
fncel-15-739699 October 4, 2021 Time: 16:56 # 1

REVIEW
published: 07 October 2021

doi: 10.3389/fncel.2021.739699

Edited by:
Xiaoxing Xiong,

Renmin Hospital of Wuhan University,
China

Reviewed by:
Weihua Ding,

Massachusetts General Hospital
and Harvard Medical School,

United States
Steven Sloan,

Emory University, United States
Dong Dao Xian,

University Hospital of Macau, Macao,
SAR China

*Correspondence:
Junfa Chen

cjf2002@126.com
Xuehua Wen

xuehuasuqian@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Non-Neuronal Cells,
a section of the journal

Frontiers in Cellular Neuroscience

Received: 11 July 2021
Accepted: 17 September 2021

Published: 07 October 2021

Citation:
Jin J, Fang F, Gao W, Chen H,

Wen J, Wen X and Chen J (2021) The
Structure and Function of the

Glycocalyx and Its Connection With
Blood-Brain Barrier.

Front. Cell. Neurosci. 15:739699.
doi: 10.3389/fncel.2021.739699

The Structure and Function of the
Glycocalyx and Its Connection With
Blood-Brain Barrier
Jing Jin1†, Fuquan Fang2†, Wei Gao3, Hanjian Chen2, Jiali Wen2, Xuehua Wen4* and
Junfa Chen4*

1 Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou
Medical College, Hangzhou, China, 2 Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School
of Medicine, Hangzhou, China, 3 The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, 4 Department
of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China

The vascular endothelial glycocalyx is a dense, bush-like structure that is synthesized
and secreted by endothelial cells and evenly distributed on the surface of vascular
endothelial cells. The blood-brain barrier (BBB) is mainly composed of pericytes
endothelial cells, glycocalyx, basement membranes, and astrocytes. The glycocalyx in
the BBB plays an indispensable role in many important physiological functions, including
vascular permeability, inflammation, blood coagulation, and the synthesis of nitric oxide.
Damage to the fragile glycocalyx can lead to increased permeability of the BBB, tissue
edema, glial cell activation, up-regulation of inflammatory chemokines expression, and
ultimately brain tissue damage, leading to increased mortality. This article reviews the
important role that glycocalyx plays in the physiological function of the BBB. The review
may provide some basis for the research direction of neurological diseases and a
theoretical basis for the diagnosis and treatment of neurological diseases.
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INTRODUCTION

The surface of the vascular endothelium is covered with a layer of villiform substance, which is
called the glycocalyx. It is synthesized by vascular endothelial cells and extends to vascular lumen
and surface. In 1966, Rambourg et al. (1966) used methylamphetamine labeled with Ag to observe
a layer of proteoglycan (PG) protein polymers on the surface of endothelial cells of mice for the
first time. With the development of modern methods of fixation and rapid-freeze techniques as
well as a variety of confocal microscopy, there have been more in-depth studies on the structure
and functions of the glycocalyx (Ebong et al., 2011). The glycocalyx on endothelial cells is a kind
of PG polymer. It mainly includes PGs and glycosaminoglycan chains (GAGs). The core protein
of PG mainly consists of members of syndecan and glypican families. GAGs, including heparan
sulfate (HS), chondroitin sulfate (CS), and hyaluronan (HA), are the most abundant components
of the glycocalyx (Salmon and Satchell, 2012; Alphonsus and Rodseth, 2014; Mende et al., 2016).
Glycocalyx extends from the membrane of endothelial cells to vascular lumen, prevents leukocytes
and platelets from contacting with endothelial cells, and plays a key role in maintaining the stability
of the internal environment (Salmon and Satchell, 2012; Ushiyama et al., 2016). Research has proved
that glycocalyx can maintain the stability of many physiological functions, such as maintaining the
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permeable barrier of microcirculation, preventing trigger
inflammation and coagulation response, and conducting the
shear force of blood flow (Iba and Levy, 2019; Nikmanesh et al.,
2019; Zuurbier, 2019). It can also protect the functions of vital
organs including the brain, heart, lungs, and kidneys (Becker
et al., 2010b; van Golen et al., 2014; Brettner et al., 2017; Rabelink
et al., 2017; Zhu et al., 2017).

