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Background and Purpose: Breast cancer (BRCA) is the most frequent female
malignancy and is potentially life threatening. The amino acid metabolism (AAM) has
been shown to be strongly associated with the development and progression of human
malignancies. In turn, long noncoding RNAs (lncRNAs) exert an important influence on the
regulation of metabolism. Therefore, we attempted to build an AAM-related lncRNA
prognostic model for BRCA and illustrate its immune characteristics and molecular
mechanism.

Experimental Design: The RNA-seq data for BRCA from the TCGA-BRCA datasets
were stochastically split into training and validation cohorts at a 3:1 ratio, to construct and
validate the model, respectively. The amino acid metabolism-related genes were obtained
from theMolecular Signature Database. A univariate Cox analysis, least absolute shrinkage
and selection operator (LASSO) regression, and amultivariate Cox analysis were applied to
create a predictive risk signature. Subsequently, the immune andmolecular characteristics
and the benefits of chemotherapeutic drugs in the high-risk and low-risk subgroups were
examined.

Results: The prognostic model was developed based on the lncRNA group including
LIPE-AS1, AC124067.4, LINC01655, AP005131.3, AC015802.3, USP30-AS1, SNHG26,
and AL589765.4. Low-risk patients had a more favorable overall survival than did high-risk
patients, in accordance with the results obtained for the validation cohort and the complete
TCGA cohort. The elaborate results illustrated that a low-risk index was correlated with
DNA-repair–associated pathways; a low TP53 and PIK3CA mutation rate; high infiltration
of CD4+ T cells, CD8+ T cells, and M1macrophages; active immunity; and less-aggressive
phenotypes. In contrast, a high-risk index was correlated with cancer and metastasis-
related pathways; a high PIK3CA and TP53 mutation rate; high infiltration of M0
macrophages, fibroblasts, and M2 macrophages; inhibition of the immune response;
and more invasive phenotypes.
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Conclusion: In conclusion, we attempted to shed light on the importance of AAM-
associated lncRNAs in BRCA. The prognostic model built here might be acknowledged as
an indispensable reference for predicting the outcome of patients with BRCA and help
identify immune and molecular characteristics.

Keywords: amino acid metabolism, breast cancer, long non-coding RNA, prognostic signature, prognostic model,
immunity

INTRODUCTION

Breast cancer (BRCA) is the most frequent female malignancy and
is potentially life threatening. Moreover, BRCA has one of the
highest lethality rates among the female malignant tumors (Siegel
et al., 2019; Siegel et al., 2020; Siegel et al., 2021). The BRCA
incidence rates continue to increase by about 0.5% per year (Siegel
et al., 2020; Siegel et al., 2021). Currently, dozens of treatments,
including surgery, hormonal therapy, radiation therapy, and
chemotherapy, are used to manage female BRCA. Nevertheless,
most patients with BRCA are still at risk of having adverse
outcomes, even for those who receive therapy in the early stage
of the disease (Ciriello et al., 2015). In recent years, researchers have
dedicated increased efforts to proving that the AAM is dramatically
associated with BRCA development (Cha et al., 2018; Deyu Zhang
et al., 2021; Morotti et al., 2021) and have demonstrated that BRCA
is infiltrated bymany types of immune cells and own a high level of
immunogenicity, illustrating the hypothesis that immune cell
infiltration plays an indispensable role in the clinical prognosis
of BRCA (Lehmann et al., 2011; Loi et al., 2014; Denkert et al.,
2018; Pruneri et al., 2018). Moreover, the tumor immune
microenvironment participates significantly in the development
of BRCA. Tumor-infiltrating lymphocytes have been shown to be
correlated with the outcome of this disease (Pruneri et al., 2018).

Tumor-infiltrating lymphocytes have been shown to be
correlated with the outcome of this disease (Adams et al.,
2014; Ali et al., 2016; Stanton and Disis, 2016; Lee et al., 2018).

Altered metabolism is a hallmark of cancer, and the
reprogramming of the energy metabolism has historically been
acknowledged as a general phenomenon underlying tumors (Pei-
Hsuan Chen et al., 2019; Faubert et al., 2020; Wang et al., 2018).
One of the best-known alternative theories on cancer development
is the “Warburg effect,” which consists of the continued activation
of aerobic glycolysis in cancer cells (Hanahan and Weinberg,
2011). Furthermore, the AAM has been shown to be strongly
correlated with the evolution and progression of human
malignancies. Glutamine, serine, and glycine, for instance, are
vital nutrients for tumor growth and maintenance. Moreover,
myc overexpression influences the cellular glutamine levels by
activating the transcription of GLS1 and the glutamine transporter
SLC1A5 (Gao et al., 2009). In turn, phosphoglycerate
dehydrogenase (PHGDH), which is a crucial enzyme in the
serine synthesis pathway, is greatly upregulated in breast cancer
cells (Dias et al., 2019). Similarly, immune cells require amino acids
as a vital source of nutrition. The AAM can regulate immune
effector protein activity (Kelly and Pearce, 2020). For example,
activated CD8+ T cells exhibit higher levels of Slc7a5 and Slc1a5 on
the cell surface comparedwith naïve CD8+ T cells. Activated T cells

