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Abstract: Transition metal dichalcogenides (TMDs) have attracted widespread attention due to
their excellent electrochemical and catalytic properties. In this work, a tungsten (W)-modulated
molybdenum selenide (MoSe;)/graphene heterostructure was investigated for application in electro-
chemistry. MoSe; / graphene heterojunctions with low-doped W compositions were synthesized by a
one-step hydrothermal catalysis approach. Based on the conducted density functional theory (DFT)
f,?,e;gtfg; calculations, it was determined that inserting a small amount of W (=5%) into the MoSe; / graphene

o ) ) heterostructure resulted in the modification of its lattice structure. Additionally, an increase in
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the distance between layers (=8%) and a decrease in the adsorption energy of the potassium ions
(K*) (=2—1.08 eV) were observed following W doping. Overall, the electrochemical performance
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1. Introduction

Owing to the rapid decrease in fossil fuels and increasing energy demand, the devel-
opment of simple and effective energy sources is essential [1-3]. Supercapacitors, which
are considered to be excellent electrochemical energy sources, exhibit good power and
energy density, high cycling life as well as rapid charge and discharge rate. Hence, they are
regarded as efficient and reliable energy storage and switch devices [4-6].

Recently, transition metal dichalcogenides (TMDCs) have been used as active elec-
trode materials in supercapacitors due to their unique properties, including a large specific
surface area, layered structure, electrical conductivity, as well as thermal and chemical
stabilities [7-9]. Among different TMDCs, molybdenum selenide (MoSe;) is a particularly
important material displaying a large layer spacing (0.646 nm), which decreases the energy
barrier for adsorption/desorption of charged ions [10-12]. Nevertheless, MoSe; tends to
deform during the ion exchange process. Other limitations of this material include low elec-
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properties of the materials (e.g., energy band, electrical, and optical properties) [19-21].
Previous reports show electrochemical enhancement and changes in the surface area and
conductivity following isoelectronic doping [22,23].

In this work, we conducted a hydrothermal synthesis of a MoSe; / graphene hetero-
junction containing a low content of tungsten (W). The prepared material could be used
as an electrode in supercapacitors and exhibited excellent potassium ion (K*) storage
performance. Density functional theory (DFT) calculations were used to analyze the ef-
fect of different W doping concentrations on the interlayer distance and K* adsorption
energy of the MoSe; / graphene heterojunction. It was determined that the W-doped MoSe,
electrode based on a 3D graphene framework displayed higher K* storage capacity and
enhanced stability.

2. Experimental Methods
2.1. Density Functional Theory

The first principle calculation was based on DFT using the pseudopotential plane-
wave method in the Cambridge Sequential Total Energy Package (CASTEP). The exchange-
correlation potential was described by the Perdew—Burke-Ernzerhof (PBE) functional
using generalized gradient approximation (GGA). The plane-wave energy cutoff was set to
380 eV, and the Monkhorst—Pack method with G-centered 2 x 2 x 1 K-points mesh was
used for the Brillouin zone. The convergence criteria for the energy and force calculations
were set t0 2.0 x 1075 eV per atom and 0.05 eV /A, respectively. The vacuum space was set
to 20 A.

2.2. Growth of Graphene

The nickel foam was sonicated in ammonium persulfate solution for 30 min. The foam
was subsequently washed with acetone, ethanol, and deionized water. The substrate for
graphene growth was obtained following drying the foam under argon. Following the
evacuation of the quartz tube furnace to vacuum, the nickel foam was heated from room
temperature to 1000 °C under 15 cm® min~! hydrogen atmosphere. During this period, the
vacuum value is about 10-100 Pa, and the heating time was 40 min. Then 50 cm® min~! of
methane was introduced into the tube to grow graphene at 1000 °C for 1 h under a mixed
atmosphere. Finally, the graphene sample was quickly cooled at a rate of 200 degrees
per minute.