The BBB prevents sensitive neurons from being attacked by
toxic metabolites and exogenous materials in the circulation.
Therefore, stable and intact BBB is crucial for maintaining
normal physiological functions of the brain. The cerebrovascular
dysfunction, such as destruction of the BBB, endothelium
dysfunction, or capillary degeneration, is also related to the
pathogenesis and progression of many nervous system diseases,
including neuroinflammation, cognitive decline related to aging,
multiple sclerosis, brain tumor, and epilepsy (Zenaro et al.,
2017; Abdullahi et al., 2018; Abrahamson and Ikonomovic,
2020). With the development of the confocal technique and
photon fluorescence imaging technique, the microstructure
of the BBB has gradually become clear to researchers. The
unique system structure mainly consists of pericytes, endothelial
cells, glycocalyx of endothelial cells, basement membrane, and
astrocyte cells (Kutuzov et al., 2018; Santa-Maria et al., 2021).

After the glycocalyx in the endothelium of the BBB is
impaired, a series of pathophysiological changes related to
the microcirculation occurs. If the glycocalyx is degraded, the
permeability of the BBB increases, leading to neuroedema.
The number of leukocyte and platelets binding with the
exposed surface receptors of endothelial cells increases,
causing inflammation, a blood clotting response, cerebral
microcirculation ischemia, and damage to the nervous tissue
(Kutuzov et al., 2018; Zhao et al., 2021). Currently, there
are few overviews of the glycocalyx and cerebrovascular
microcirculation. In this review, we discuss the structure and
physiological functions of endothelial glycocalyx and the progress
of related research on endothelial glycocalyx and cerebral vessels
in detail and provide some clues for subsequent research and
disease treatment.

The Structure of the Glycocalyx
The endothelial glycocalyx is a layer of dense and uneven
grass-like substance covering the surface of vascular endothelial
cells (Fang et al., 2021). The endothelial glycocalyx is a PG
polymer synthesized and secreted by endothelial cells. Through
the skeleton consisting of PG and glycoproteins (GLYs), it binds
with endothelial cells. In this net structure, soluble factors from
plasma and endothelial cells are bound and attached. This grass-
like structure maintains the dynamic balance under physiological
conditions. The main core PG proteins are members of the
syndecan and glypican families. These core proteins firmly
bind with the cell membrane and pass the membrane-spanning
domain (syndecans) or a glycosylphosphatidylinositol anchor
(glypicans) (Kabedev and Lobaskin, 2018; Purcell and Godula,
2019). The syndecan family comprises 5 members: syndecan-1,
syndecan-2, syndecan-3, and syndecan-4. Among these members
of the syndecan family, syndecan-1 expressed by vascular
endothelial cells can bind HS, CS, and keratan sulfate. Syndecan is

closely related to the shear force of blood flow (Koo et al., 2013).
Members of the glypican family include glypican-1, glypican-2,
glypican-3, glypican-4, glypican-5, and glypican-6. Glpyican-1 is
the only member of the glypican family expressed on endothelial
cells. The branch linkage includes HS (Tarbell, 2010).

The side chain of GAGs binds with the main part of core
protein or CD44 receptors on the surface of endothelial cells.
There are 5 types of GAGs, namely, HS, CS, dermatan sulfate,
keratan sulfate, and HA (or hyaluronic acid). HS, CS, and
dermatan sulfate with negative charges bind the core protein
through covalent binding. HS is the most abundant components
of GAG side chains, comprising 50–90% of these chains (Pries
et al., 2000). The next most abundant components are CS and
dermatan sulfate, whose content is approximately one-quarter of
that of HS (Rapraeger et al., 1985). The details of keratan sulfate
are currently unknown. In contrast to the four abovementioned
GAGs, non-sulfated HA, which has no charge, does not bind the
core protein, but covalently binds the cell membrane through
CD44 receptors (Nandi et al., 2000). GAG chains with negative
charges can bind plasma proteins and positively charged ions
through the electric charge effect (Van den Berg et al., 2006;
Reitsma et al., 2007).

