in an activation loop
phosphorylation-dependent manner. It should be noted
however that there are differences in their regulation. For
example, PKD3 does not contain a C-terminal Ser auto-
phosphorylation site. Since it has been suggested that the
phosphorylation of this site primes for subsequent auto-
phosphorylation of the second Ser site in the activation
loop (i.e., Ser-742) in PKD1, it is possible that PKD3 does
not autophosphorylate at this residue [71]. Furthermore,
the C1 domains of the different isoforms display different
affinities for DAG [43], and a deletion of the C1 domains
in PKD2 results in an inactivation rather than the activat-
ing effect seen for PKD1 [73], likely pointing to differences
in their activation mechanisms.

2.2.2. PKD Activation in Oxidative Stress: An Isoform-Specific
Matter. In oxidative stress conditions, the activation

3Oxidative Medicine and Cellular Longevity



b bb

1

2
3

4

5

(n)PKC

N

PLC�훽

PLC�훾

GPCR RTK

G-protein

�훽 ɣ
�훼

b b

C
A
T PH

PH PH PH

PH

C
A
T

C
A
T

C
A
T

C
A
T

a a a
a

a

(a)

1

2 3

C2

4

5
N

PAP

PH
C
A
T

PLD

Src

Abl

b

PH
C
A
T

b

PH
C C

�훿

A
T

b

PH
C
A
T

b
b

PH
C
A
T

b

a

a a a
a

a

(b)

1

2 3
4

N

PAP C2PLD

Src

Abl

b

PIP2

IP3

PC

PA

DAG

C �훿

PH
C
A
T

b

PH
C
A
T

b

PH
C
A
T

b

PH
C
A
T

b

a

a a
a

a

C
A
T

(c)

Figure 2: (a) Classical activation of PKD downstream of phospholipase C activity. (1) PKD1 is in an inactive resting conformation: the C1 and
PHdomains autoinhibit PKD activity. (2) PKD1 is recruited toDAG-containingmicroenvironments at the plasmamembrane, which alleviates
the autoinhibition exerted by the C1 domains. In this conformation, PKD has increased activity towards peptide substrates, but not towards
proteins, indicative of an “unstable” open or “half-open” conformation. At this point, PKD can also exert autocatalytic activity
towards Ser-910. (3) The abovementioned conformational changes and Ser-910 phosphorylation structure the kinase core for
subsequent Ser-738 and Ser-742 phosphorylation by upstream PKCs. (4) Activation loop Ser phosphorylation stabilizes the PH-CAT
module in an “open” conformation allowing for full PKD activity. (5) PKD1 is released from the membrane and translocates to several
compartments to exert its functions. (b) Activation of PKD1 in oxidative stress conditions. (1) PKD1 is in a resting state, confer (a). (2)
Activation is initiated by phosphorylation of Tyr-463 in the PH domain, which allows the recruitment of PKD to DAG generated by
phospholipase D (PLD) activity at the outer mitochondrial membrane. (3) A subsequent conformational change allows for N-terminal
phosphorylation at Tyr-95. (4) PKCδ docks to PKD1 via pTyr-95 and phosphorylates PKD1 at the activation loop Ser-738/742 residues.
(5) PKD1 reaches full activity and initiates downstream signaling. (c) Activation of PKD2 in oxidative stress conditions. (1) PKD2 is in a
resting state, confer (a). (2) PKD2 is recruited to DAG generated by phospholipase D (PLD) and phosphatidic acid phosphatase (PAP)
activity at the outer mitochondrial membrane via its C1 domains, where it colocalizes and interacts with PKCδ without the need for
Tyr-95 phosphorylation. PKCδ phosphorylates PKD2 at the activation loop Ser-706/710 residues. (3) PKD2 is phosphorylated at Tyr
residues, including Tyr-87, Tyr-438, and Tyr-717, with no determined hierarchy. (4) An active and Tyr-phosphorylated PKD2 species is
released from the membrane to exert its functions. PIP2: phosphatidylinositol 4,5-bisphosphate; IP3: inositol 1,4,5-trisphosphate; PC:
phosphatidylcholine; PA: phosphatidic acid; DAG: diacylglycerol. Tyr phosphorylation sites are indicated with yellow-coloured circles,
and Ser phosphorylation sites are indicated with red-coloured circles.
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mechanism for PKD1 has historically been most studied and
is well established. In contrast to classical activation by DAG
downstream of G-protein-coupled receptors (GPCRs) or
receptor tyrosine kinases (RTKs) through plasma membrane
PLCs, activation of PKD1 in oxidative stress conditions is ini-
tiated by mitochondrial DAG production through phospho-
lipase D (and phosphatidic acid phosphatase (PAP)) activity
and generally requires the hierarchical phosphorylation of
two Tyr residues in order to activate the kinase (Figures 1
and 2(b)) [74].