need a considerable amount of amino acids to maintain growth by
improving transporter expression (Kelly and Pearce, 2020). Recent
studies have demonstrated that the combination of a glutamine
antagonist with anti-PD-1 therapy had a more obvious anti-tumor
effect than did the anti-PD-1 therapy alone, and did not cause
immune cell failure (Leone et al., 2019). In addition, the
combination of the ladiratuzumab vedotin LIV-1 directed which
is a transmembrane protein with zinc transporter and
metalloproteinase activity (Nagayama et al., 2020) and anti-PD-
1 therapy have been highlighted in breast cancer, particularly
Triple negative breast cancer (TNBC) (Rizzo et al., 2022). There
are many TNBC patients who benefit from immune checkpoint
blockade therapy (Rizzo et al., 2021; Rizzo and Ricci, 2021).

LncRNAs, which are RNA molecules with a length of about
200 nt, can adjust the expression of genes (Tao Zhang et al., 2021).
With the exception of gene regulation, lncRNAs participate in
numerous biological regulatory processes, including those involved
in the appearance, development, and metastasis of tumors (Gupta
et al., 2010). Moreover, lncRNAs have a great impact on the
regulation of metabolism (Guo et al., 2021; Tan et al., 2021).
lncRNAs can directly modulate the posttranslational modification
of key metabolic enzymes, lncRNAs can also indirectly regulate
metabolic pathways through posttranslational modifications (Tan
et al., 2021). It has been proved by experiments that the lncRNA
XLOC_006390 stablized c-Myc by preventing its ubiquitination,
increasing the expression of glutamate dehydrogenase 1 (GDH1),
and subsequently stimulating the production of alpha-
ketoglutarate (α-KG). Excess α-KG supplied the tricarboxylic
acid (TCA) cycle and facilitated glutamate metabolism,
promoting pancreatic cancer growth (He et al., 2020).
Meanwhile, LncRNA EPB41L4A-AS1 regulates glycolysis and
glutaminolysis by mediating nucleolar translocation of HDAC2
(Liao et al., 2019). However, to date, AAM-related lncRNAs have
not been used to predict overall survival (OS) in patients with
BRCA. Whether amino acid metabolization-related lncRNAs
participate in the immune regulation of BRCA remains ambiguous.

In this study, we used the TCGA BRCA database, from which
genomic and transcriptome data (RNA-seq) are accessible. In
cross-validation analyses, the dataset was stochastically divided
into training and validation groups. Finally, nine lncRNAs that
were correlated with BRCA outcomes were identified. According
to the expression levels of these nine lncRNAs, a risk score
prognostic model for BRCA was created according to the
patients in the training cohort, and the vital prognostic values
of this model were further acknowledged in the patients in the
validation cohort and the patients in the whole cohort. The
relationships between the risk score subtypes and immune
checkpoints, the proportions of 22 immune cells [B cells naive,
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B cells memory, plasma cells, T cells CD8, T cells CD4 naive,
T cells CD4 memory resting, T cells CD4 memory activated,
T cells follicular helper, T cells gamma delta, T cells regulatory
(Tregs), NK cells resting, NK cells activated, monocytes,
macrophages M0, macrophages M1, macrophages M2,
dendritic cells resting, dendritic cells activated, mast cells
resting, mast cells activated, eosinophils, and neutrophils], and
intrinsic molecular subtypes were also illustrated (Newman et al.,
2015; Becht et al., 2016). Lastly, the difference between the two
sets regarding sensitivity to chemotherapy was predicted.

METHODS

Data Source and Preprocessing
To collect the messenger RNA (mRNA) expression profiles and
clinical information of patients with BRCA, comprehensive
computerized searches of TCGA datasets (https://portal.gdc.
cancer.gov/repository) were conducted. Samples with a follow-
up time of less than 1 month or male BRCA samples were
excluded. A total of 1208 TCGA female patients with BRCA
for whom lncRNA expression profiles were available were
analyzed in the present study. The AAM-related gene sets
(REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_
DERIVATIVES) were derived from the Molecular Signatures
Database v5.1 (MSigDB) (http://www.broad.mit.edu/gsea/
msigdb/), which incorporated 374 genes in total. After
assessing the overlap with genes in the TCGA RNA-seq
datasets, 374 genes associated with AAM remained in study.
The AAM-related lncRNAs were selected based on the criteria of
p < 0.001 and Pearson’s correlation coefficient |> 0.4, as assessed
using the limma R package (Schober et al., 2018). Moreover, the
“limma” R package was used to identify the differentially
expressed genes (DEGs), including lncRNAs, protein-coding
genes, miRNAs, etc., between nontumor and tumor tissues,
with a false discovery rate (FDR) < 0.05 and |log2FC| ≥ 1.