Similar to PGs, GLYs are skeleton proteins of the glycocalyx
that link the glycocalyx and endothelial cells. GLYs are adhesion
molecules on the surface of endothelial cells. They mainly consist
of members of the selectin family, the integrin family, and the
immunoglobulin superfamily. The selectin family members that
are expressed on the surface of endothelial cells mainly include
E-selectin and P-selectin. They participate in the adhesion of
leukocytes and endothelial cells (Sperandio, 2006). The main
function of the integrin family on the surface of endothelial cells
is mediating the adhesion of endothelial cells and platelets and
the linkage of extracellular matrix, such as lantinin, fibronectin,
and collagen (Bombeli et al., 1998; Ruegg and Mariotti, 2003).
The immunoglobulin superfamily of glycocalyx includes the
cytoplasmic domain, transmembrane domain, and intracellular
domain. The main molecules include intercellular adhesion
molecules 1 and 2 (ICAM-1 and –2), vascular cell adhesion
molecule 1 (VCAM-1), and platelet/endothelial cell adhesion
molecule 1 (PECAM-1) (Reitsma et al., 2007). It has been
observed under an electron microscope that the thickness
of the glycocalyx of the vascular endothelium is 0.1–11 µm
(Becker et al., 2010a). A schematic diagram of cerebral vascular
endothelial glycocalyx is shown in Figure 1.

The Role of Glycocalyx in Permeability
The endothelial glycocalyx is an important gatekeeper of vascular
permeability. Damage to the glycocalyx increases the transport
of water, proteins, and other molecules from the plasma to
outside of blood vessels (Butler et al., 2020). The endothelial
glycocalyx can restrict certain molecules from passing through
the endothelial cell membrane, as confirmed by injecting of
fluorescently labeled dextran into rat mesenteric arteries (van
Haaren et al., 2003). It was observed that the in rat myocardial
capillaries, the glycocalyx is degraded by enzymes, and the
subsequent hyperosmolarity leads to myocardial edema (Araibi
et al., 2020). Degradation of 42% of the endothelial glycocalyx
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FIGURE 1 | Schematic diagram of cerebral vascular endothelial glycocalyx. Syndecan and glypican are membrane-bound proteoglycans-core skeletons, to which
chondroitin sulfate and heparan sulfate are connected. Syndecans are transmembrane proteoglycans. Glypicans attach to the cell surface through
glycosylphosphatidylinositol anchors. Hyaluronic acid is connected to the endothelial cell membrane through the CD44 receptor.

in the isolated rat abdominal aorta by hyaluronidase (HAase)
facilitates water and low-density lipoprotein transport across
the vessel wall, suggesting that the endothelial glycocalyx is
a transport barrier (Kang et al., 2021). Not only does the
molecular sieve effect of the glycocalyx structure determine the
permeability of blood vessels, but the negatively charged nature
of glycocalyx also makes blood vessels act as a charge barrier.
Heparan sulfate and chondroitin sulfate in glycosaminoglycan
side chain components are negatively charged, so the glycocalyx
facing the plasma is also negatively charged. Studies have
found that neutralizing the negative charge of the glycocalyx
by myeloperoxidase can induce permeability and increase
vascular permeability (Kolarova et al., 2021). According to the
traditional Starling model, two opposite forces passing through
the endothelial cell layer maintain fluid distribution balance,
which is determined by four factors: capillary pressure, tissue
fluid hydrostatic pressure, plasma colloid osmotic pressure,
and tissue fluid colloid osmotic pressure (Starling, 1896). In
recent years, the discovery of microvascular barrier functions
has questioned this notion, suggesting that the structural net
consisting of the endothelial glycocalyx binds with the endothelial
cell membrane of blood vessels and forms the endothelial
surface layer, which bears the blood vessel barrier. The resulting
osmotic pressure of the transendothelial PG protein colloid is
the main determining factor of the internal and external flow of
fluid in capillaries (Michel, 1997). A schematic diagram of the
physiological functions of glycocalyx is shown in Figure 2.