2.3. Preparation of a W-Doped MoSe,/Graphene Heterostructure and W-Doped MoSe, Powder

Point three grams of NaMoO4-2H;0, 0.3 g of (NH4)sH5[H(WO4)6]-H20,and 0.2 g
of Se were mixed with 5-10 mL of N,H,-H,O and stirred for 15 min. (All chemicals are
purchased from Kequan Laboratory Co., Ltd., Xi’an, China) Fifty milliliters of deionized
water was added, and the solution was stirred for 15 min. After mixing, the mixture
was divided into two equal parts and transferred to two 60 mL Teflon-lined stainless
steel autoclaves. The prepared nickel foam/graphene was subsequently placed in one
of them. The mixture was heated to 160 °C for 24 h. The sample containing the nickel
foam/graphene was then taken out and washed several times with deionized water and
ethanol. The sample was dried at 80 °C for 24 h under a vacuum. Ten milliliters of the
reaction solution was added into another container, centrifuged, and ultrasonicated. At
the same time, different Mo: W ratios (1:1, 1:2, 2:1) and various temperatures (140 °C,
150 °C, 170 °C, 180 °C) were investigated to study the impact on the performance of
composite electrodes.

2.4. Characterization of Materials

The W-doped MoSe; / graphene nanostructures were investigated by SEM (Quanta
600FEG, FEI, Hillsboro, OH, USA). The crystallinity of the materials was evaluated by high-
resolution XRD (D8 Discovery, Bruker, Berlin, Germany) analysis in the Bragg (reflection)
geometry with a pure Cu k, radiation (wavelength; A; 1.54056 A). The Raman spectrum
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was obtained with a Raman spectroscopy system (Lab Ram HR 800, Horiba JY, Kuoto,
Japan) with an Ar* laser (514 nm wavelength) as the excitation source. The elemental
analysis of the composite was conducted by XPS (ESCALAB, 250Xi, ThermoFisher Scientific,
Waltham, MA, USA).

2.5. Preparation of the Electrolyte

Five grams of PVA (polyvinyl alcohol ) was added to 35 mL of deionized water. The
solution was stirred in a water bath at 80 °C until the PVA was completely dissolved.
Subsequently, 5 g of KOH was dissolved in 5 mL of deionized water. The KOH solution
was slowly added to the solution of PVA and stirred.

2.6. Electrochemical Analysis

A three-electrode test system was used for the electrochemical measurements. The
system was composed of an active material as the working electrode, Ag/AgCl as the
reference electrode, platinum mesh as the counter electrode, and 3 M KOH as the electrolyte.
For the electrochemical measurements of the all-solid-state supercapacitors, the electrodes
and cellulose membrane were stacked in a sequence. The active material was in direct
contact with the current collector. The electrolyte employed for the analysis was PVA-KOH.
CV was conducted at a scan rate of 1 to 50 mV s~!. Constant current charging/discharging
was performed at a current density of 0.5 to 8 mA cm 2. EIS was conducted in the frequency
range of 0.01 Hz to 100 kHz with a disturbance of 5 mV (rms) under open-circuit voltage.

For the CV curves, the specific capacitance values were calculated using Equation (1):

~ JI(V)dv 5
where S refers to the working area of the supercapacitor (cm?), V indicates the scan rate
(vs™1), and AV is the potential window (V).
For the GCD curves, the specific capacitance was calculated according to Equation (2):

I At

S = 3AV (mF Cm_z) 2)

where I is the discharge current (mA) and At denotes the discharge time (s).
The energy density and power density of the supercapacitor cell were obtained using
Equations (3) and (4):

E = w (mWh cm~2) (3)
_ E -2
P = A (mWem™) 4)

where E refers to the energy density (mWh cm~2), Pindicates the power density (mW cm™2),
and At (s) is the total discharge duration.

3. Results and Discussion

The structures of MoSe;/graphene containing low W contents are illustrated in
Figure 1a. W atoms were used to replace Mo in the 3 x 3 x 1 supercell of MoSe,. When
the Mo atoms were substituted by W, the doping concentration of W was 5.6%, which
was consistent with the results obtained by X-ray photoelectron spectroscopy (XPS) (5%).
Figure 1d shows the interlayer distance and K* adsorption energy of MoSe;/graphene
doped with different concentrations of W (5.6%, 11.1%, 16.7%, and 22.2%). Compared
with pure MoSe; /graphene, MoSe, /graphene doped with W at a concentration of 5.6%
exhibited a larger interlayer distance (= 8%, 12.22 A) and smaller K* adsorption energy



Nanomaterials 2021, 11, 1477

40f10

(—1.08 eV). This facilitated the process of K* adsorption/extraction. The adsorption energy
of Kions (E,) is determined by Equation (5):

E — Etotal energy after inserting Kions — Etotal energy before inserting K ions — nEK jons
a =

n

©)

where, the insertion energy of K ions between different layers at different W doping
concentrations is shown in Figure S1. The adsorption energy of K ions between W-doped
MoSe; and graphene is higher than that between W-doped MoSe;. This may be the
interlayer distance between graphene and W-doped MoSe, (= 5.6 A) is smaller than that
between tungsten-doped molybdenum selenide, making it more difficult for potassium
ions to insert/detach.