Here, we first explored the function of both downregulated
and upregulated AAM-related DEGs. Subsequently, we applied a
gene ontology (GO) analysis to assess the biological pathways
related to the DEGs. A further functional analysis of biological
processes (BPs), molecular functions (MFs) and cellular
components (CCs) adjusted to the individually expressed
AAM-related DEGs was performed based on Kyoto
Encyclopedia of Genes and Genomes (KEGG) data using the
R software, ggplot2 package.

Development and Validation of the
Prognosis Model
The 1,005 patients who had a survival time ≥30 days and
complete follow-up information were stochastically split into
the training and validation cohorts at a 3:1 ratio, for the
building and validation of the accuracy of the prognostic
model. A univariate Cox regression analysis was run to screen
prognostic lncRNAs that were correlated (p < 0.05) with the
overall survival (OS) of the patients in the training cohort. All 17
of these lncRNAs were further enrolled into a LASSO analysis for

dimension reduction in the “glmnet” R package. Subsequently, a
multivariate Cox analysis further selected nine lncRNAs
according to the lowest Akaike information criterion value
obtained for the 17 AAM-related lncRNAs with prognostic
significance described above. The risk score of each patient
derived from this prognostic signature was calculated based on
the normalized expression level of AAM-related lncRNAs and
corresponding regression coefficients. The computational
formula used here was as follows:

Risk Score � esum(each lncRNA’s expression×corresponding regression coefficient)

The patients in the training cohort were split into high-risk
and low-risk sets based on the comparison of the median value of
the risk score and the OS between the different groups using a
Kaplan–Meier (K–M) analysis with a log-rank test. Subsequently,
a time-dependent receiver operating curve (ROC) curve analysis
was performed using the “survivalROC” R package, to assess the
predictive veracity of the prognosis model. Furthermore, we
applied univariate and multivariate Cox regression analyses to
verify if the nine AAM-related lncRNAs were independent
prognostic factors for BRCA. For the purpose of validating
this model, the same regression coefficients, formula, and
genes were applied in the analysis of the validation cohort and
the complete cohort, to calculate the risk score.

Comparison of the AAM-Related lncRNA
Signature With Other BRCA Prognostic
Models
To examine whether the model constructed here is more
referential than are other BRCA prognostic models, we
utilized a ROC for comparison with an 11-lncRNA signature
(Shen et al., 2020), another 11-lncRNA [11 (2)-lncRNA]
signature (Xiaoying Li et al., 2021), and an eight-lncRNA
signature (Zhu et al., 2021). We obtained the correlative
lncRNAs in these models from the literature, and the 1-, 3-,
and 5-year OS ROC curves for the complete TCGA cohort were
created. Finally, these lncRNA-based prognostic models were
compared to illustrate the merits and shortcomings of each
of them.

Building of an lncRNA–mRNA
Co-expression Network
For the purpose of demonstrating the interaction between the
nine-lncRNA signature and their interrelated mRNAs, we applied
the Cytoscape software (version 3.8.2,http://www.cytoscape.org/)
to design and visualize an mRNA–lncRNA co-expression
network.

Gene Set Enrichment Analysis
We ran a gene set enrichment analysis (GSEA) 4.2.1 (https://
www.gsea-msigdb.org/gsea/msigdb) (Subramanian et al., 2005)
to distinguish various functional phenotypes between the high-
risk and low-risk sets. The mRNA expression profiles of BRCA
samples in the TCGA datasets, which were separated into two
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groups based on risk score, were applied to KEGG gene sets. The
study included enriched gene sets with p < 0.05, and 1,000
random sample permutations were acknowledged as being
statistically significant. Their default values were used for the
other parameters.

Establishment of Predictive Nomograms
A nomogram was created on the ground that the results of the
multivariate analysis in the R software package using the
nomogram function from the “rms” library, to predict the 1-,
3-, and 5-year survival of patients with BRCA. Harrell’s
concordance index (C-index) and calibration curve illustrate
the predicting value of the nomograms and their
discrimination performance.

Immune-Related Features
The MCPcounter (Wang et al., 2019), ESTIMATE (Yoshihara et al.,
2013), CIBERSORT (Newman et al., 2015; Charoentong et al., 2017),
and single-sample gene set enrichment analysis (ssGSEA) (Yi et al.,
2020) algorithms were compared to estimate the differences in cell
immune responses or cellular components between the low-risk and
high-risk groups. We used a heatmap and boxplots to illustrate
differences in the immune response using the various algorithms.
Furthermore, for the purpose of quantifying the tumor-infiltrating
immune cell subgroups in the BRCA tumor microenvironment
(TME) among the two groups, as well as for estimating their
immune function, we used ssGSEA. We retrieved dozens of
potential immune checkpoints from the literature.