The Role of Glycocalyx in Inflammation
The vascular response is the central part of the inflammatory
response. Lipowsky et al. (2011) observed that, in a mouse
model of inflammation, after the vascular endothelial glycocalyx
structure is destroyed, vascular endothelial cell intercellular
adhesion molecule-1 (ICAM-1) and vascular cell adhesion
molecule-1 (VCAM-1) make it easier for leukocytes in the blood
circulation to adhere to the vascular endothelial cells, which in
turn cause a series of inflammation and pathological changes
(Mulivor and Lipowsky, 2004; Devaraj et al., 2009; Mulivor and
Lipowsky, 2009; Schmidt et al., 2012; Lipowsky and Lescanic,
2013). Therefore, glycocalyx shedding is the response of vascular

endothelial cells to inflammatory mediators. In an inflammatory
state, the glycocalyx of vascular endothelial cells falls off, but it
also plays an important role in regulating the occurrence and
development of inflammation. HS is the main component of
the vascular endothelial glycocalyx and exists on the surface and
matrix of cerebrovascular cells (Bernfield et al., 1999). A series
of in vitro cell experiments confirmed that HS is a potential
ligand of P and L-selectin, which binds to pro-inflammatory
chemokines and promotes the transmembrane transport of
chemokines (Hoogewerf et al., 1997; Koenig et al., 1998). Vascular
endothelial HS participates in and regulates multiple stages of
an inflammatory response, but its exact role in the process of
inflammatory response is not fully understood.

The Role of the Glycocalyx in the
Anticoagulant Process
Glycocalyx’s dense and bush-like structure can hide coagulation-
related molecules. Under physiological conditions, direct contact
between endothelial cells and blood cells can be avoided,
thereby avoiding thrombosis. In addition, glycocalyx can also
achieve anticoagulant effects by interacting with antithrombin
III, thrombomodulin, and tissue factor pathway inhibitor (TFPI).
The main mechanisms of actions include (Bell et al., 2017; Lupu
et al., 2020): (1) PECAM is exposed by the shed glycocalyx; (2)
Antithrombin III binds to HS in the glycocalyx to enhance its
anticoagulant effect; (3) Thrombomodulin can bind to CS to
convert thrombin into the protein C activator of the pathway,
thereby forming the anticoagulation pathway; (4) TFPI is an
effective inhibitor of FVIIa and FXa in the coagulation pathway,
and the anticoagulation effect is achieved mainly through the
interaction of TFPI and glycocalyx (Kozar and Pati, 2015).

The Glycocalyx as a Signal Sensor
The glycocalyx can sense changes in blood flow shear force and
transmit it to endothelial cells, which induces corresponding
morphological and functional responses, such as the release of
endogenous vasoactive substances and nitric oxide (NO) and
cytoskeleton changes (Lyu et al., 2020). In the rat blood vessel
model, the amount of NO produced by blood vessels was detected
after HS enzymatically degraded under changes of blood flow
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FIGURE 2 | The intact glycocalyx can maintain the permeability of the blood-brain barrier. Damage to the glycocalyx will increase the permeability of the blood-brain
barrier (for example, albumin exudation). The CAMs and PECAM hidden in the glycocalyx are exposed due to the shedding of the glycocalyx, causing the
aggregation of leukocytes and platelets. CAMs, endothelial cell adhesion molecules. PECAM, platelet/endothelial cell adhesion molecule.

shear force. Researchers have found that the production of nitric
oxide is significantly reduced (Yen et al., 2015). However, not
all components of the glycocalyx can mediate shear-induced NO
release. Anne Marie W Bartosch et al. (2017) used atomic force
microscopy (AFM) to selectively apply forces onto glycocalyx
components, including PGs and GAGs, to observe how each
component individually promotes force-induced NO production.
They concluded that HS and the glypican-1, not syndecan-1,
CD44, and HA, are the main mechanical sensors for shear-
induced NO production (Bartosch et al., 2017). According to the
report of Eno E Ebong, core protein syndecan-1 of HS mediates
flow-induced endothelial cells elongation and alignment because
SDC1 is linked to the cytoskeleton which impacts cell shape
(Ebong et al., 2014). Kang et al. (2021) found that 24-h shear
exposure increased the average maximum infiltration distance of
low-density lipoprotein and enhanced endothelial cells apoptosis
and that both of these effects were inhibited by HAase, indicating
that the glycocalyx of endothelial cells can also serve as
shearing mechanical sensors regulate endothelial cell apoptosis,
thereby affecting leaky connections and regulating low-density
lipoprotein transport.