—
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Figure 1. (a) Side view of MoSe,/graphene. (b) Side view of MoSe,/graphene containing 5.6% W. (c) Side view of
MoSe, /graphene containing 5.6% W and intercalated K* ions. Orange balls represent Se atoms, blue balls indicate
Mo atoms, the green ball refers to the W atom, and purple balls show potassium ions. (d) Interlayer distance of pure
MoSe;, / graphene and MoSe; /graphene doped with different concentrations of W, interlayer distance in the presence of K*
intercalation in MoSe; / graphene and MoSe; /graphene doped with different concentrations of W, adsorption energy of K*
on MoSe;, /graphene and MoSe, /graphene doped with different concentrations of W.

Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were
used to characterize the W-doped MoSe, / graphene nanostructures (Figure 2a—c). It was
determined that the graphene films prepared by low-pressure chemical vapor deposition
(LPCVD) were stacked on the framework of the nickel foam (Figure 2a), while the W-
doped MoSe; particles grown on graphene assembled to form nanoballs and nanoflowers
(Figure 2b,c). The composite structures of W-doped MoSe; /graphene closely interacted
with each other. The potential structures of W-doped MoSe; and graphene are demon-
strated in Figure 2b. Moreover, the EDS images of W-doped MoSe;/graphene nanos-
tructures revealed the presence of Mo, W, and Se. Through SEM, we observed that the
presence of graphene not only provides a framework for the growth of W-doped MoSe;
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materials but also enhances the electrical conductivity and contact area of the composite
material, thereby providing more active sites. The nanoflower structure of W-doped MoSe;
is uniformly grown on the graphene framework, providing a larger surface area and a
shorter ion channel during charge and discharge. The two materials complement each
other and enhance the electrochemical performance of the composite material.
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Figure 2. (a—c) SEM images of W-doped MoSe; /graphene and EDS images of W-doped MoSe; /graphene. (d,e) Raman
spectra of W-doped MoSe; /graphene. (f) XRD patterns of W-doped MoSe;. (g—i) XPS survey spectra of W-doped MoSe;

(Mo 3d, W 4f, and Se 3d).

The outcomes of the Raman spectroscopy analysis of W-doped MoSe;/graphene
nanostructures are shown in Figure 2d,e. The peaks at 1580.7 and 2705.0 cm ! corresponded
to the G and 2D bands of graphene, respectively. In addition, the signals at 244.2 and
287.5 cm ™! were attributed to the Ajgand Ezgl modes, correspondingly. A slight shift of the
peaks to the lower wavenumbers compared to those of pure MoSe; confirmed the successful
doping of W in MoSe; [24]. The spectral data and SEM images of the raw graphene are
shown in Figures 52 and S3. The results of the X-ray diffraction (XRD) evaluation are
demonstrated in Figure 2f. The characteristic peaks at 30.9°, 47.5°, 55.5°, 66.6°, and 69.6°
corresponded to the (1 00), (1 05), (110), (108),and (2 0 3) crystal planes of the W-doped
MoSe; nanostructure, respectively. The detected peaks were comparable to those of pure
MoSe;; however, a small shift to lower values was noted. The particle size of the powdered
samples was not uniform enough, and there were some by-products in the hydrothermal
synthesis, resulting in a lot of XRD data miscellaneous peaks, such as Mo3Se4, Mo155e;9,
and Se rings [25]. Therefore, we tested W-doped MoSe; /graphene/Ni foam electrode
samples. The electrode was washed several times with ethanol and deionized water and
dried in a vacuum oven at 60 °C for 12 h, in order to obtain a well-crystallized product.
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The prepared materials are shown in Figure S4. We observe peaks at 25.73°, 31.8°, 33.6°,
76.3°, 81.3° corresponding to the (004), (100), (102), (205) and (2 0 6) crystal orientations
of MoSe,(PDF#29-0914). A slight shift in the peaks to the lower wavenumbers compared to
those of pure MoSe; confirmed doping of W in MoSe,. The peaks at 43.3°, 51.8°, and 81.4°
of graphene position corresponding to the (1 00), (1 02), and (1 1 2) crystal (PDF#41-1487).
Furthermore, XPS was employed to investigate the elemental composition of the W-doped
MoSe; nanostructure (Figure 2g-i). The Mo 3d peaks attributed to Mo** 3d 5/2 and Mo**
3d 3/2 were detected at 229.2 and 232.4 eV, respectively, and were comparable to those of
bulk MoS; and MoSe;. Similarly, the W 4f peaks could be divided into W 4f 7/2 and W
4f 5/2 at the binding energies of 35.8 and 36.3 eV (W1 and W2, respectively) (Figure 2h).
The ratios of the characteristic peak areas of different elements to the corresponding atomic
sensitivity factors were normalized to calculate that the doping concentration of W atomic
percentage of the element is about 5.6%. It is noted that the peaks at 230 eV (M3) and
233 eV (M4) can be separately attributed to +3 and +6 oxidation state of Mo, due to the
oxidation in the hydrothermal synthesis process. The peaks of W1 and W2 shifted to the
direction of high energy by about 2 eV. This may be due to the loss of electrons from W
during the formation of Mo-W bonding. In addition, the peaks at higher binding energy
37 eV(W3) and 38 eV(W4) can be assigned to the bonding of Mo-W and tungsten oxides.
Owing to the spin—orbit coupling, the 3d peaks of Se (Figure 2i) could be assigned to the
3d 5/2 and 3d 3/2 states at 54.9 and 55.7 eV, respectively [26].