First, PKD1 is phosphorylated in the PH domain at
Tyr-463 by Abl [75]. This initiates a conformational
change, allowing for Src-mediated N-terminal phosphory-
lation at Tyr-95 [75, 76]. This residue is embedded in a
motif that resembles the pTyr recognition motif for the
C2 domain of PKCδ. PKCδ docks to the pTyr motif and con-
sequently phosphorylates the activation loop Ser-738/742
residues, an event shown to be crucial for PKD1 activity in
oxidative stress (Figures 1 and 2(b)) [76–78]. In transformed
cells, Ser-910 is found not to be phosphorylated in oxidative
stress conditions and thus not part of the activation
mechanism [77]. Recent data indicates some remarkable
isoform-specific differences in the activation mechanism
during oxidative stress. Indeed, in PKD2, Tyr phosphoryla-
tion does not prime for activation loop Ser-706/710 phos-
phorylation, but rather the opposite: activation loop Ser
phosphorylation is necessary for subsequent Tyr phosphory-
lation of PKD2 (Figure 2(c)) [79]. How can this divergence be
explained? A possible explanation is that in PKD1, phos-
phorylation of Tyr-463 in the PH domain is needed to pro-
mote the deinhibited state of the PH domain-catalytic
domain interaction. This allows for subsequent activation
loop Ser-738/742 phosphorylation, which further stabilizes
the active conformation. N-terminal Tyr-95 phosphorylation
is necessary to increase the affinity of PKD1 for PKCδ in this
step. In PKD2, Tyr kinases likely have no access to the auto-
inhibited conformation. Activation of the kinase is in this
case fully dependent on activation loop Ser-706/710 phos-
phorylation to stabilize the open conformation of the kinase
after DAG binding. This active form of PKD2 can then be
accessed by Tyr kinases. Rather than being involved in the
activation of PKD2, the role of Tyr phosphorylation in the
PKD2 PH domain could be to dock specific interactors in
oxidative stress, since the PH domain in PKDs acts as a
protein-protein interaction hub, and the sequence surround-
ing the Tyr residue is in agreement with the PTB domain
consensus sequence NXXY [80]. N-terminal phosphoryla-
tion in PKD2 on the other hand could be beneficial to stabi-
lize the PKD2-PKCδ interaction. It should be noted however
that there is no difference in the association with PKCδ
between WT PKD2 and an N-terminal Tyr-Phe substituted
mutant (PKD2 Y87F) during acute oxidative stress experi-
ments [79]. This indicates that concentration of both kinases
on DAG microenvironments on the outer mitochondrial
membrane (OMM) can drive the interaction between PKCδ
and PKD2 during acute stress, overruling the need for addi-
tional affinity contacts. However, Tyr-87 phosphorylation
might be beneficial at regions of lower protein densities to
increase the PKCδ-PKD2 affinity and to maintain PKD2

phosphorylation at the activation loop, for example, after dis-
sociation from the OMM. In line with this, a recent study
showed decreased activation loop phosphorylation of a
PKD2 Y87F mutant when activated in focal adhesions [81].
Besides this differential activation mechanism, PKD2 is also
differentially phosphorylated during oxidative stress. Indeed,
PKD2 but not PKD1, is phosphorylated at Tyr in the P + 1
loop just before the APE motif. This is remarkable consider-
ing the fact that the activation segment is 100% conserved
between the isoforms and highly conserved in all Ser/Thr
kinases. This differential phosphorylation is due to a motif
just C-terminal of the activation segment, which likely
influences recognition by the upstream kinase c-Abl. This
indicates a highly regulated signaling output towards the
different isoforms in oxidative stress conditions. While no
effects were seen on substrate selectivity on a peptide array,
the phosphorylation of this site is shown to increase peptide
substrate turnover in vitro [79].