Drug Susceptibility and Mutation Analysis
For the purpose of determining the somatic mutations of patients
with BRCA in the high- and low-risk sets, the mutation annotation
format from the TCGA database was created utilizing the
“maftools” R package. The tumor mutation burden (TMB),
which is described as mutations/megabase (mutations/Mb), is
an effective biomarker for predicting the efficacy of
immunotherapy. The TMB score for each sample with BRCA
in the two groups was calculated. For the purpose of exploring the
differences in the responses to chemotherapeutic drugs between
the two groups, we analyzed the semi-inhibitory concentration
(IC50) values of the chemotherapeutic drugs that are usually
employed to treat BRCA using the “pRRophetic” package.

Statistical Analysis
We applied R version 4.1.0. to run all statistical analyses.
Significance was set at p < 0.05.

RESULTS

Data Processing and Clinicopathological
Features
A flow chart of the data analysis and process used in this study
was drawn (Figure 1). After data partitioning and preprocessing,
765 patients with BRCA were distributed into the training set and
255 patients with BRCA were distributed into the validation set.
Their clinicopathological features were outlined (Table 1).

Enrichment Analysis of AAM-Related Genes
The differential gene expression analysis (1,096 tumors vs. 112
normal samples) identified 55 DEGs, 18 of which were
downregulated and 37 of which were upregulated in the tumor
samples compared with the normal samples (Supplementary
Table S1). The DEGs in the BP category were involved in the
production of alpha-amino acid and cellular amino acid
metabolic processes, among others; the DEGs in the MF
category mainly participated in the regulation of the
production of dioxygenase and the binding of vitamins; the
DEGs in the CC category were primarily upregulated in the
mitochondrial matrix and mitochondrial inner membrane
pathways. The KEGG-based analysis revealed that the DEGs
primarily participated in arginine and tryptophan metabolism,
the biosynthesis of amino acids, proline metabolism, cysteine and
methionine metabolism, tyrosine metabolism, etc.
(Figures 2A,B).

AAM-Related lncRNA-Based Prognostic
Signature
We identified 316 AAM-based lncRNAs (Supplementary Table
S2). The univariate Cox analysis selected 17 AAM-associated
lncRNAs (Figure 2A) that were included in the multivariate Cox
analysis. Ultimately, nine lncRNAs (LIPE-AS1, AC124067.4,
LINC01655, AP005131.3, AC015802.3, USP30-AS1, SNHG26,
and AL589765.4) were selected as independent prognosis
predictors of BRCA. Thus, we constructed a prognostic index
for training cohort cancer samples using the following formula:
risk score = (−0.606072 × expression of LIPE-AS1) + (−0.28451 ×
expression of AC124067.4) + (0.6666797 × expression of
LINC01655) + (−0.988819 × expression of AP005131.3) +
(−0.140664 × expression of AC008115.3) + (−0.767441 ×
expression of AC015802.3) + (−0.277495 × expression of
USP30-AS1) + (−0.765508 × expression of SNHG26) +
(0.138989 × expression of AL589765.4) (Table 2).

Survival Results and Multivariate Analysis
The K-M survival analysis also showed that patients with
BRCA in the high-risk group exhibited a lower OS (p <
0.001, Figure 3B). Concomitantly, The AUC of the
signature lncRNAs was 0.881, illustrating a better predictive
effect than that of the traditional clinicopathological features
(Figure 3C). Interestingly, our heatmap showed that most of
the novel lncRNAs exhibited a negative association with our
risk model; additional experiments are necessary to address
this issue (Figure 3D). The predictive value of the AUC of the
novel lncRNA signature regarding the 1-, 3-, and 5-year
survival rate was 0.881, 0.766, and 0.713, respectively
(Figure 3E).

The hazard ratio and 95% CI of the risk score were 1.260 and
1.191–1.333 in the univariate Cox regression analysis (p < 0.001)
and 1.242 and 1.174–1.315 in the multivariate Cox regression
analysis (p < 0.001), respectively. These findings indicated that
the nine-lncRNA signature was an independent prognosis factor
of OS in patients with BRCA (Figures 3F,G).

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8803874

Dai et al. Amino Acid Metabolism-Related lncRNA

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Figure 4A depicts the correlation betweenmRNAs and lncRNAs.
The heatmap of the relationship between the clinicopathological
manifestations and the AAM-related lncRNA prognostic index is
also presented (Figure 4B). The hybrid nomogram (c-index = 0.754)
encompassing the novel AAM-related lncRNA prognostic index and
the clinicopathological characteristics is shown in Figure 5A. The
calibration curve analysis revealed that the practical and the predicted
1-, 3-, and 5-year survival rates agreed with the reference curve
(Figure 5B). These results suggested that the nomogramwas accurate

and stable; thus, it is suitable for implementation in the clinical
management of patients with BRCA.

We ran a similar survival analysis by regulating the risk model
using different physiological and clinical factors (e.g., age and
tumor TNM stage). The K–M curves illustrated that the low-risk
set had a better OS than the high-risk group in all subsets (Figures
5C–L). The K–M survival curves of the M1-stage subgroup were
not statistically significant (p = 0.244). We considered that the
fact that the number of patients was significantly low (only 20
samples) contributed to this observation; however, in general, the
high-risk set had a worse OS than the low-risk set.