The Effect of the Endothelial Glycocalyx
in Cerebrovascular Micro-Homeostasis
The BBB is a unique structure that is mainly composed of
pericytes, endothelial cells, the glycocalyx, basement membranes,
and astrocytes (Kutuzov et al., 2018). Glycocalyx plays an
irreplaceable role in maintaining the barrier function of cerebral
blood vessels. Through EB and IgG extravasation assays, Zhu
et al. (2018) found that in the group with integral glycocalyx
structure, EB and IgG did not leak into the hippocampus.
However, upon treatment with heparanase (HPSE), leakage was
obvious (Zhu et al., 2018). The glycocalyx can prevent some
molecules from passing through the BBB. Kutuzov et al. (2018)
used a two-photon microscopy to observe the transport of four
different sizes of molecules, i.e., fluorescein sodium (376 Da),

Alexa Fluor (643 Da), 40-kDa dextran, and 150-kDa dextran
from blood to the brain tissue in the cortical capillaries of
anesthetized mice. Fluorescein and Alexa penetrate almost the
entire glycocalyx structure layer, while the penetration rate of
dextran is less than 60% of the volume. This indicates that
glycocalyx can block large molecules in the BBB very well, but
the ability to prevent small molecules from infiltrating is limited
(Kutuzov et al., 2018). In the rat cardiac arrest/cardiopulmonary
resuscitation model, the degree of glycocalyx destruction caused
by HAase treatment was related to the high BBB permeability
and aggravation of cerebral edema after circulation recovery
and perfusion, as well as the decrease in survival rate at
day 7 and poor nervous system-related prognosis (Zhu et al.,
2018). The mechanisms by which the glycocalyx maintains the
permeability of the BBB mainly include the following. First,
the dense bush-like structure can play a physical isolation
effect (Kutuzov et al., 2018). Second, HS and CS in the side
chain of GAGs carry negative charges. Therefore, glycocalyx
can prevent negatively charged molecules such as albumin
from passing through the BBB due to charge repulsion (Deen
et al., 2001). And third, after damage to the endothelial
glycocalyx, the levels of inflammatory molecules and matrix
metalloproteinases (MMPs) increase, resulting in disruption of
the close interactions that form the BBB and further increasing
vascular permeability.

In addition to regulating the permeability of the blood-brain
barrier (BBB), glycocalyx is also involved in cerebrovascular
coagulation and neuroinflammatory processes (Lupu et al.,
2020). Delayed cerebral ischemia is a common complication
of aneurysmal subarachnoid hemorrhage, but the specific
mechanism is not clear. Bell et al. (2017) study on patients with
aneurysmal subarachnoid hemorrhage found that in patients
with delayed cerebral ischemia, specific markers of glycocalyx
damage, including SDC-1, were significantly elevated and that
this elevation of syndecan-1 expression was related to vascular
adhesion protein-1 in the plasma and endothelial cell adhesion
molecules (CAMs) in the cerebrospinal fluid. This indicates
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TABLE 1 | The function, shedding enzyme and protection strategies of glycocalyx in cerebrovascular.

(A) Functions Regulation of vascular
permeability

Mechanical barrier and charge barrier Deen et al., 2001; Kutuzov et al., 2018; Zhu et al.,
2018

Regulation of vascular tone Inducing and transmitting the shear stress
change signal to the endothelial cells to
synthesize and release nitric oxide

Ebong et al., 2014; Yen et al., 2015; Bartosch et al.,
2017

Attenuation of leukocyte
adhesion

Reducing leukocyte contact with
ICAM-1,ICAM-2, and VCAM-1

Van den Berg et al., 2006; Kim et al., 2013

Attenuation of platelet adhesion Reducing platelet contact with PECAM-1 Bell et al., 2017; Lupu et al., 2020

(B) Major shedding enzyme MMPs Cleaving core protein backbone of glycocalyx,
directly

Endo et al., 2003; Song et al., 2015; Reine et al.,
2019; Ali et al., 2019

HPSE Cutting HS Shteper et al., 2003; Baraz et al., 2006; Qu et al.,
2016; Zheng et al., 2016