PKD3 was long thought not to be activated in oxidative
stress because it lacks an N-terminal Tyr residue. However,
PKD3 was recently shown to be activated via oxidative stress
in fibroblasts, which is reversible by treatment with the PKC
inhibitor GF109203X [82]. This indicates that PKC can
phosphorylate both PKD2 and PKD3 without Tyr phosphor-
ylation at the N-terminus during acute stress.

Besides isoform-specific behavior in oxidative stress
conditions, certain cell-type-specific behavior was also
observed. PKD1 activation in primary neuronal cells is asso-
ciated with an increase in Ser-910 autophosphorylation
(Figure 1) (this is in contrast with transformed cell lines)
[83]. This effect has also been shown in another study in neu-
ronal cells, where Ser-910 phosphorylation was shown to
prime for activation loop phosphorylation of PKD1 [84].
Intriguingly, PKD1 activation does not involve Tyr phos-
phorylation in these studies [83, 84].

2.3. PKD Signaling in Oxidative Stress. Once activated, PKDs
regulate several pathways downstream of oxidative stress.
The best studied signaling output is towards the nuclear
factor kappa-light-chain-enhancer of the activated B cell
(NF-κB) pathway. PKD1 signals to NF-κB via the IKK com-
plex, which results in the consequential degradation of IκB,
but the exact mechanism has not been elucidated yet [85].
NF-κB activity results in upregulation of mnSOD, which
detoxifies the cell from mROS, but also generates H2O2, a
tumor-promoting signaling molecule [86]. Additionally, it
was recently shown that ROS-induced PKD1-mediated
NF-κB activity results in the upregulation of epidermal
growth factor receptor (EGFR) signaling components (EGFR
and its ligand TGFα) in pancreatic cancer downstream of
oncogenic Ras [87]. While PKD-induced NF-κB activity in
transformed cells contributes to tumor development, this
pathway has recently also been shown to contribute to the
physiological steady-state survival of neuronal cells. Indeed,
in these cells, the PKD-NF-κB-SOD2 axis is constitutively
active and protects against oxidative damage [88]. In a model
of excitotoxic neurodegeneration, which results in endoplas-
mic reticulum stress and mitochondrial dysfunction, high
levels of ROS, and oxidative stress damage, the authors
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showed that PKD1 is rapidly deactivated after a short burst of
activity, resulting in the loss of NF-κB signaling and imped-
ing neuronal survival [88]. These findings were further sub-
stantiated in vivo using patient samples and an ischemic
mouse model [88]. Another recent study in hippocampal pri-
mary neurons showed that PKD1 is transiently activated dur-
ing oxidative stress, but no changes in NF-κB signaling were
observed by the authors [83]. Notably, while activity and acti-
vation loop Ser-738/742 phosphorylation are necessary for
signaling output to NF-κB by PKD1, for PKD2, the inverse
has been shown [77, 89]. Indeed, a kinase-dead PKD2
D695A (DFG to AFG) mutant strongly stimulates NF-κB sig-
naling, as do an inactivated S706/710A or Y717F mutants,
while WT PKD2 (i.e., activated) or an activation loop phos-
phomimetic S706/710E mutant displays no increased signal-
ing output in oxidative stress conditions [79, 89]. The reason
for this isoform-specific behavior in oxidative stress is not
known. One possibility is that PKD2 itself does not signal
to NF-κB but acts as a scaffold for PKD1, which phosphory-
lates an isoform-specific substrate in the NF-κB pathway.
Indeed, PKD1 and PKD2 are known to form heterodimers
[90]. The fact that PKD2 cannot be phosphorylated by its
upstream kinases through S706/710A or Y717F mutations
could “trap” the upstream kinase complex (i.e., PKCδ, Abl,
and potentially Src) on inactive PKD2. Due to dimer forma-
tion of PKD2 with PKD1, the latter is kept phosphorylated by
the upstream kinases held in proximity by PKD2, potentiat-
ing its activity on NF-κB (Figure 3). In addition, the inactive
conformation of the PKD2 monomer in the heterodimer
could protect PKD1 from phosphatases (Figure 3). It should
be noted however that it is unknown whether an Asp-Ala

substitution in the DFG motif of the PKD2 activation
segment has an effect on the ability of PKCδ and Abl to phos-
phorylate Ser-706/710 and Tyr-717 residues. Additionally,
PKD2 can potentially enhance PKD1-mediated signaling by
recruiting NF-κB signaling components via its PH domain
in a Tyr-438 phosphorylation-dependent manner. Indeed, a
phosphomimetic mutant of this residue displays increased
signaling output to NF-κB in the absence of H2O2 when com-
bined with an inactivating D695A mutation, but not when
combined with a S706/710E mutant [89].