To confirm the prognostic accuracy of the risk score, the risk
score each patient in the validation set and in the entire TCGA set
was calculated and then split into two sets according to the median
value. A survival analysis revealed a more favorable outcome in the
low-risk set compared with the high-risk set (log-rank test; p <
0.001; Supplementary Figures S1A,B). An analysis of the 1-, 3-,
and 5-year prognostic prediction classification efficiencies
suggested that the risk score still had comparably high AUC
values (Supplementary Figures S1C,D), suggesting that the risk
model had an outstanding ability to predict the outcome of BRCA.

Comparison of the AAM-Related lncRNA
Signature With Other BRCA Prognostic
Models
To determine if our nine-lncRNA signature is more accurate than
other BRCA prognostic models, we compared it with an 11-

FIGURE 1 | A flow chart of the data analysis and process.

TABLE 1 | Clinicopathological features of the training set and the validation set.

Characteristic TCGA set Train set Validation set p value

Total cases 1,005 754 251 —

Age (years) — — — 0.63
>65 278 (27.6%) 210 (27.9%) 68 (27%) —

≤65 727 (72.3%) 544 (72.1%) 183 (72.9%) —

Stage — — — 0.21
I 186 (18.5%) 136 (18.0%) 50 (19.9%) —

II 582 (57.9%) 433 (57.4%) 149 (59.3%) —

III 222 (22.1%) 172 (22.8%) 50 (19.9%) —

IV 15 (1.5%) 13 (1.7%) 2 (0.8%) —

Fustat — — — 0.058
Alive 892 (88.6%) 661 (87.7%) 231 (92.0%) —

Dead 112 (11.4%) 93 (12.3%) 20 (8.0%) —

Futime — — — 0.3
>3 years 405 (40.3%) 315 (41.8%) 90 (35.9%) —

≤3 years 600 (59.7%) 439 (58.2%) 161 (64.1%) —
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lncRNA signature (Shen et al., 2020), another 11-lncRNA (11 (2)-
lncRNA) signature (Xiaoying Li et al., 2021), and an eight-
lncRNA signature (Zhu et al., 2021) for the entire TCGA
cohort. However, the predictive accuracy of the AAM-related
nine-lncRNA signature was greater than that of the remaining
three prognostic models (Supplementary Figures S2A–H).

Molecular Characteristics of the Different
Risk Subgroups
GSEA was used to perform functional annotations in the two
groups. The gene sets of the low-risk samples were enriched in
immune-related pathways (Figure 6B), whereas the gene sets of
the high-risk samples were enriched in lipid and glucose
metabolism pathways (Figure 6A; p < 0.05).

Next, we found that the risk score was slightly correlated with
the TMB (r = 0.14, p < 0.001), as shown in Figures 6C,D.

Moreover, to shed light on the immunologic nature of the
risk subgroups, gene mutations were explored in the different
risk subgroups was explored. We noticed an apparently more
frequent mutation in the high-risk subgroup vs. the low-risk
subgroup (p = 0.0049, t-test) (Figure 6E). Moreover, the most
frequent mutation type was missense mutation, followed by
frameshift deletion and nonsense mutation. The top 20 genes
with the highest mutation rates in the subgroups are illustrated
in Figure 6E. The mutation rates of the TP53, PIK3CA, TTN,
and CDH1 genes were higher than 10% in both groups.
Mutation of the MAPK3K1 gene was more prominent in
the high-risk subgroup, whereas mutation of the MUC4
gene was more prominent in the low-risk subgroup.

FIGURE 2 | GO and KEGG analysis of amino acid metabolism-associated DEGs. (A) GO and (B) KEGG.

TABLE 2 | Amino acid metabolism-related lncRNA-based prognostic signature.

Id Coef HR HR.95L HR.95H p value

LIPE-AS1 −0.606072 0.5454891 0.2695349 1.10397 0.091994
AC124067.4 −0.28451 0.7523826 0.5595592 1.0116527 0.0596629
LINC01655 0.6666797 1.9477593 0.9994916 3.7956963 0.0501749
AP005131.3* −0.988819 0.3720158 0.1479188 0.9356202 0.0356073
AC008115.3 −0.140664 0.8687813 0.7484818 1.0084158 0.0643486
AC015802.3 −0.767441 0.4641993 0.1671622 1.2890539 0.1408279
USP30-AS1* −0.277495 0.7576792 0.5893708 0.9740519 0.0303807
SNHG26* −0.765508 0.4650974 0.2367205 0.9138019 0.026313
AL589765.4*** 0.138989 1.1491115 1.0659176 1.2387986 0.0002892

*p < 0.05,**p < 0.01,***p < 0.001.
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Immune Characteristics of the Different
Risk Subgroups
To examine the composition of immune cells in the different risk
subgroups, we used the Wilcoxon test to compare the distribution of
immune cells among the different risk subgroups. We found that
CD8+ T cells, plasma cells, naïve CD8+ T cells, M1 macrophages,
memory B cells, and endothelial cells weremore abundant in the low-
risk subgroup, whereas M2 macrophages, M0 macrophages, and
fibroblasts were more abundant in the high-risk subgroup
(Figure 7B, Supplementary Figure S3). A low-Risk score was also
deeply correlated with a high immune score (Figure 7A). We also
investigatedwhether the prognostic value of risk scores stemmed from
better immune control or from less-aggressive cancer growth. As
shown in Figure 8A, we found that patients with a higher score on