The electrochemical performance of W-doped MoSe; /graphene electrodes was eval-
uated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electro-
chemical impedance spectroscopy (EIS) using 3 M KOH as the electrolyte. Different ratios
of raw materials (mMo:mW = 1:1, 1:2, and 2:1), growth time (12, 18, 24, 30, and 36 h),
and temperature (140 °C, 150 °C, 160 °C, 170 °C, and 180 °C) were tested to achieve
the most optimal conditions for the growth the W-doped MoSe; / graphene heterostruc-
ture. Figure 3a illustrates the CV curves at a scan rate of 50 mV s~!. The largest area of
mMo:mW = 1:1 under the CV curve of the electrode indicated the highest capacitance.
Figure 3b compares different GCD curves at a growth temperature from 140 °C to 180 °C
at 0.5 A g . The electrode grown at 160 °C displayed a longer discharge time, suggesting
higher capacitance. Moreover, varying the growth time of the electrode demonstrated
that the best results were achieved after 24 h. The material obtained after this time ex-
hibited the largest capacitance (Figure 3c). Figure 3d shows the CV curves of W-doped
MoSe; / graphene electrodes in the voltage range from —0.3 to 0.7 V at various scan rates.
The presence of obvious symmetric redox peaks indicated the occurrence of a typical
Faradaic process involving oxidation/reduction reactions. Similar shapes and broadening
peaks were also be observed at higher scan rates, implying good performance. The GCD
measurements were performed between —0.2 and 0.4 V at current densities ranging from
0.5 to 8 A g~ ! (Figure 3e). W-doped MoSe,/graphene showed capacitance of 296, 245,
197, 155, and 114 F g~ ! at a current density of 0.5, 1, 2, 4, and 8 A g~!, respectively. The
EIS data summarized in Figure 3f suggested that W-doped MoSe; /graphene exhibited
series resistance of 0.67 ohm and contact resistance of 0.2 ohm, which accelerated the
electrostatic adsorption of ions. According to Figure 3d, the CV curve shows symmetric
redox peaks. This indicates that there were non-Faraday and Faraday processes in the
composite electrode. The Faraday process of adsorption/desorption of potassium ions at
the active sites on the surface and the Faraday process of oxidation/reduction occurred in
the internal nanostructure. The possible reactions are expressed by the following equations:

Mo(W)Se; + K + e~ — Mo(W)Se,-K (surface process) (6)

Mo(W)Se; +K* +e~ — KMo(W)Se; (redox process) (7)
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Figure 3. (a) CV curves of W-doped MoSe; / graphene electrodes with a different molar mass ratio at 50 mV s~L. (b) GCD
curves of W-doped MoSe; /graphene electrodes at various growth temperatures at 0.5 A g~!. (c) Areal capacitance of

W-doped MoSe, /graphene

electrodes at a different growth time. (d) CV curves of W-doped MoSe, /graphene electrodes at

different scan rates. () GCD curves of W-doped MoSe; /graphene electrodes at various current densities. (f) Nyquist plots
of W-doped MoSe; / graphene electrodes.