Besides the effects of PKDs on NF-κB, other PKD-
dependent signaling functions have been described. For
example, PKD1 inhibits mitochondrial depolarization and
decreases cytochrome c release upon oxidative stress in
mouse embryonic fibroblasts, effectively protecting them
from apoptosis [91]. Interestingly, this behavior is isoform-
specific, since cells expressing PKD2/3 do not display this
phenotype. In hepatocytes, PKD1 has also been shown to
protect cells from apoptosis by downregulating JNK signal-
ing [92]. In epithelioid RIE-1 cells, PKD1 not only signals
to NF-κB but also reduces p38 phosphorylation, both of
which contribute to protection from apoptosis [93]. No alter-
ations were seen in JNK signaling in this context [93]. PKD1
also phosphorylates Hsp27 in response to oxidative stress
[94, 95]. In neuronal cells, Hsp27 phosphorylation protects
from ischemia-induced apoptosis by suppressing JNK
activity [95].

Notably, all of the PKD1 functions described above result
in prosurvival signals in oxidative stress. However, in a PKC-
independent pathway, oxidative stress-induced PKD1 activ-
ity can also activate JNK downstream of death-associated
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protein kinase (DAPK), which results in a prodeath signal
and increased necrotic cell death [96]. Furthermore, in
bovine aortic ECs (BAECs), PKD1 has been shown to acti-
vate JNK via association with its upstream kinase ASK1. This
association is dependent on 14-3-3 binding to PKD1, poten-
tially via Ser-205/208 and Ser-219/223 autophosphorylation
(Figure 1). The consequence of JNK activation in these cells
has not been explored [44]. PKD1 also has been shown to
phosphorylate Vps34 in oxidative stress [97]. Vps34 is a
PI3 kinase and its phosphorylation by PKD1 leads to an acti-
vation and consequential increase of PI(3)P, resulting in
increased autophagy and presumably cell death [97].

3. Concluding Remarks and Perspectives

The activation, regulation, and signaling properties of
protein kinase D isoforms in oxidative stress come with
intriguing questions that require further exploration. The
remarkable isoform-specific differences point to a highly spe-
cific regulation of these kinases. Isoform-specific behavior in
oxidative stress is also seen for other kinase families. For
example, Akt isoforms are differentially regulated in oxida-
tive stress, where Akt2 is specifically inactivated after H2O2
stimulation via the generation of a disulfide bond [98].
Besides their differential regulation, PKD isoforms also dis-
play distinct signaling properties. A striking example of this
is their different signaling output to NF-κB. While activated
PKD1 in oxidative stress signals to NF-κB, it has been shown
that for PKD2, inactive forms stimulate the NF-κB signaling
output [79, 89]. However, the functional relevance of inactive
PKD2 is unclear, since it is also activated during oxidative
stress, likely to an even larger extent than PKD1 [79]. The
role of WT PKD2 in NF-κB signaling as part of a PKD1-
PKD2 heterodimer is likely twofold: (1) to recruit NF-κB
signaling components via its PH domain and (2) to enhance
complex formation with upstream kinases to enhance PKD1
activation. An important question is whether there are other,
currently unknown pathways activated PKD2 contributes to
in oxidative stress.

Isoform-specific signaling behavior in redox signaling is
also observed within the PKC family. For example, in the
protection of the heart from ischemic events, the related
nPKCs PKCδ and PKCε play opposing roles, with PKCε
being cardioprotective while PKCδ increases damage
induced by ischemia both in vitro and in vivo [99].

Another level of complexity lies within cell-type-specific
behavior of PKDs in oxidative stress, both in their regulation
and in their signaling properties. For example, as mentioned
before, in neuronal cells, PKD1 activation does not always
involve Tyr phosphorylation, but rather Ser-910 phosphory-
lation, and it does not contribute to an increased NF-κB
signaling output in these cells [83, 84]. Moreover, a recent
study shows a loss of homeostatic NF-κB signaling output
during increased oxidative stress due to a rapid downregula-
tion of PKD1 activity [88].

In conclusion, future studies should be carefully carried
out to dissect the ROS-mediated regulation and functional
roles of the individual PKD isoforms in different cell types,

in order to understand the full extent of PKD-mediated
signaling in oxidative stress.
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