HLA, checkpoint, inflammation-promoting, parainflammation,
T-cell co-inhibition, T-cell co-stimulation, type II IFN response,
cytolytic activity, MHC-class-I, and type I IFN response had a
better outcome. Therefore, we suggest that the prognostic value of
the risk scoresmight result from both better immune control and less-
aggressive cancer growth. The difference in the expression of immune
checkpoints between the two subsets was further explored. The results
of this analysis suggest a more abundant expression of PDCD-1 (PD-
1), CD274 (PD-L1), BTLA, TIGIT, CTLA4, PDCD1LG2, and LAG3,
among others, in the low-risk subsets compared with the high-risk
subsets (Figure 8C). Figure 8B shows that, compared with the
expression of m6A-related mRNAs between the low- and high-risk
groups, the expression of RBM15, YTHDC2, WTAP, METTL14,
YTHDC1, and METTL3 was differentiated.

FIGURE 3 | Amino acid metabolism-associated lncRNA signature based on training sets. (A) Univariate cox analysis (B)Kaplan–Meier curves, (C)multi-index ROC
analysis, (D) risk score, and (E) time-dependent ROC analysis. Univariate andmultivariate Cox analyses of the expression of AAM-related lncRNAs. (F)Univariate and (G)
multivariate analyses.
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FIGURE 4 | Construction of the mRNA–lncRNA regulatory network (A). Heatmap of the clinicopathological manifestations and AAM-related lncRNA prognostic
signature (B).
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Correlation Between Risk Grouping and
PAM50 Molecular Subtypes
The high-risk subsets and low-risk subsets were split into PAM50
molecular subtypes (Parker et al., 2009), respectively, including
basal, Her2+, luminal A, luminal B, and triple-negative breast
cancer (TNBC), as shown in Figure 9A. In summary, the
proportion of TNBC samples was almost equally distributed
between the two groups, whereas there were more HER2+
samples and more luminal A samples in the high-risk
subgroup (p < 0.001, χ2 test).

Chemotherapy Sensitivity Related to the
Risk Score
The correlation between the sensitivity to chemotherapeutic
drugs and this prognostic model was explored. The IC50

values of usual chemotherapeutic drugs were predicted and
compared between the low- and high-risk groups. Patients in
the low-risk group were more responsive to gefitinib, epothilone
B, and doxorubicin, whereas patients in the high-risk set were
more responsive to docetaxel and Lapatinib. However, no
statistical significance was observed regarding the differences
in the response to paclitaxel (Figures 9B–G).

DISCUSSION

In recent years, researchers have dedicated increased efforts
toward proving that the amino acid metabolism (AAM) is
dramatically associated with BRCA development (Cha et al.,
2018; Deyu Zhang et al., 2021; Morotti et al., 2021). Glutamine,
serine, glycine, etc. are critical nutrients for tumor growth and
maintenance. Similarly, amino acids are vital nutrients for

FIGURE 5 | Nomogram of both prognostic AAM-associated lncRNAs and clinical–pathological factors (A). Calibration plot for the nomogram (B). Stratification
analysis of the risk score in BRCA. (C,D) Age (age >65 and age ≤65 years). (E,F) Tumor stage (I–II or III–IV). (G,H) Tumor T stage (T1–2 or T3–4). (I,J) Tumor M stage (M0
or M1). (K,L) Tumor N stage (N0 or N1–3).
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FIGURE 6 | Gene enrichment analysis for AAM-related lncRNAs based on TCGA in the high (A) and low (B) BRCA risk groups. Correlation between the TMB and
the two risk subsets (C). Association between the TMB and risk score (D). Prominently mutated genes in the patients with BRCA in the different risk subgroups. The
mutated genes (rows, top 20) are ranked according to mutation rate; samples (columns) are arranged to emphasize the mutual exclusivity among mutations. The right
panels depicts the mutation percentage, and the top panel indicates the overall number of mutations. The color coding indicates the mutation type (E).
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immune cells. For example, Glutaminolysis is a major energy-
producing process for proliferating cells, including activated
T cells (Newsholme et al., 1999), by supplying a-ketoglutarate
(aKG) to the TCA cycle, via glutamate. Glutamine is used to
promote LPS induction of IL-1 production by macrophages
(Wallace and Keast, 1992). Activated NK cells use some
glutamine to replenish TCA cycle intermediates and
increase oxidative phosphorylation (Lam et al., 2016). One
function of the reduced form of glutathione (GSH) in Treg cells
is to restrict serine metabolism in order to maintain their
suppressive function. Macrophages also utilize serine to
generate glycine for GSH, needed for LPS-induced IL-1b
mRNA expression (Rodriguez et al., 2019). Consequently,
increasing attention has been paid to AAM in this context
(Jones et al., 2018; Butler et al., 2021). As expected, recent
studies have reported that the combination of a glutamine