HAase Cutting HA Nieuwdorp et al., 2007; Becker et al., 2015

(C) Protection strategies of
glycocalyx

Glucocorticoid Stabilizing mast cells Cui et al., 2015; Yu et al., 2019

Antithrombin agents Stabilizing glycocalyx structure by combining
with it

Chappell et al., 2009a,b

Abumin Similar to that of antithrombin Becker et al., 2015; Aldecoa et al., 2020

Etanercept TNF-α inhibitor Nieuwdorp et al., 2009

Sulodexide Inhibiting HPSE and MMPs activities Mannello and Raffetto, 2011; van Haare et al., 2017

Doxycycline and batimastat Inhibitors of MMPs Lipowsky et al., 2011; Lipowsky and Lescanic,
2013

Sevoflurane Reduce MMPs production Annecke et al., 2010; Fang et al., 2021

ICAM, intercellular adhesion molecules; VCAM, vascular cell adhesion molecule; PECAM, platelet/endothelial cell adhesion molecule; HPSE, heparinase; HAase,
hyaluronidase; MMPs, matrix metalloproteinases; TIMPs tissue inhibitor of matrix metalloproteinases; HDAC, histone deacetylase; HA, hyaluronic acid; HS, heparan
sulfate.

FIGURE 3 | Mechanisms of glycocalyx damage. HPSE, Heparanase; HAase, hyaluronidase; MMPS, matrix metalloproteinases; TIMPS, tissue inhibitor of matrix
metalloproteinases; HDAC, histone deacetylase; HA, hyaluronic acid; HS, heparan sulfate; CS, chondroitin sulfate.

that the breakdown of cerebrovascular glycocalyx integrity
may be related to ischemic brain diseases (Bell et al., 2017).
Moreover, the endothelial adhesion molecules ICAM-1 and

VCAM-1 within the glycocalyx are exposed after glycocalyx
degradation (Simard et al., 2012). This adhesion molecules are
known as the central mediators of leukocyte adhesion to and
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transmigration across BBB (Schnoor et al., 2015). Upregulation
of proinflammatory cytokines as a response to leakage of
leucocytes further contributes to the subsequent increased
neuronal excitability (Rana and Musto, 2018). Kim et al. found
that after glycocalyx degradation, ICAM-1 and NF-kB not only
increase leukocyte adhesion, but also up-regulate the expression
of iNOS and COX-2 (Kim et al., 2013). Inflammatory factors
such as TNF-α and oxygen free radicals increase the production
of MMPs, which in turn damage brain tissue. The function,
shedding enzyme and strategies of glycocalyx protection are
summarized in Table 1.

Major Shedding Enzyme Responsible for
Glycocalyx Damage
The glycocalyx is degraded via inflammatory mechanisms
such as MMPs, HPSE, and HAase. These sheddases are
activated by reactive oxygen species and pro-inflammatory
cytokines such as tumor necrosis factor alpha and interleukin-
1beta (Iba and Levy, 2019; Uchimido et al., 2019). Several
studies have determined that MMPs is the primary molecule
responsible for glycocalyx degradation (Song et al., 2015). MMP-
2, MMP-7, and MMP-9 directly cleave CS, MMP-1 cleaves
syndecan-1, and MMP-9 is the main shedding enzyme of
syndecan-4 (Endo et al., 2003; Reine et al., 2019). ADAM17
also participates in glycocalyx degradation by removing the
extracellular domain of syndecan-4 (Piperigkou et al., 2016).
In addition, studies have confirmed that ADAM15 causes
vascular BBB dysfunction by inducing glycocalyx degradation.
The underlying mechanism includes ADAM15-mediated CD44
cleavage and the release of the extracellular domain (HA) into
the circulation, thereby promoting hyperpermeability of blood
vessels and BBB destruction (Yang et al., 2018). Therefore,
blocking ADAM15 may be a potential strategy to maintain
the integrity of the glycocalyx. MMP is regulated by the
activity of histone deacetylase (HDAC) inhibitors. When HDAC
is up-regulated under stimulation, the expression of tissue
inhibitors of matrix metalloproteinases (TIMPs) decreases and
the expression of MMP increases, leading to accelerated
glycocalyx degradation in endothelial cells (Ali et al., 2019).
Ischemia and hypoxia can induce the activation of mast cells,
so that the HPSE stored in the mast cells is released into
the extracellular space, resulting in cleavage of HS from the
endothelial glycocalyx (Becker et al., 2010b). HPSE is the only
enzyme known to cleave HS and is another important factor
that promotes the shedding of the glycocalyx (Becker et al.,
2015). Research on HPSE has helped elucidate the catabolic
processes involved in the decomposition of HS. Methylation
of the HPSE promoter may regulate HPSE expression (Shteper
et al., 2003). Recently, the transcription factor SMAD4, a
key protein in the TGF-β signaling pathway, was found to
inhibit HPSE by binding to the HPSE promoter region (Qu
et al., 2016; Zheng et al., 2016). The inhibitory effect of
p53 combined with the promoter on HPSE expression also
resulted in the decrease of HPSE activity, indicating p53
is an effective regulator of HPSE expression (Baraz et al.,
2006). Enzyme that promotes the shedding of HA is HAase.