A symmetrical all-solid-state supercapacitor was assembled using a polyvinyl alcohol
(PVA)-KOH electrolyte and W-doped MoSe; / graphene electrode to investigate its energy
storage behavior. Figure 4a demonstrates the CV curves of the all-solid-state supercapacitor
in a voltage window of 0-0.9 V. No redox peaks were detected at different scanning
rates with symmetrical cathode and anode, which indicated equal capacitance during
charge and discharge. This implied that the all-solid-state supercapacitor was a Faraday
quasi-capacitor. The capacitance was established to be 444.4, 266.7, 211.1, 182.2, and
157.8 mF cm 2 at a scanning rate of 1, 5, 10, 25, and 50 mV s 1, respectively. Figure 4b
shows the GCD curve of the all-solid-state supercapacitor. The capacitance was equal to
60.5,56.2,51.0, 44.7, and 34.7 mF cm ™2 at a current density of 0.5, 1, 2, 4, and 8 mA cm 2.
The charge and discharge curves were roughly equal, indicating that the supercapacitor
exhibited excellent energy storage properties. Furthermore, Figure 4c demonstrates the
Nyquist plots of the all-solid-state supercapacitor based on W-doped MoSe;, / graphene.
The equivalent series resistance of the supercapacitor was determined at 0.9 ohm, while the
charge transfer resistance was approximately 0.5 ohm. Figure 4d shows the cycle lifetime
of the all-solid-state supercapacitor based on W-doped MoSe,/graphene at 500 mV s~ 1.
Notably, 81.3% of the capacitance was retained after 5000 cycles. The SEM of the device
after 5000 cycles was tested shown in Figure S5. It can be observed that the active material
was reduced, part of it falls off, and there were cracks on the surface to expose the graphene.
This was also the reason for the reduced capacitance and performance of the device after
multiple cycles. The Ragone plot of the all-solid-state supercapacitor based on Gra/W-
doped MoSe; is illustrated in Figure 4e. The W-doped MoSe; / graphene all-solid-state
supercapacitor exhibited an energy density of 0.003 mWh cm ™2 at a power density of
0.15 mW cm~2. Compared to other previously reported all-solid-state supercapacitors, the
electrode based on W-doped MoSe; / graphene heterostructure showed enhanced properties
(Figure 4f) [27-33]. The combined action of the W-doped MoSe; / graphene heterostructure
and the all-solid-state electrolyte resulted in excellent electrochemical performance.
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Figure 4. (a) CV curves of the all-solid-state supercapacitor based on W-doped MoSe; / graphene at different scan rates.
(b) GCD curves of the all-solid-state supercapacitor based on W-doped MoSe;/graphene at various current densities.
(c) Nyquist plots of the all-solid-state supercapacitor based on W-doped MoSe;, /graphene. (d) Cycle lifetime of the all-solid-
state supercapacitor based on W-doped MoSe; /graphene at 500 mV s~ 1. (e) Ragone plot of the all-solid-state supercapacitor
based on W-doped MoSe; /graphene. (f) Plot of the gravimetric capacitance of W-doped MoSe;, / graphene compared to
other previously reported 2D electrode materials.

4. Conclusions

In conclusion, MoSe; / graphene heterostructures containing low contents of W were
successfully prepared by a catalytic hydrothermal method. DFT calculations were used
to evaluate the characteristics of W-doped MoSe; / graphene, which exhibited a large in-
terlayer distance and low K* adsorption energy. This facilitated electrochemical reactions.
Moreover, electrochemical investigations demonstrated that all-solid-state supercapacitors
based on the MoSe, / graphene heterostructure displayed excellent supercapacitor perfor-
mance. Specific capacity of 444.4 mF cm~2 was achieved at a scanning rate of 1 mV s~ 1.
Notably, 81.3% of capacitance was retained after 5000 cycles at 500 mV s~ 1.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/nano11061477/s1, Figure S1: Adsorption energy of K ions under different doping concentra-
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