antagonist and anti-PD-1 therapy had a more obvious anti-
tumor effect than did the anti-PD-1 therapy alone, and did not
cause immune cell failure (Leone et al., 2019). Moreover,
previous studies have produced prognostic models of genes
related with amino acid metabolism in glioma and hepatoma
via bioinformatics analysis (Liu et al., 2019; Zhao et al., 2021).
In recent years, lncRNAs have been proved that they have a
great impact on the regulation of metabolism (Guo et al., 2021;
Tan et al., 2021). To date, however, AAM-related lncRNAs
have not been used to predict OS in patients with BRCA.
Whether amino acid metabolization-related lncRNAs
participate in the immune regulation of BRCA remains
ambiguous.

In this study, we explored for the first time the characteristics
of AAM-related lncRNAs in BRCA and established a risk
signature associated with OS. First, we screened AAM-

FIGURE 7 | Evaluation of the TME and levels of lymphocyte infiltration in the two groups. (A) Associations between the risk score and the immune and stromal
scores. (B) Associations between the risk score and immune cell types.
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associated DEGs between BRCA and normal breast tissues based
on RNA-seq data. Furthermore, we established a robust and
effective prognostic signature using univariate Cox, LASSO
regression, and multivariate Cox analyses. Nine lncRNAs were
included in this signature (LIPE-AS1, AC124067.4, LINC01655,
AP005131.3, AC015802.3, USP30-AS1, SNHG26, AL589765.4).
Moreover, 1,005 samples in total were stochastically split into
training and validation cohorts at a 3:1 ratio, for building and
validating the AAM-related lncRNA signature. The training set of
754 samples, the validation set of 251 samples, and the whole
TCGA data set of 1,005 samples all showed the feasibility of
this model.

Several recent studies have demonstrated that LIPE-AS1 is
prominently expressed in BRCA and cervical squamous cell
carcinoma and is associated with a higher survival rate (Xu et al.,
2021; Wang et al., 2022). In turn, AC124067.4-hsa-miR-92b-3p
(hsa-miR-589-5p)-PHYHIPL both decrease the MSI and TMB in
COAD, thus reducing the risk of genome instability and alterations
(Ren et al., 2021), whereas USP30-AS1 promotes mitochondrial
quality control in glioblastoma cells (Wang et al., 2021), the USP30-
AS1/miR-299-3p/PTP4A1 pathway aggravates the malignant
progression of cervical cancer (Wang et al., 2021), and SNHG26
promotes the metastasis, growth, and cisplatin resistance of tongue
squamous cell carcinoma through the PGK1/Akt/mTOR signaling

FIGURE 8 | Immune cell infiltration levels and corresponding function determined by ssGSEA (A). Expression of m6A-related genes in both groups (B). Expression
of immune checkpoint-related genes in both groups (C).
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pathway (Jiang et al., 2022). Nevertheless, no studies have
investigated the prognostic value of LINC01655, AP005131.3,
AC015802.3, and AL589765.4 in patients with BRCA or other
malignancies. The current findings show for the first time that
these four lncRNAs were associated with the prognosis of BRCA.
The potential role of the four lncRNAs needs to be further explored.

To shed light on the immunologic nature of the risk
subgroups, gene mutations were explored in the different risk
subgroups. We found that the most frequent mutation type was
missense mutation, followed by frameshift deletion and nonsense
mutation, as reported previously (2012). The most significant
difference in mutations between the groups was observed for

FIGURE 9 | Heatmap and table showing the distribution of the BRCA PAM50 molecular subtypes (basal, luminal A, luminal B, HER2+, and TNBC) in the risk
subgroups (A). Relationships between the risk score and chemotherapeutic sensitivity (B–G).
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TP53 mutations, which were more frequent in high-risk samples
than in low-risk samples (77 vs. 64%). TP53 mutation is not only
the single most significant genetic event in cancer, but also linked
with poorer patient outcomes and more aggressive disease in
many malignant tumors (Vousden and Prives, 2005), particularly
BRCA (Olivier et al., 2006; Shahbandi et al., 2020). TP53 can
affect the cancer cell cycle through the p53/TGF β signaling
pathway. In a study of stage III breast cancer, patients with TP53
mutations were shown to have worse disease free survival (DFS)
following treatment with paclitaxel (p = 0.007) (Chrisanthar et al.,
2011). Olivier et al. noted in a study of 1794 breast cancer patients
that those with tumors harboring TP53mutations in exons 5–8 of
the gene had a worse risk of dying of breast cancer within 10 years
following surgery (p < 0.0001) (Olivier et al., 2006).