HAase cracks HA. Atherosclerosis and HAase activity is related
(Nieuwdorp et al., 2007). Volume overload is encountered during
neurosurgery. Volume overload will cause an increase in the
release of natriuretic peptides. Experiments showed that A-,
B-, and C-type natriuretic peptides have the ability to promote
glycocalyx shedding (Jacob et al., 2013). A summary of the
mechanism of damage to glycocalyx shedding is shown in
Figure 3.

Potential Strategies of Clinical Protection
The physiological function of the BBB is inseparable from
the complete glycocalyx structure. The search for measures
to protect the glycocalyx from degradation has always been a
research hotspot. Glucocorticoid can stabilize mast cells, inhibit
the activation of white blood cells, relieve the downstream
inflammatory response, and protect glycocalyx, but its
clinical application is limited by the adverse complications
of immunosuppression caused by large doses (Cui et al., 2015;
Yu et al., 2019). Antithrombin agents can stabilize its structure
by combining with endothelial glycocalyx, thereby reducing the
enzymatic decomposition of glycocalyx. However, the use of
antithrombin during neurosurgery will affect the coagulation
function of patients and cause adverse events of postoperative
massive bleeding (Chappell et al., 2009a,b). The protective
mechanism of albumin is similar to that of antithrombin, but
excessive use of albumin will increase the cost of hospitalization
for patients, and albumin is an allogeneic source, which will
increase the risk of allergy in patients (Becker et al., 2015;
Aldecoa et al., 2020). TNF-α inhibitor etanercept has been
reported to have a protective effect, but the effect needs to
be further studied (Nieuwdorp et al., 2009). Sulodexide has
anti-inflammatory, anticoagulant and vascular protection effects,
which may be achieved by inhibiting HPSE and MMP activities
to reduce glycocalyx shedding (Mannello and Raffetto, 2011;
van Haare et al., 2017). Doxycycline and batimastat, all rather
non-selective inhibitors of MMPs, can attenuate syndecan and
glycan shedding (Lipowsky et al., 2011; Lipowsky and Lescanic,
2013). In addition, sevoflurane has been shown to have a
certain protective effect on the glycocalyx. The application of
sevoflurane anesthesia in neurosurgery may be more beneficial
to the protection of the BBB function (Annecke et al., 2010; Fang
et al., 2021).

CONCLUSION AND FUTURE
DIRECTIONS OF RESEARCH

Vascular endothelial glycocalyx plays an indispensable role
in BBB, such as inflammation, vascular permeability, blood
coagulation, and vascular tone. However, it is not clear whether
the glycocalyx in the BBB is different from the glycocalyx
in the general vascular structure. Reviewing the relevant
literature, details on the neuro-specific contributions of the
glycocalyx are still lacking. In addition, the structural and
functional relationships between glycocalyx and pericytes are
also worth exploring. The therapeutic strategies for glycocalyx
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also need further research because the drugs reported in
the current research will inevitably have some adverse
reactions or application limitations. Therefore, innovative
strategies in this emerging field of experimental medicine are
desperately needed.
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