In addition, there was a higher rate of PIK3CAmutation in the
high-risk subgroup compared with the low-risk subgroup, which
could mean that tumor growth in high-risk BRCA cases is
promoted through the PI3K–AKT signaling pathway (Xing
et al., 2019). Hence, high-risk patients with high TP53 and
PIK3CA mutations have a poorer prognosis than do low-risk
patients with low TP53 and PIK3CA mutations, in accordance
with our survival results. Next, we speculated that low-risk
patients benefit more from the immune checkpoint inhibitor
therapy, based on the results presented in Figure 8C, especially
among patients with TNBC cancer in both groups (Lyons, 2019;
Kwapisz, 2021).

Here, we concluded that the risk score had a slight positive
relationship with the TMB (Figure 6D), which implies that the
TMB can help explain why the risk score affects prognosis to a
certain degree; however, other possible mechanisms may be
involved in this relationship. Recent studies reported that
TMB-high tumors not only did not exhibit a higher
susceptibility to immune checkpoint blockade (ICB) vs. TMB-
low tumors, but also exhibited a significantly lower susceptibility
to ICB in BRCA, prostate cancer, etc. (McGrail et al., 2021).
Interestingly, high expression levels of CTLA-4 and TIGIT were
correlated with favorable prognosis in breast cancer (Fang et al.,
2020). These are consistent with our results. Furthermore, we
shed light on the tumor microenvironment and composition of
immune cell infiltrates. The results of these analyses (Figures
7A,B) indicated that CD8+ T cells, plasma cells, naïve CD8+

T cells, M1 macrophages, memory B cells, and endothelial cells
were more abundant in the low-risk subgroup, whereas M2
macrophages, M0 macrophages, and fibroblasts were more
common in the high-risk subgroup. A substantial body of
research has revealed that a high level of infiltration of T cells,
especially cytotoxic CD8+ T cells, predicts a beneficial outcome
(Bindea et al., 2013; Gentles et al., 2015; Fridman et al., 2017).
Considering the fibroblasts in the high risk group were
significantly higher than those in the low risk group (p <
0.001), we speculated that the high risk group were more
abundant in cancer-associated fibroblast (CAF) compared to
the low risk group. CAF is the main cell component of tumor
microenvironment (TMB). Studies have shown that CAFs can
assist the immune escape of breast cancer cells, promote
proliferation, invasion and metastasis of breast cancer cells,
inhibit immune response (Shimura et al., 2018; Gok Yavuz

et al., 2019;Ivy X Chen et al., 2019) and inhibit T cell
infiltration (Lei Li et al., 2021). This result is in accordance
with our study.

In most malignancies, M2 macrophages, which are a
significant subtype of macrophages, have been shown to
correlate with increased tumor cell proliferation, development
of an invasive phenotype, and chronic inflammation, and these
cells have been correlated with a poor outcome in breast, gastric,
ovarian, bladder, and prostate cancers (Josephs et al., 2015; Ruffell
and Coussens, 2015; Fridman et al., 2017). Conversely, a high
density of M1 macrophages seems to be correlated with acute
inflammation and imply a favorable prognosis among patients
with HCC, NSCLC, gastric, or ovarian cancers (Josephs et al.,
2015; Ruffell and Coussens, 2015; Fridman et al., 2017). The
results of our study support these conclusion.

Moreover, we found that the low-risk samples had a more
robust ability for damage repair, whereas the high-risk samples
had more immunosuppressive cells and signals and tumor and
metastasis-related signals, which implies that the high-risk
subgroup exhibited characteristics of immunosuppression and
active tumor progression.

Furthermore, there were different proportions of the PAM50
subtypes in the two subsets (Figure 9A), as we found that the
high-risk subgroup possessed more HER2+ samples, which are
more invasive. In contrast, the low-risk subgroup possessed more
luminal A samples, which are less invasive. In summary, we
concluded that the low-risk subgroup was characterized by lower
tumor aggressiveness and an active immune response, whereas
the high-risk subgroup was characterized by higher tumor
aggressiveness and an immune-suppressive response.

Finally, we learned that patients in the low-risk group were
more responsive to treatment with gefitinib, epothilone B, and
doxorubicin. In contrast, patients in the high-risk group were
more responsive to treatment with docetaxel (Figures 9B–G).
This phenomenon might provide valuable clinical treatment
recommendations for high- and low-risk groups.

There are still some limitations to this study. First, the data was
obtained only from a single TCGA dataset. The analysis of
multiple datasets would have been more convincing. Second,
the associations were analyzed solely by statistical analysis and
were not validated experimentally. Lastly, when exploring the
immune microenvironment, we did not illustrate the signalling
pathways of the target genes at a deeper level. We should
investigate the specific mechanisms of the AAM-related
prognostic lncRNAs and immune cells in the future. There is
still a long way to go to considerably optimise personalised
immunotherapy management.

CONCLUSION

In conclusion, we attempted to shed light on the importance of
AAM-associated lncRNAs in BRCA. The prognostic model built
here might be acknowledged as an indispensable reference for
predicting the outcome of patients with BRCA and help identify
their immune and molecular characteristics. However, further
studies are needed to illustrate this point.
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